台达伺服电机及驱动器(中低功率)
- 格式:pdf
- 大小:18.08 MB
- 文档页数:18
台达伺服电机驱动器B2型号总结
外部接线图:
图设置参数需要断掉VDD与COM+不然无法成功保存
注意:当电源切断时,因为驱动器内部大电容含有大量的电荷,请不要解除R,S,T及U,V,W这6条大电力线,请等待充电灯熄灭方可操作.
一些用到的参数设置如下:
P2-08为10:参数初始化.
P1-55为每分钟最大转速的上限
P1-44为电子齿轮比分子N
P1-45为电子齿轮比分母M
电子齿轮比的计算方法:你想要多少个脉冲转一圈电子齿轮比=马达转一圈所需要的脉冲数,电子齿轮比加倍,那么转速和行程都会加倍,反之亦然;例脉冲齿轮比16,每秒脉冲1000这样子就是0.1圈,如果是要0.2圈那么把每秒脉冲电子齿轮比等于2倍马达转一圈的脉冲数,注意脉冲最高限定5000
更多参数设置查询手册及其他资料
程序简介
END。
三相機種的變頻器是否可以接單相入力電源?台達變頻器為單相及三相機種,其最大的差異在於電容的配置。
單相機種會配置比較大的電容,因此若三相機種只接單相入力,可能導致輸出電流不足,且會發生欠相的異常。
為確保系統正常運行,請搭配使用正確的電源系統。
變頻器使用在硬體上需加裝PG卡,在PG卡上的開關設置編碼器為Open-Collector或是Line-Driver型式,並設置正確的電壓大小。
在參數上,設定編碼器每轉的脈波數及輸入脈波型式。
以台達VFD-VE系列變頻器為例,選用EMV-PG01X的PG卡,且編碼器一圈有1024個脈波,為Open-Collector 12V型,此時,PG卡需設置(如下圖)在參數設定方面,需設定參數10-00每轉脈波數為1024。
另外,在設定10-01之前,需先確定該編碼器的脈波型式為AB相、脈波加方向或單一脈波,再加以設定。
之後只要將參數00-04設為7,就可以在使用者顯示的內容看到馬達實際由編碼器回授的轉速。
無感測向量控制a.優異開迴路速度控制,不必滑差補償b.在低度時有高轉矩,不必提供過多之轉矩增強c.更低損耗,更高效率d.更高動力響應- 尤其是階梯式負載e.大馬達有穩定之運轉f.在電流限制,改善滑差控制有較好之表現在台達交流馬達驅動器的輸入電源輸入側電抗器用於變頻器/驅動器輸入端,電抗器保護著靈敏電子設備使其免受變頻器產生的電力雜訊干擾(如電壓凹陷、脈衝、失真、諧波等),而藉由電抗器吸收電源上的突波,更能使變頻器受到良好的保護。
變頻器/驅動器輸出側電抗器在長距離電纜接線應用中,使用IGBT保護型電抗器於馬達與變頻器之間,來減緩dv/dt值及降低馬達端的反射電壓。
使用負載電抗器於輸出端,可抑制負載迅速變化所產生的突波電流,即使是負載短路亦可提供保護。
何謂控速比可控速範圍是以馬達的額定轉速為基準,在定轉矩操作區中為維持額定轉矩,其額定轉速與最低轉速的比值,例如一典型交流伺服馬達的可控速範圍為1000:1,亦即若馬達的額定轉速為2000 rpm/min,其最低轉速為2 rpm/min;而且在此控速範圍內,由無載至額定負載時,其轉速誤差百分比值均能滿足所設定的控速精度,如+-0.01%。
台达伺服工作原理台达伺服系统是一种广泛应用于工业自动化领域的控制系统,它通过控制电机的运动来实现精确的位置控制和速度控制。
台达伺服系统由伺服电机、伺服驱动器和控制器三部分组成,下面将详细介绍台达伺服系统的工作原理。
1. 伺服电机伺服电机是台达伺服系统的核心部件,它能够将电能转化为机械能,提供动力驱动机械设备。
伺服电机一般采用直流电机或交流电机,具有高转速、高精度和高可靠性的特点。
伺服电机通常由定子和转子组成,定子上绕有线圈,转子上带有永磁体或电枢。
当电流通过定子线圈时,会产生磁场,磁场与永磁体或电枢之间的相互作用会使转子转动。
2. 伺服驱动器伺服驱动器是控制伺服电机运动的关键部件,它接收来自控制器的指令,通过控制电流的大小和方向来控制伺服电机的运动。
伺服驱动器一般由功率放大器、速度环和位置环组成。
- 功率放大器:负责将控制信号放大到足够的电流,以驱动伺服电机。
功率放大器通常采用PWM(脉宽调制)技术,通过调整脉冲的宽度和频率来控制电流的大小和方向。
- 速度环:负责控制伺服电机的转速。
速度环通过比较伺服电机的实际转速和设定转速,计算出速度误差,并根据误差调整输出电流的大小和方向,使伺服电机的转速接近设定值。
