第六章 模式识别
- 格式:ppt
- 大小:661.01 KB
- 文档页数:37
模式识别习题及答案第⼀章绪论1.什么是模式具体事物所具有的信息。
模式所指的不是事物本⾝,⽽是我们从事物中获得的___信息__。
2.模式识别的定义让计算机来判断事物。
3.模式识别系统主要由哪些部分组成数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。
第⼆章贝叶斯决策理论1.最⼩错误率贝叶斯决策过程答:已知先验概率,类条件概率。
利⽤贝叶斯公式得到后验概率。
根据后验概率⼤⼩进⾏决策分析。
2.最⼩错误率贝叶斯分类器设计过程答:根据训练数据求出先验概率类条件概率分布利⽤贝叶斯公式得到后验概率如果输⼊待测样本X ,计算X 的后验概率根据后验概率⼤⼩进⾏分类决策分析。
3.最⼩错误率贝叶斯决策规则有哪⼏种常⽤的表⽰形式答:4.贝叶斯决策为什么称为最⼩错误率贝叶斯决策答:最⼩错误率Bayes 决策使得每个观测值下的条件错误率最⼩因⽽保证了(平均)错误率最⼩。
Bayes 决策是最优决策:即,能使决策错误率最⼩。
5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利⽤这个概率进⾏决策。
6.利⽤乘法法则和全概率公式证明贝叶斯公式答:∑====m j Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯⽅法的条件独⽴假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利⽤朴素贝叶斯⽅法获得各个属性的类条件概率分布答:假设各属性独⽴,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi)后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值⽅差,最后得到类条件概率分布。
模式识别(山东联盟)智慧树知到课后章节答案2023年下青岛大学青岛大学第一章测试1.关于监督模式识别与非监督模式识别的描述正确的是答案:非监督模式识别对样本的分类结果是唯一的2.基于数据的方法适用于特征和类别关系不明确的情况答案:对3.下列关于模式识别的说法中,正确的是答案:模式可以看作对象的组成成分或影响因素间存在的规律性关系4.在模式识别中,样本的特征构成特征空间,特征数量越多越有利于分类答案:错5.在监督模式识别中,分类器的形式越复杂,对未知样本的分类精度就越高答案:错第二章测试1.下列关于最小风险的贝叶斯决策的说法中正确的有答案:条件风险反映了对于一个样本x采用某种决策时所带来的损失;最小风险的贝叶斯决策考虑到了不同的错误率所造成的不同损失;最小错误率的贝叶斯决策是最小风险的贝叶斯决策的特例2.我们在对某一模式x进行分类判别决策时,只需要算出它属于各类的条件风险就可以进行决策了。
答案:对3.下面关于贝叶斯分类器的说法中错误的是答案:贝叶斯分类器中的判别函数的形式是唯一的4.当各类的协方差矩阵相等时,分类面为超平面,并且与两类的中心连线垂直。
答案:错5.当各类的协方差矩阵不等时,决策面是超二次曲面。
答案:对第三章测试1.概率密度函数的估计的本质是根据训练数据来估计概率密度函数的形式和参数。
答案:对2.参数估计是已知概率密度的形式,而参数未知。
答案:对3.概率密度函数的参数估计需要一定数量的训练样本,样本越多,参数估计的结果越准确。
答案:对4.下面关于最大似然估计的说法中正确的是答案:在最大似然函数估计中,要估计的参数是一个确定的量。
;在最大似然估计中要求各个样本必须是独立抽取的。
;最大似然估计是在已知概率密度函数的形式,但是参数未知的情况下,利用训练样本来估计未知参数。
5.贝叶斯估计中是将未知的参数本身也看作一个随机变量,要做的是根据观测数据对参数的分布进行估计。
答案:对第四章测试1.多类问题的贝叶斯分类器中判别函数的数量与类别数量是有直接关系的。
