线性代数—解线性方程组的消元法(精选)
- 格式:ppt
- 大小:852.00 KB
- 文档页数:26
经济数学·线性代数:解题方法技巧归纳
常见的解题方法技巧:
1.高斯消元法:用于解决线性方程组的方法,通过
消去未知数的系数,使方程组的每一行的未知数
只有一个。
2.高斯-约旦消元法:用于解决线性方程组的方法,
通过消去未知数的系数,使方程组的每一行的未
知数只有一个,并通过交换方程的顺序来解决无
解或多解的情况。
3.矩阵消元法:用于解决线性方程组的方法,将方
程组写成矩阵形式,通过消去未知数的系数,使
矩阵的每一行的未知数只有一个。
4.高斯-约旦分解法:用于解决线性方程组的方法,
通过将方程组写成两个矩阵的乘积的形式。
5.广义逆矩阵法:用于解决线性方程组的方法,通
过求出矩阵的广义逆(也叫做伪逆),将方程组写
成矩阵的形式,求解未知数的值。
6.矩阵的特征值与特征向量:用于解决矩阵的本征
值问题的方法,通过求解矩阵的特征方程,求得
矩阵的特征值与特征向量,并利用它们来求解其
他问题。
7.奇异值分解:用于解决矩阵的奇异值分解问题的
方法,将矩阵分解为三个矩阵的乘积的形式,并利用它们来求解其他问题。
8.广义逆矩阵的求法:用于求解矩阵的广义逆(也叫做伪逆)的方法,包括计算机辅助的方法和数学计算的方法。
(完整版)解线性方程组的消元法及其应用解线性方程组的消元法及其应用朱立平曲小刚)教学目标与要求通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法—高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵.教学重点与难点教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵教学难点:高斯消元法,利用消元法求逆矩阵.教学方法与建议先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法—高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。
教学过程设计1. 问题的提出由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的.引例解线性方程组4x1 2x2 5x3 4 (1)x1 2x2 7 (2)2x1 x2 3x3 1 (3)x1 2x2 7 (1)(1) ( 4) (2)x1 2x2 7 (1)解(1)(1) (2) 4x1 2x2 5x3 4 (2)(1) ( 2) (3)6x2 5x3 24 (2)2x1 x2 3x3 1 (3) 5x2 3x3 13 (3)5 X i 2x 2 7(2)()(3)66x 2 5x 3 24 7 X 3 7 6用回代的方法求出解即可.问题:观察解此方程组的过程,我们总共作了三种变换:(1 )交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的k 倍.那么对于高阶方程组来说,是否也可以考虑用此方法.2. 矩阵的初等变换定义1阶梯形矩阵是指每一非零行第一个非零元素前的零元素个数随行序数的增加而增加的矩阵.定义2下面的三种变换统称为矩阵的初等行变换:i. 互换矩阵的两行(例如第i 行与第j 行,记作r i r j ),ii.用数k 0乘矩阵的某行的所有元素(例如第 i 行乘k ,记作kr i ),iii. 把矩阵某行的所有元素的k 倍加到另一行的对应元素上去(例如第j 行的k 倍加到第i 行上,记作r i kr j ).同理可以定义矩阵的初等列变换 .定义3如果矩阵A 经过有限次初等变换变为矩阵B ,则称矩阵 A 与B 等价,记作A ~B .注:任意一个矩阵总可以经过初等变换化为阶梯形矩阵3.咼斯消兀法对」般口丁 II 阶线性方程组a 〔1 X 1812X 2 a 1n Xnb (1)a 21 X 1 a 22X 2a 2n X nb 2 (2)(3.1)an 1 X1a n2X 2ann Xnb n(n)若系数行列式detA 0,即方程组有唯一解,则其消元过程如下:第一步,设方程(1)中X i 的系数a M 0将方程(I )与(1)对调,使对调后的第一个方程 X i第二步,设a 22) 0,保留第二个方程,消去它以下方程中的含X 2的项,得(1) ⑵(3)的系数不为零.作i並(D(i 2,3,a 11n ),得到同解方程组(0)anX1(0)a 12 X 2 (0) a 1 n Xn b 1(0) (1) a ?2 X 2(1) a 2n X nby(1)a n2X 2(1)a nn X n(3.2)接下来的回代过程首先由(3.4)的最后万程求出X n ,依次向上代入求出 X n1,X n 2, X 1即可?