模式识别第六章 特征提取
- 格式:ppt
- 大小:1.24 MB
- 文档页数:95
特征提取的基本原理特征提取是指从原始数据中提取出具有代表性和区分度的特征,以便用于数据分析、模式识别、机器学习等领域。
在计算机视觉、语音识别、生物信息学等领域中,特征提取是非常重要的一环,它可以大大提高数据的处理效率和准确性。
特征提取的基本原理包括特征选择、特征提取和特征降维。
特征选择是指从原始数据中选择出与目标任务相关的特征。
在大部分情况下,原始数据的维度是非常高的,而且有些特征可能是无关的、重复的或者噪声的。
因此,特征选择的目的就是要筛选出最具代表性的特征,减少数据的维度和复杂度。
特征选择的方法有过滤式、包裹式和嵌入式等,这些方法可以根据具体的任务和数据集选择合适的特征。
特征提取是指从原始数据中抽取出一些新的特征,这些特征可以更好地表示数据的性质和结构。
常见的特征提取方法包括主成分分析(PCA)、独立成分分析(ICA)、小波变换、局部二值模式(LBP)等。
这些方法可以将原始数据转换成更加紧凑和有意义的特征表示,提高数据的可分性和可解释性。
特征降维是指从高维度的特征空间中找到一个低维度的子空间,以便用更少的特征来表示数据。
特征降维的目的是要减少数据的冗余信息和噪声,提高数据的处理效率和准确性。
常见的特征降维方法包括线性判别分析(LDA)、t分布邻域嵌入(t-SNE)、自编码器等。
这些方法可以有效地压缩数据的维度,同时保持数据的局部结构和全局结构。
特征提取的基本原理可以总结为:从原始数据中选择出具有代表性和区分度的特征,通过一系列的转换和处理,将原始数据转换成更加紧凑和有意义的特征表示。
特征提取是数据分析和模式识别的一个重要环节,它可以大大提高数据的处理效率和准确性。
在实际应用中,特征提取的方法和技术需要根据具体的任务和数据集进行选择和调整,以便得到最佳的特征表示。
特征选择、特征提取MATLAB算法实现(模式识别)6特征选择6.1问题对“threethreelarge.m”数据,采⽤任意⼀种特征选择算法,选择2个特征6.2思路采⽤简单特征选择法(simple feature selection approach),⾸先计算每⼀个特征的分类能⼒值,再选择出其中最⼤分类能⼒的l个特征。
6.3结果eigs=8.92340.00000.0767SelectedFeature=13也就是说,选取x和z坐标作为特征。
6.4代码%特征选择代码,见FSthrthrlrg.m⽂件m1=[0,0,0];m2=[0,0,0];m3=[0,0,0];m=[0,0,0];for i=1:200m1(1)=m1(1)+(x1(i,1)-m1(1))/i;m1(2)=m1(2)+(x1(i,2)-m1(2))/i;m1(3)=m1(3)+(x1(i,3)-m1(3))/i;end;for i=1:190m2(1)=m2(1)+(x2(i,1)-m2(1))/i;m2(2)=m2(2)+(x2(i,2)-m2(2))/i;m2(3)=m2(3)+(x2(i,3)-m2(3))/i;end;for i=1:210m3(1)=m3(1)+(x3(i,1)-m3(1))/i;m3(2)=m3(2)+(x3(i,2)-m3(2))/i;m3(3)=m3(3)+(x3(i,3)-m3(3))/i;end;m(1)=(m1(1)+m2(1)+m3(1))/3;m(2)=(m1(2)+m2(2)+m3(2))/3;m(3)=(m1(3)+m2(3)+m3(3))/3;sw1=zeros(3,3);sw2=zeros(3,3);sw3=zeros(3,3);sw=zeros(3,3);sb=zeros(3,3);for i=1:200sw1=sw1+([x1(i,1),x1(i,2),x1(i,3)]-m1)'*([x1(i,1),x1(i,2),x1(i,3)]-m1);end;for i=1:190sw2=sw2+([x2(i,1),x2(i,2),x2(i,3)]-m2)'*([x2(i,1),x2(i,2),x2(i,3)]-m2);end;for