11第十一章绘制教室平面图
- 格式:ppt
- 大小:1.07 MB
- 文档页数:54
一、选择题1.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边 的度数是()上,则1A.10°B.15°C.20°D.25°2.如图,ABC中,BC边上的高是()A.AE B.AD C.CD D.CF3.下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2 B.3 C.4 D.54.下列长度的线段能组成三角形的是()A.2,3,5 B.4,6,11 C.5,8,10 D.4,8,45.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,66.三角形的两条边长为3和7,那么第三边长可能是()A.1B.4C.7D.10∠的7.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则BDC 度数是()A .65︒B .75︒C .85︒D .105︒ 8.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .79.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF10.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°11.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒二、填空题12.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.13.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.18.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.19.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.20.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.21.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)三、解答题22.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D . (1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由;(2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F .①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.23.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)24.如图,在ABC中,AD是高,AE、BF是角平分线,它们相交于点O,60∠=︒,BAC∠=︒.求EAD70C∠和∠BOE的度数.25.如图,是A、B、C三个村庄的平面图,已知B村在A村的南偏西65°方向,C村在A∠村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村观测A、B两村的视角ACB 的度数.一、选择题1.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°3.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠4.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是( )A .7B .8C .9D .105.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 6.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .57.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .88.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 9.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒10.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 11.如图,已知AE 交CD 于点O ,AB ∥CD ,∠A =50°,∠E =15°,则∠C 的度数为( )A .50°B .65°C .35°D .15°二、填空题12.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.13.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.14.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.15.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.16.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.17.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.18.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.19.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.20.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.21.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.三、解答题22.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数23.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.24.在△ABC 中,∠B =40°,∠C =60°,AD 平分∠BAC ,点E 为AD 延长线上的点,EF ⊥BC 于F ,求∠DEF 的度数.25.如图,在ABC 中,AD 平分BAC ∠,E 为AD 上一点,过点E 作EF AD ⊥交BC的延长线于点F .(1)若40B ∠=︒,70ACB ∠=︒,求F ∠的度数;(2)请直接写出F ∠与B ,ACB ∠之间的数量关系:______.一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°3.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 4.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°5.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .56.用下列长度的三根木棒首尾相接,能做成三角形框架的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 7.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、3 8.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°9.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒10.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠ B .12A B C ∠=∠=∠ C .3A B C ∠=∠=∠ D .1123A B C ∠=∠=∠ 11.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题12.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.15.七边形的外角和为________.16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.17.如图,在ABC 中,点,,D E F 分别在三边上,点E 是AC 的中点,,,AD BE CF 交于一点,283BGD AGE G BD DC S S ===,,,则ABC 的面积是________.18.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.19.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°;②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°. 20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.21.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.三、解答题22.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D . (1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由;(2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F .①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.23.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 24.如图所示,已知AD ,AE 分别是△ABC 的高和中线,AB =3cm ,AC =4 cm ,BC=5 cm ,∠CAB =90°.(1)求AD 的长.(2)求△ABE 的面积.25.一个多边形的内角和比它的外角和多720°,求该多边形的边数.。