- 位置环:负责控制伺服电机的位置。
位置环通过比较伺服电机的实际位置和设定位置,计算出位置误差,并根据误差调整输出电流的大小和方向,使伺服电机的位置接近设定值。
3. 控制器控制器是台达伺服系统的核心部件,它接收来自外部的指令,并将指令转化为控制信号发送给伺服驱动器。
控制器通常由微处理器、编码器、接口电路和控制算法组成。
- 微处理器:负责接收和处理来自外部的指令,计算出控制信号,并将控制信号发送给伺服驱动器。
- 编码器:用于测量伺服电机的实际位置和转速。
编码器通常由光电传感器和编码盘组成,当伺服电机转动时,光电传感器会检测编码盘上的刻线,从而测量出伺服电机的实际位置和转速。
- 接口电路:负责将控制信号转化为伺服驱动器能够识别的信号,并将伺服驱动器的反馈信号传输给控制器。
伺服电机应用行业总结现代交流伺服系统最早被应用到宇航和军事领域,比如火炮、雷达控制。
逐渐进入到工业领域和民用领域。
工业应用主要包括高精度数控机床、机器人和其他广义的数控机械,比如纺织机械、印刷机械、包装机械、医疗设备、半导体设备、邮政机械、冶金机械、自动化流水线、各种专用设备等。
其中伺服用量最大的行业依次是:机床、食品包装、纺织、电子半导体、塑料、印刷和橡胶机械,合计超过75%。
在数控机床中使用永磁无刷伺服电机代替步进电机做进给已经成为标准,部分高端产品开始采用永磁交流直线伺服系统。
在主轴传动中采用高速永磁交流伺服取代异步变频驱动来提高效率和速度也成为热点•无轴(电子轴)传动技术在印刷机上应用,也是目前全球印刷企业和机械制造商的焦点。
无轴传动就是用多个单独的伺服电机取代传统的机械传动链,伺服驱动器之间依靠高速现场总线进行联系,通过软件保证各伺服轴对内部的虚拟数字电子轴保持严格同步。
采用无轴传动技术为印刷机的生产制造、为印刷业服务革命带来了最佳解决方案,目前欧洲50%的凹印机采用了无轴技术,日本也有30%以上采用。
其他采用无轴传动的机械包括卷筒纸印刷机、柔印机、上光机、烫金机、模切机等各类印刷设备。
这一领域最顶级的伺服控制解决方案提供商是来自德国的博世力士乐、伦茨、日本的住友和奥地利的贝加莱。
国内目前仅有北人和松德等个别厂家进行无轴传动印刷机的开发,部分规格的性能指标接近国际水平,但是其采用的电子轴传动伺服系统和套准控制系统均来自日本和欧洲,国内相关伺服厂家还鲜有涉足。
国产伺服和控制系统要达到这个领域的要求,需要顶级的技术水平和对这个行业的透彻理解,看来还有漫长的路要走。
•包装设备上,采用伺服控制可以提高单位时间的产量、提高资源利用率、增加品种适应性和提高产品质量,因此交流伺服在包装机械上的广泛使用只是时间问题。
采用数字伺服技术的电子齿轮和电子凸轮将代替传统机械部件,随着价格的下降,成本也逐渐接近纯机械的方案。
台达伺服工作原理一、引言台达伺服是一种广泛应用于自动化控制系统中的电动执行器,它能够精确控制机械设备的运动,实现高速、高精度的位置、速度和力控制。
本文将详细介绍台达伺服的工作原理,包括其组成结构、工作原理和应用领域。
二、组成结构台达伺服由伺服电机、伺服驱动器和编码器三部分组成。
1. 伺服电机:伺服电机是台达伺服系统的核心部件,它通过转换电能为机械能,驱动机械设备的运动。
伺服电机通常由定子、转子、绕组和磁铁组成。
其中,定子是固定不动的部分,绕组则是由导线绕制而成的线圈,磁铁则产生磁场,与绕组相互作用产生力矩,驱动转子旋转。
2. 伺服驱动器:伺服驱动器是伺服系统的控制核心,它接收控制信号,并通过调节电流、电压和频率等参数,控制伺服电机的运动。
伺服驱动器通常由功率电源、控制电路和保护电路组成。
功率电源为伺服电机提供所需的电能,控制电路则接收外部的控制信号,并将其转换为适合伺服电机的驱动信号,保护电路则用于监测伺服系统的工作状态,一旦出现异常情况,会自动停止伺服电机的运动,保护系统的安全。
3. 编码器:编码器是伺服系统的反馈装置,它能够实时监测伺服电机的位置、速度和力等参数,并将其转换为数字信号,反馈给伺服驱动器。
伺服驱动器通过与编码器的比较,实现对伺服电机的闭环控制,确保其运动的准确性和稳定性。
三、工作原理台达伺服的工作原理可以简单概括为接收控制信号、驱动伺服电机、实现闭环控制。
1. 接收控制信号:台达伺服系统通过控制信号来控制伺服电机的运动。
控制信号通常由上位机或PLC等控制设备发送给伺服驱动器,其中包括位置指令、速度指令和力指令等。