高斯消元法用矩阵初等变换的方法表示就是注:用高斯消元法求解线性方程组,是对线性方程组作三种初等行变换(某个方程乘非零常数k ;一个方程乘常数 k 加到另一个方程,对换两个方程的位置),将其化为同解的阶梯形方程组,这一消元过程用矩阵来表示就是对方程组的增广矩阵施行初等行变换,化为阶梯矩阵?因此,求解线性方程组时不能对增广矩阵施行对换矩阵的两列以外的列变换,若对换矩阵的两列,相应地未知兀也要对换4.应用(1)化矩阵为阶梯形例1试用消元法化 A 为阶梯形矩阵,1 2 1 0 22 4 2 6 6A2 1 0 2 33333 4解(0) 耳1 X1a^x 2 a 22)x 2(0)&13 X 3(1) a 23 X3a 33)X 3(0) a 1n Xn a 2nX n a 3?X n附 byb 32)a%a n^X nb n (3)照此消兀,直至第 n 1步得到三角形方程组J0)」o )jo) J°)a 〔i x 〔 a 〔2 X 2 a 13 X 3 a1 n Xnb 1(1) a ?2 X 2 (1) a 23 X 3 (1) a 2n Xn by(2)a 33 X 3(2)a 3n X nb 32)(3.3)(3.4)a11a 12a1 nb 1 (A,b)a21 a22a2nb 2an1n2annb na (0)a (0)a11a12 a*a (0)a1n b 1(0) a22a 23)a2nbyf 2)33a(2)b 32)f 2)n3a(2)nnb n (2)r2 —r 1 a11r 931『afa(0)12「3b (0)a (1) a 22 )2a 42)rr3r 1*11a(1)22a 2^r4by于 arn Ta11a(1)an2事 byr n吧r矿a :0〉aja(0)a 13 a,0〉 a (0) a 22)a23 a*b 21)f 2)33a 3?b 32)(n 1)(n 1)annn(n 1) ann xn』1)b n1 2 1 02 121 02 『2 2r 1r 32r10 0 0 6 2 r 2 『332 2 1 『4 3r 2 Ar 44r10 3 2 2 10 0 6 20 9 6 3 2 09 632110 2 1121 020 32 2 1 r4-r 3 232 2 1B0 0 0 6 2 0 0 0 6 20 031则B 即为所求的与 A 等价的阶梯形矩阵求逆矩阵利用初等行变换求逆矩阵的方法主要分为以下三步 :a )将矩阵A 与冋阶的单位方阵 I 拼成(A, I) ;b )对A 施行初等行变换,目标是将 A 变换成 I ;c )当A 变换为时,原来的 I 变换成A 1,即(A,1)(I, A 1)主:若将A, I 拼成 A,只能施行初等列变换,A II A1?求矩阵A 的逆矩阵11 1A1 02 .1 2 11 11 1 0 01 11 1 0( 1)『1解(A, 1)=1 020 1 00 1 1 1 112 1 10 0 1 『3『10 1 1 2 1 0 “『3『211 1 1 i 1 0 0『1 『『3 1 『3 0 0 ; 4 3 20 1 1! 11 0 0 1 0\ 32 10 0 1 : 2 1 『1 1 『20 0 1 21 14 3 2 1所以A 32 12 1 1。
线性方程组的消元法线性方程组的消元法是解决线性方程组的常用方法之一,通过逐步消去未知数的系数,将方程组转化为更简单的形式,从而求得方程组的解。
本文将详细介绍线性方程组的消元法及其应用。
1. 消元法简介消元法是一种通过逐步消除未知数的系数,将线性方程组转化为更简单形式的方法。
它的基本思想是通过不断的代入与消去操作,将方程组转化为三角形式或最简形式,从而求得方程组的解。
2. 线性方程组的一般形式线性方程组的一般形式可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁、a₁₂、...、aₙₙ为未知数的系数,b₁、b₂、...、bₙ为常数项。
3. 消元法的步骤(1)选取主元:根据方程组的特点,选择一项作为主元,并将其系数置为1,并且使其所在的其他行对应的列的系数皆为0,这样可以简化计算过程并减少误差。
(2)代入消元:选择一个非主元进行代入,将其代入主元所在的其他方程中,从而消去该未知数。
(3)重复步骤(1)和(2),直至将所有的非主元都消去为止。
(4)最后得到一个三角形形式的线性方程组,可以通过回代法求解该方程组的解。
4. 消元法的应用消元法广泛应用于各个领域,特别是在科学和工程领域中具有重要作用。
以下是几个应用实例:(1)经济学中的输入产出模型:通过消元法可以分析不同产业之间的投入产出关系,从而得出经济模型的解释。
