检测中心培训-质谱基础知识(精选)
- 格式:ppt
- 大小:1.31 MB
- 文档页数:35
质谱分析法知识汇总(全面)1.质谱法定义:是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。
依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。
2.质谱的作用:准确测定物质的分子量;质谱法是唯一可以确定分子式的方法;根据碎片特征进行化合物的结构分析。
3.质谱分析的基本原理:质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列收集成质谱。
根据质谱中的分子离子峰(M+)可以获得样品分子的相对分子质量信息;根据各离子峰(分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等)及其相对强度和氮数规则,可以确定化合物的分子式;根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析;根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。
4.质谱分析的过程:(1)进样,化合物通过汽化引入电离室;(2)离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子;(3)离子也可因撞击强烈而形成碎片离子;(4)荷正电离子被加速电压V加速,产生一定的速度v,与质量、电荷及加速电压有关;(5)加速正离子进入一个强度为B的磁场(质量分析器),发生偏转。
5.质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。
6.真空系统作用:是减少离子碰撞损失,若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。
7.进样系统目的:高效重复地将样品引入到离子源中并且不能造成真空度的降低;间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。
8.离子源或电离室:作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。
质谱基础知识汇总(精华版)质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒子可进一步断裂,形成离子,质谱的离子可以质谱的核心内容,今天就和大家聊一聊质谱使用者都应该知道的离子。
质谱,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子, 某些带电粒子可进一步断裂,形成离子,每一离子的质量与所带电荷的比称为质荷比(m/z,曾用m/e),不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱。
不同离子的概念1、分子离子分子被电子束轰击失去一个电子形成的离子称为分子离子。
分子离子用 M+表示。
分子离子是一个游离基离子。
在质谱图中与分子离子相对应的峰为分子离子峰。
分子离子峰的质荷比就是化合物的相对分子质量, 所以,用质谱法可测分子量。
2、同位素离子含有同位素的离子称为同位素离子。
在质谱图上,与同位素离子相对应的峰称为同位素离子峰。
3、碎片离子分子离子在电离室中进一步发生键断裂生成的离子称为碎片离子。
4、重排离子经重排裂解产生的离子称为重排离子。
其结构并非原来分子的结构单元。
在重排反应中,化学键的断裂和生成同时发生, 并丢失中性分子或碎片。
5、奇电子离子与偶电子离子具有未配对电子的离子为奇电子离子。
这样的离子同时也是自由基,具有较高的反应活性。
无未配对电子的离子为偶电子离子。
6、多电荷离子分子中带有不止一个电荷的离子称为多电荷离子。
当离子带有多电荷离子时,其质核比下降,因此可以利用常规的四极质量分析器来检测大分子量化合物。
7、亚稳离子从离子源出口到检测器之间产生的离子。
即在飞行过程中发生裂解的母离子。
由于母离子中途已经裂解生成某种离子和中性碎片,记录器中只能记录这种离子,也称这种离子为亚稳离子,由它形成的质谱峰为亚稳峰。
8、准分子离子比分子量多或少 1 质量单位的离子称为准分子离子,如:(M+H)+,(M-H)+。
1.质谱分析法先将中性分子离子化,再顺次分离和记录各种离子的质荷比和丰度先将中性分子离子化,再顺次分离和记录各种离子的质荷比和丰度( 强度),从而实现分析目的的一种分析方法。
2.质谱不同质荷比的离子经质量分析器分离,而后被检测并记录下来的谱图叫作质谱图。
简称质谱。
质谱图的横坐标是质荷比(m/z) ,纵坐标是离子强度;质谱法(Mass Spectrometry) 即质谱分析法,一般亦简称为质谱;质谱计(Mass Spectrometer): 采用顺次记录各种质荷比离子的强度的方式测量化合物质谱的仪器;质谱仪(Mass Spectrography) :采用干板记录方式,同时记录下所有离子的质谱仪器。
氯霉素的质谱图3.质谱基础知识常用的质量单位Da=Dalton(道尔顿)质量单位,等于一个碳原子(12C)质量的十二分之一,约为1.66×10-24克;一克约为6×1023道尔顿。
amu=atomic mass unit ,原子质量单位1amu=1Da原子结构及其质量原子量* 国际协议赋予其确切的质量为12原子量(C) = 0.9889(12.0000) + 0.0111(13.0033)= 12.011一种元素的所有同位素的重量平均值叫作原子量同位素及同位素丰度同位素即具有相同的原子序数而又具有不同的质量数的原子叫作同位素。
同位素丰度即自然界中某同位素原子所占的百分数叫做该同位素的天然丰度。
同位素表示法质量数= 质子+ 中子具有相同的元素符号,在元素符号的左上角表明其质量数4.怎样计算质量数、分子量名义质量数采用元素质量数的整数进行计算,例如:C=12,H=1,O=16单同位素质量数或准确质量数用丰度最大的同位素准确质量数计算例如:12C=12,1H=1.0078,16O=15.9948平均质量数或化学质量数考虑到所有天然同位素丰度的该元素原子量来计算例如:C=12.001,H=1.00794,O=15.9994四极杆质谱获得的单电荷离子的m/z值,是单同位素质数,建议质谱峰标注到小数点后1位。
质谱知识点总结质谱的基本原理是利用质谱仪将待测样品中的化合物离子化,并通过一系列的质谱分析技术来测量离子的质量和相对丰度。
这些技术包括质谱仪的装置和操作原理、质谱图的解析和解释、以及质谱数据的处理和分析等方面。
质谱仪是质谱分析的基础设备,它由离子源、质量分析器和检测器组成。
离子源用来将待测样品中的分子离子化,质量分析器用来分离并测量不同质量的离子,检测器用来检测并记录离子的相对丰度。
常用的质谱仪包括质子转移反应质谱仪(PTR-MS)、气相色谱质谱仪(GC-MS)、液相色谱质谱仪(LC-MS)、高分辨质谱仪(HRMS)等。
质谱图是质谱实验的结果,它展现了待测样品中的分子离子的质量和相对丰度分布。
质谱图通常由质子峰、碎片峰和其他杂峰组成,每个峰表示一个离子种类,并且它们的相对丰度和质量可以提供待测样品的信息。
质谱图的解析和解释是质谱分析的重要环节,它涉及到峰的定性和定量分析,以及离子种类的识别和结构推断等内容。
质谱数据的处理和分析是质谱分析的关键步骤,它包括质谱图的峰归属和质量定量、离子种类的识别和结构推断、以及质谱数据的统计和分析等方面。
现代质谱数据处理软件已经可以实现自动化的数据处理和分析,极大地提高了质谱分析的效率和准确性。
在实际应用中,质谱技术已经被广泛应用于不同领域的分析和研究工作。
例如在化学领域,质谱技术可以用来确定化合物的分子式和结构、分析反应产物和中间体的构成、以及检测和鉴定化合物的污染物和杂质等。
在生物学领域,质谱技术可以用来研究蛋白质、核酸和代谢产物的结构和组成、分析细胞代谢和信号转导等。
在药学领域,质谱技术可以用来分析药物的结构和成分、研究药物的代谢和药效学等。
总之,质谱是一种强大而灵活的分析技术,它在科学研究和工业生产中有着重要的应用价值。
随着质谱仪和数据处理软件的不断进步,相信质谱技术在未来会发挥更加重要的作用,为科学研究和工业发展提供更多有力的支持。