伺服驱动器接收到控制信号后,会根据信号的不同参数进行解析和处理,以确定伺服电机的运动方式。
2. 驱动伺服电机:伺服驱动器通过调节电流、电压和频率等参数,驱动伺服电机的运动。
伺服驱动器会根据控制信号的要求,调整输出的电流和电压,以控制伺服电机的转速和力矩。
通过精确控制电流和电压的大小,伺服驱动器能够实现对伺服电机运动的精确控制。
台達伺服驅動器使用指南台達伺服驅動器使用指南1. 簡介台達伺服驅動器是一種先進的控制設備,用於控制伺服馬達,實現高精度且可靠的運動控制。
本指南將詳細介紹台達伺服驅動器的使用方法和注意事項,以幫助您充分利用它的潛力。
2. 了解台達伺服驅動器的基本原理在使用台達伺服驅動器之前,了解它的基本工作原理非常重要。
伺服驅動器通過控制電壓和電流來實現對伺服馬達的控制。
它使用反饋機制來監測馬達轉子位置,並根據所需的運動軌跡調整控制信號。
這種精確的控制使得伺服馬達能夠實現高運動精度和快速響應。
3. 安裝和連接伺服驅動器在安裝和連接伺服驅動器之前,請確保您已閱讀並理解相關的安全手冊和操作指南。
按照指南中提供的步驟進行操作,確保正確安裝和連接驅動器。
請注意,正確的連接至關重要,因為錯誤的連接可能導致系統故障或馬達損壞。
4. 基本參數設置在使用台達伺服驅動器之前,您需要設置一些基本參數,以確保驅動器能夠正確運行。
這些參數通常包括馬達額定參數、控制方式、速度和加速度限制等。
通常,您可以通過驅動器的設置界面或相應的設置軟件進行這些設置。
5. 運動控制設定台達伺服驅動器提供了多種運動控制模式,包括位置模式、速度模式和扭矩模式。
根據您的應用需求,選擇合適的控制模式並進行相應的設置。
另外,您還可以設置運動軌跡、運動速度和加速度等參數,以實現所需的運動效果。
6. 監控和診斷台達伺服驅動器提供了豐富的監控和診斷功能,可以實時監測驅動器和馬達的狀態。
這些功能包括電流監測、溫度監測、震動監測等,可以幫助您了解系統的運行狀態並及時處理問題。
在使用伺服驅動器的過程中,定期檢查和監測這些參數是非常重要的。
7. 故障排除和維護在使用伺服驅動器時,可能會遇到一些故障和問題,如異常噪音、性能下降或系統錯誤等。
在這種情況下,您應該根據相關的故障排除指南進行操作。
另外,定期進行保養和檢修也是確保系統正常運行的關鍵。
總結:台達伺服驅動器是一種先進的控制設備,提供了高精度和可靠的運動控制功能。
台达A2伺服配线及操作伺服系统是现代工业自动化中的重要组成部分,具有高性能、高精度、高可靠性等优点。
其中,台达A2伺服是一种高性价比的伺服系统,广泛应用于各种自动化设备中。
本文将详细介绍台达A2伺服配线及操作方法。
一、伺服系统组成1.1伺服驱动器:伺服驱动器是伺服系统中的核心部件,负责接收控制信号并控制伺服电机输出相应的转矩和速度。
台达A2伺服驱动器具有多种保护功能,如过流,过压,过热等保护,可有效保护系统。
1.2伺服电机:伺服电机是伺服系统的执行部件,通过接收驱动器控制信号来实现精确的位置和速度控制。
台达A2伺服电机具有高速响应,低噪音,高功率密度等特点。
1.3编码器:编码器是用来反馈电机实时位置信息的设备,可以保证伺服系统的运动精度。
台达A2伺服系统支持多种编码器接口,如绝对值编码器,增量编码器等。
1.4控制器:控制器负责生成伺服系统的控制信号,并对反馈信号进行处理,以实现闭环控制。
台达A2伺服系统支持多种控制方式,如位置控制,速度控制,力控制等。
二、伺服系统配线2.1电源接线:伺服系统的电源接线非常重要,必须按照驱动器和电机的额定电压和功率要求进行连接。
一般情况下,电源接线应该使用优质的电缆,并保证接线牢固可靠。
2.2信号接线:伺服系统的信号接线包括控制信号和反馈信号。
控制信号一般是通过控制器发送给驱动器的指令,而反馈信号用于电机实时位置的反馈。
信号接线也要保证牢固可靠,并且不要出现干扰情况。
2.3地线接线:地线接线是伺服系统中非常重要的一环,它可以有效减小系统的噪声,并保证系统的稳定性。
在连接地线时,应尽量选择独立的地线进行接地,避免共用。
2.4信号连接:在安装伺服系统时,需要根据系统手册中提供的接线图进行连接,确保每条信号线连接正确。
在连接过程中注意防止短路和接触不良等问题。
三、伺服系统操作3.1参数设置:在使用台达A2伺服系统之前,需要对其进行参数设置,包括电机参数,速度参数,位置参数等。