i=1:210sw3=sw3+([x3(i,1),x3(i,2),x3(i,3)]-m3)'*([x3(i,1),x3(i,2),x3(i,3)]-m3);end;N1=200;N2=190;N3=210;N=N1+N2+N3;p1=N1/N;p2=N2/N;p3=N3/N;sw1=sw1/N1;sw2=sw2/N2;sw3=sw3/N3;sw=p1*sw1+p2*sw2+p3*sw3;sb=p1*(m1-m)'*(m1-m)+p2*(m2-m)'*(m2-m)+p3*(m3-m)'*(m3-m);s=inv(sw)*sb;j1=trace(s)eigs=eig(s)';eigsIndex=[1,2,3];%冒泡法排序,注意的是特征值顺序变化的同时要与相对应的下标同步for i=1:3for j=i:3if(eigs(i)eigstemp=eigs(i);eigs(i)=eigs(j);eigs(j)=eigstemp;eigsIndextemp=eigsIndex(i);eigsIndex(i)=eigsIndex(j);eigsIndex(j)=eigsIndextemp;end;end;end;%降序排列后的特征值,直接选取前L个特征SelectedFeature=[eigsIndex(1),eigsIndex(2)]%FSthrthrlrg.m程序结束6.5讨论从实验结果中我们可以看到y特征的分类能⼒最⼩,这⼀点可以从实验数据中得到验证——三类数据在y⽅向的分布⼏乎是相同的(见下图)。
特征提取的方法有哪些特征提取是指从原始数据中提取出对问题解决有用的特征,是数据预处理的重要环节。
在机器学习、模式识别、图像处理等领域,特征提取是非常重要的一步,它直接影响到后续模型的性能和效果。
因此,特征提取的方法也是非常多样化和丰富的。
下面我们将介绍一些常用的特征提取方法。
1. 直方图特征提取。
直方图特征提取是一种常见的方法,它将数据按照一定的区间进行划分,并统计每个区间中数据的频数。
对于图像处理来说,可以将图像的像素值按照灰度级别划分成若干区间,然后统计每个区间中像素的个数,从而得到一个灰度直方图。
通过直方图特征提取,可以很好地描述图像的灰度分布特征。
2. 边缘检测特征提取。
边缘检测是图像处理中常用的一种特征提取方法,它通过检测图像中像素值的变化来找到图像中的边缘。
常用的边缘检测算子有Sobel、Prewitt、Canny等,它们可以有效地提取出图像中的边缘信息,为后续的图像分割和物体识别提供重要的特征。
3. 尺度不变特征变换(SIFT)。
SIFT是一种基于局部特征的图像特征提取方法,它具有尺度不变性和旋转不变性的特点。
SIFT算法通过寻找图像中的关键点,并提取这些关键点周围的局部特征描述子,来描述图像的特征。
SIFT特征提取方法在图像匹配、目标识别等领域有着广泛的应用。
4. 主成分分析(PCA)。
主成分分析是一种常用的特征提取和降维方法,它通过线性变换将原始数据映射到一个新的坐标系中,使得映射后的数据具有最大的方差。
通过PCA方法可以将高维数据降维到低维空间,同时保留了大部分原始数据的信息,对于高维数据的特征提取和数据可视化具有重要意义。
5. 小波变换特征提取。
小波变换是一种时频分析方法,它可以将信号分解成不同尺度和频率的小波系数。
小波变换特征提取方法可以有效地捕捉信号的时频特征,对于信号处理和图像处理中的特征提取具有重要的应用价值。
总结。
特征提取是数据预处理的重要环节,不同的领域和问题需要采用不同的特征提取方法。
特征提取的方法有哪些特征提取是指从原始数据中提取出能够描述数据特点的信息,通常用于数据分析、模式识别、机器学习等领域。
在实际应用中,特征提取的质量往往直接影响到后续数据处理和分析的结果。
因此,选择合适的特征提取方法对于数据处理具有重要意义。
下面将介绍几种常见的特征提取方法。
1. 直方图特征提取法。
直方图特征提取法是一种常见的特征提取方法,它通过统计数据的分布情况来描述数据的特征。
具体来说,可以将原始数据分成若干个区间,然后统计每个区间内数据的频数或频率,最终得到一个数据分布的直方图。
通过直方图,可以直观地了解数据的分布情况,从而提取出数据的特征信息。
2. 主成分分析(PCA)。
主成分分析是一种常用的降维技术,它可以通过线性变换将原始数据映射到一个新的坐标系中,使得映射后的数据具有最大的方差。
在实际应用中,主成分分析常常被用来进行特征提取,通过保留最大方差的主成分,来描述数据的特征。
3. 小波变换特征提取法。
小波变换是一种时频分析方法,它可以将信号分解成不同尺度的小波系数,从而揭示出信号的时域和频域特征。