模式识别与应用课程设计一、课程目标知识目标:1. 让学生掌握模式识别的基本概念,理解其在实际生活中的应用。
2. 使学生了解并掌握常用的模式识别算法,如统计方法、机器学习方法等。
3. 帮助学生了解模式识别技术在各领域的发展趋势。
技能目标:1. 培养学生运用模式识别技术解决实际问题的能力。
2. 提高学生运用编程语言(如Python)实现模式识别算法的技能。
3. 培养学生分析数据、提取特征、选择合适算法并进行模型训练的能力。
情感态度价值观目标:1. 培养学生对模式识别技术及其应用的兴趣,激发学生的创新意识。
2. 培养学生严谨的科学态度,养成良好的学术道德。
3. 增强学生团队合作意识,提高沟通与协作能力。
课程性质分析:本课程为应用性较强的学科,结合当前热门的人工智能技术,旨在培养学生的实际操作能力和创新思维。
学生特点分析:学生具备一定的数学基础和编程能力,对新鲜事物充满好奇,喜欢探索未知领域。
教学要求:1. 理论与实践相结合,注重培养学生的动手操作能力。
2. 采用案例教学,让学生在实际问题中感受模式识别技术的魅力。
3. 强化团队合作,培养学生的沟通与协作能力。
二、教学内容1. 模式识别基本概念:包括模式、特征、分类、聚类等基本概念及其相互关系。
教材章节:第一章 模式识别概述2. 模式识别算法:重点讲解统计方法、机器学习方法及其在实际中的应用。
教材章节:第二章 统计模式识别;第三章 机器学习与模式识别3. 特征提取与选择:介绍常用的特征提取和选择方法,如主成分分析、线性判别分析等。
教材章节:第四章 特征提取与选择4. 模型评估与优化:讲解模型评估指标、过拟合与欠拟合问题,以及优化方法。
教材章节:第五章 模型评估与优化5. 模式识别应用案例分析:分析实际案例,如人脸识别、语音识别等。
教材章节:第六章 模式识别应用案例分析6. 实践环节:安排学生进行编程实践,实现简单的模式识别算法,如K-近邻、支持向量机等。
第一章引论1·1 概述1.1.1模式识别模式识别(Pattern Recognition):确定一个样本的类别属性(模式类)的过程,即把某一样本归属于多个类型中的某个类型。
样本(Sample):一个具体的研究(客观)对象。
如患者,某人写的一个汉字,一幅图片等。
模式(Pattern):对客体(研究对象)特征的描述(定量的或结构的描述),是取自客观世界的某一样本的测量值的集合(或综合)。
特征(Features):能描述模式特性的量(测量值)。
在统计模式识别方法中,通常用一个矢量表示,称之为特征矢量,记为模式类(Class):具有某些共同特性的模式的集合。
1.1.2 模式识别系统⑴特征提取从模式空间中选择最有利于模式分类的量作为特征,压缩模式维数,以便于处理,减少消耗。
特征提取一般以分类中使用的某种判决规则为准则。
所提取的特征使在某种准则下的分类错误最少。
为此需要考虑特征之间的统计关系,选用适当的正交变换,才能提取出最有效的特征。
⑵特征选择特征选择同样需要某种分类准则,在该准则下选择对分类贡献较大的特征,删除贡献较小的那些特征。
⑶学习和训练根据已知类别的样本确定分类判决准则矫正特征提取选择方法等⑷分类识别分类是把特征空间划分成类型空间。
把未知类别属性的样本确定为类型空间里的某一类型。
分类错误率越小越好,分类错误率的分析和计算比较困难。
影响分类错误率的因数–分类方法–分类器设计–提取的特征–样本质量等1.1.3模式识别的基本方法㈠统计模式识别理论基础:概率论,数理统计主要方法:线性、非线性分类、Bayes决策、聚类分析主要优点:1)比较成熟2)能考虑干扰噪声等影响3)识别模式基元能力强主要缺点:1)对结构复杂的模式抽取特征困难2)不能反映模式的结构特征,难以描述模式的性质3)难以从整体角度考虑识别问题㈡句法模式识别模式描述方法:符号串,树,图模式判定:是一种语言,用一个文法表示一个类,m类就有m个文法,然后判定未知模式遵循哪一个文法。