(2)物理学中的电路分析:通过消元法可以简化复杂的电路方程组,从而计算出电路中各个节点的电压和电流。
(3)化学反应平衡问题:通过消元法可以解决化学反应平衡过程中的复杂线性方程组,从而得到反应物和生成物的浓度。
5. 总结消元法是一种解决线性方程组的有效方法,通过逐步消除未知数的系数,将方程组转化为更简单的形式,从而求得方程组的解。
消元法求解常系数线性微分方程组下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!消元法求解常系数线性微分方程组导言在微积分和线性代数领域,线性微分方程组是一类重要的数学问题,它们在物理学、工程学以及其他科学领域中有着广泛的应用。
用高斯消元法求解线性代数方程组12341115-413-2823113-21041513-21719x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 1111X *⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。
为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。
⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x 将方程(II )乘(5.03)后加于方程(III ),得同解方程组:⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x 由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。
下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。
⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a (1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x 其中)0(11)0()1(1a a aij j =, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n+ 1) 从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2) 其中n i a m a a iji ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。
线性代数之——消元法1. 消元的思想针对下⾯的⽅程,我们⽆法直接得到⽅程的解。
x− 2y= 13x+ 2y= 11但如果我们将第⼆个⽅程减去第⼀个⽅程的 3 倍,上⾯的⽅程组就变成了下⾯这样。
x− 2y= 18y= 8这时候,我们就可以直接得到y=1,进⽽从第⼀个⽅程得到x=3。
可以看到,消元之后,⽅程组变成了⼀个下三⾓(upper triangular)的形式,然后我们就可以⽤回带法(back substitution)来快速地解出⽅程组的解。
进⾏消元的那⼀⾏的第⼀个⾮零值称为主元(pivot),消元时候的乘数就等于待消项的系数除以主元,在上⾯的例⼦中,乘数 3=3/1。
⼀般地,乘数可以表⽰为l ij=第i⾏待消去项的系数第j⾏的主元4x− 8y= 43x+ 2y= 11如果我们改变了第⼀个⽅程,那么乘数就等于 3/4。
消元之后,所有的主元都位于下三⾓的对⾓线上,并且主元不能是 0。
4x− 8y= 48y= 82. 消元的失效⽆解x− 2y= 13x− 6y= 11消元后x− 2y= 10y= 8这种情况下,我们遇到了 0y=8,说明原⽅程组⽆解。
从⾏图像中,我们也可以看到,两条平⾏的直线⽆法相交于⼀点。
⽽在列图像中,两个在同⼀⽅向上的向量不可能线性组合出不在这个⽅向上的向量。
⽆穷解x− 2y= 13x− 6y= 3消元后x− 2y= 10y= 0这种情况下,我们遇到了 0y=0,任何的y值都满⾜要求,此时y是“⾃由”的,确定了y之后x则由第⼀个⽅程确定。
从⾏图像中,我们也可以看到,两条直线相同,因此整条直线都是交点。
⽽在列图像中,左边的两个向量和右边的向量⽅向都相同,有⽆穷多个线性组合都可以产⽣右边的向量。
对于有n个⽅程的⽅程组,如果我们得不到n个主元,那么消元就会导致 0≠0,⽆解或者 0=0,⽆穷解,只有正好有n个主元的时候,⽅程组才有解,但我们可能需要进⾏⽅程的交换。
需要⾏交换0x+ 2y= 43x− 2y= 5消元后3x− 2y= 52y= 4⼀开始,第⼀⾏的主元为 0,⾏交换后,我们得到了两个主元 3 和 2,然后,⽅程就有了正常的解。