第11章平面直角坐标系教案教学设计11.1 平面内点的坐标 (1)第1课时平面直角坐标系 (1)第2课时坐标平面内的图形 (5)11.2 图形在坐标系中的平移 (8)章末复习 (12)11.1 平面内点的坐标第1课时平面直角坐标系【知识与技能】理解和掌握平面直角坐标系的有关知识,领会其特征.【过程与方法】经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台.【情感与态度】认识直角坐标系的作用,体现现实生活中的坐标的应用价值,激发学习的兴趣.【教学重点】重点是认识直角坐标系,感受有序实数对的应用.【教学难点】难点是对有序实数对的理解.一、创设情境,导入新知1.回顾交流.教师提问:什么叫做数轴?实数与数轴建立了怎样的关系?学生思考后回答:(1)规定了原点、正方向、单位长度的直线叫做数轴.(2)数轴上的点同实数建立了一一对应的关系.教师引申:实际上这个实数可以称为这个点在数轴上的坐标.【教学说明】学生通过思考问题,复习旧知识,为新知识建立铺垫.2.问题提出.提问:请同学们观看屏幕投影片,你发现了什么?投影显示有关有序实数对的情境.【情境1】我们都有过去电影院看电影的经历.大家知道,影剧院对所有观众的座位都按“几排几号”编号,以便确定每一个座位在剧院中的位置,这样观众就能根据入场券上的“排数”和“号数”准确地“对号入座”.学生活动:通过观察,发现了电影院中的“几排几号”是有序实数对.【情境2】请以下座位的同学今天放学后参加英语口语测试:(1, 4),(2, 3),(5, 4),(2, 2),(5, 7).【教学说明】教师在学生回答的基础上,进一步引导学生从中发现数学问题:确定一个位置需要两个数据,体会认识有序实数对的重要性.二、建立表象,数形结合新知探究:平面直角坐标系相关概念小明:音乐喷泉在中山北路西边50米,北京西路北边100米.小丽能根据小明的提示从图中用“·”标出音乐喷泉的位置吗?思考:1.确定平面上一点的位置需要什么条件?2.既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?【教学说明】教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们可以在平面内画两条互相垂直、原点重合的数轴,这样就组成平面直角坐标系.确定水平的数轴称为x轴(横轴),习惯上我们取向右为正方向;竖直的数轴称为y轴(纵轴),取向上方向为正方向;两轴交点为原点,这样就形成了坐标平面.有了坐标平面,平面内的点就可以用一个有序实数对来表示.引导观察:如下图中点P可以这样表示:由P向x轴作垂线,垂足M在x轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标是3,把横坐标写在纵坐标前面记作(-2, 3),即P点坐标(-2, 3).引导练习:写出点A、B、C的坐标.学生相互交流,得出正确答案.(强调点的坐标的有序性和正确规范书写)教师提问:请同学们想一想:原点O的坐标是什么?x轴和y轴上的点坐标有什么特点?学生观察发现:O的坐标(0, 0),x轴上的点纵坐标为0,y轴上的点横坐标为0.三、运用新知,深化理解1.(广西北海中考)在平面直角坐标系中,点M(-2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,若点P(a-3,a+1)在第二象限,则a的取值范围为()A.-1<a<3B.a>3C.a<-1D.a>-13.如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为.4.写出图中点A、B、C、D、E、F的坐标.(注:每小格的长度代表单位“1”.)【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.【参考答案】1.B2.A3.(2, 4)4.解:A(-3, -2),B(-5, 4),C(4, -4),D(0, -3),E(2, 5),F(-3, 0).四、师生互动,课堂小结本节课我们学习了平面直角坐标系.学习本节我们要掌握以下三方面的知识内容:1.能够正确画出直角坐标系.2.能在直角坐标系中,根据坐标找出点,由点求出坐标.坐标平面内的点和有序实数对是一一对应的.3.掌握象限内、x轴及y轴上点的坐标的特征:第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-);x轴上的点的纵坐标为0,表示为(x, 0);y轴上的点的横坐标为0,表示为(0, y).4.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.课本第5页练习1、2、3.2.完成练习册中相应的作业.基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合.通过学习使学生理解和掌握平面直角坐标系的有关知识,领会其特征,经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台,体会现实生活中的坐标的应用价值,激发学习的兴趣.第2课时坐标平面内的图形【知识与技能】充分应用平面上点的坐标的有关知识,进一步认识坐标系中的图形.【过程与方法】经历由坐标描点,绘制图形,让学生体会数学之生动美感.【情感与态度】培养学生合作交流意识和探索精神,体验数、符号是描述现实世界的重要手段.【教学重点】重点是理解平面直角坐标形成的图形.【教学难点】难点是对平面上点的坐标的理解.一、回顾交流,检测所学1.在平面直角坐标系中,标出下列各点:(1)点A在y轴上,位于原点上方,距离原点2个单位的长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位的长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位的长度;(4)点D在x轴上方,位于原点右侧,距离原点3个单位长度;(5)点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,依次连接这些点,你能得到什么图形?2.在平面直角坐标系中选择一些横、纵坐标满足下面条件的点,标出它们的位置,看看它们在第几象限.(1)点M(x, y)的坐标xy<0;(2)点M(x, y)的坐标xy=0;(3)点M(x, y)的坐标xy>0.【教学说明】将上节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.二、范例学习,理解新知例1在平面直角坐标系中描出下列各组点,并将各组内的点用线段顺次连接起来,说说你得到了什么图形,并计算它们的面积.(1)A(5, 2),B(2, 2),C(2,-2).(2)A(-1,2),B(-2,-1),C(2,-1),D(3, 2).【解】(1)得到的是一个直角三角形,如图①,它的面积是12×3×4=6.(2)得到的是一个平行四边形,如图②,它的面积是4×3=12.【教学说明】教师给出规范解答步骤,学生模仿,便于今后在解决数学问题时有章可循.例2 如图(1),正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出四边形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.【解】如图(2),以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系.此时,正方形的四个顶点A,B,C,D的坐标分别为:A(0,0),B(4,0),C(4,4),D(0,4).教师提问:你还能另建立一个平面直角坐标系吗?并写出A、B、C、D坐标.【教学说明】此题可以另建立平面直角坐标系,培养学生一题多解,从不同角度分析问题的习惯.三、运用新知,深化理解1.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1, 2),(3,-1),则第四个顶点的坐标为()A.(2, 2)B.(3, 2)C.(3, 3)D.(2, 3)2.如图在正方形网格中,若A(1, 1),B(2, 0),则C点的坐标为()A.(-3,-2)B.(3,-2)C.(-2,-3)D.(2,-3)。
第十一章平面直角坐标系复习指导一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对,记作(a ,b);注意:a、b的先后顺序对位置的影响。
(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。
(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;•在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
七、用坐标表示平移:见下图经典例题知识一、坐标系的理解例1、平面内点的坐标是( )在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标例1 点P 在x 轴上对应的实数是-3,则点P 的坐标是 ,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是 ,例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是 。
1、点P(m+2,m-1)在y 轴上,则点P 的坐标是 .2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。