在特征提取中,可以利用小波变换提取信号的时频特征,从而描述数据的特点。
4. 自编码器特征提取法。
自编码器是一种无监督学习的神经网络模型,它可以学习数据的高阶特征表示。
在特征提取中,可以利用自编码器来学习数据的特征表示,从而实现特征提取的目的。
5. 卷积神经网络(CNN)。
卷积神经网络是一种深度学习模型,它可以通过卷积操作来提取数据的空间特征。
在图像、语音等领域,卷积神经网络常常被用来进行特征提取,通过卷积和池化操作来提取数据的特征信息。
总结:特征提取是数据处理和分析中的重要环节,选择合适的特征提取方法对于后续的数据处理具有重要意义。
本文介绍了几种常见的特征提取方法,包括直方图特征提取法、主成分分析、小波变换特征提取法、自编码器特征提取法和卷积神经网络。
这些方法各有特点,可以根据实际需求选择合适的方法来进行特征提取。
特征提取SIFT算法提取步骤SIFT算法提取特征点的主要步骤:(1)检测尺度空间极值点检测尺度空间极值的目的是确定特征点位置和所在尺度组。
即先使用高斯过滤器对原始图像进行若干次连续滤波建立第一个尺度组,再把图形减小到原来的一半,进行同样的高斯滤波形成第二个尺度组。
之后,重复操作直到图像小于某一个给定阀值为止。
接下来对每个尺度组中的高斯图像进行差分,形成高斯差分尺度组(DoG尺度图像).图3-1 尺度空间的构造在上面建立的DoG尺度空间金字塔中,为了检测到DoG空间的最大值和最小值,DoG尺度空间中中间层(最底层和最顶层除外)的每个像素点需要跟同一层的相邻8个像素点以及它上一层和下一层的9个相邻像素点总共26个相邻像素点进行比较,以确保在尺度空间和二维图像空间都检测到局部极值,如图3—2所示图3-2 DoG空间局部极值检测在图3—2中,标记为叉号的像素若比相邻26个像素的DoG值都大或都小,则该点将作为一个局部极值点。
被检测工件的高斯滤波图像如图3-3所示。
图3—3 原始图像和部分高斯滤波图像(2)精确定位极值点由于DoG值对噪声和边缘较敏感,因此,在上面DoG尺度空间中检测到局部极值点还要经过进一步的检验才能精确定位为特征点.一般通过二阶Taylor展开式计算极值点的偏移量,获得亚像素定位精度,同时通过阈值设置剔除差异小的点.最终保留下来的点称为特征点,特征点的检测是在尺度空间中进行的,特征点保持为尺度不变量.各层图像特征点如图3—4所示。
图3—4 各层图像的特征点(3)为每个关键点指定方向参数σ—尺度空间坐标O —组(octave )数S —组内层数在上述尺度空间中,O 和S ,σ的关系如下:()[][]2,...,0,1,...,02,0+∈-∈=+S s O o s o S so σσ (3—10)其中0σ是基准层尺度,o 为组octave 的索引,s 为组内层的索引。
关键点的尺度坐标σ就是按关键点所在的组和组内的层,利用公式(3-10)计算而来.在最开始建立高斯金字塔时,要预先模糊输入图像来作为第0个组的第0层的图像,这时相当于丢弃了最高的空域的采样率.因此通常的做法是先将图像的尺度扩大一倍来生成第—1组。
特征提取与模式识别技术研究在信息爆炸的时代,大量的数据产生和存储给人们带来新的挑战。
如何从海量的数据中提取有用的信息,成为了一个非常重要且具有挑战性的问题。
特征提取与模式识别技术的发展为解决这一问题提供了有力的工具和方法。
本文将深入探讨特征提取与模式识别技术的研究进展和应用前景。
一、特征提取技术的基础概念特征提取是从原始数据中提取和选择具有代表性和区分性的特征,用于模式识别和分类任务。
在计算机视觉、信号处理、文本分析等领域,特征提取是数据分析和模式识别的关键步骤之一。
常用的特征包括形状、纹理、颜色、频谱等。
特征提取的目标是通过转换和选择特征,将数据映射到更高效的表示空间中,以提高后续的模式识别性能。
二、常见的特征提取方法1. 基于统计的特征提取方法基于统计的特征提取方法通过统计学的概念从数据中提取特征。
常见的方法包括均值、方差、协方差、熵等。
例如,在图像领域中,可以通过计算像素的均值和方差来描述图像的亮度和对比度。
2. 基于频域的特征提取方法基于频域的特征提取方法将信号从时域转换到频域,通过提取频谱信息来描述数据。
离散傅里叶变换(DFT)和小波变换是常用的频域特征提取方法。
在语音识别中,可以通过提取音频信号的频谱信息来区分不同的语音。
3. 基于几何和结构的特征提取方法基于几何和结构的特征提取方法通过描述对象的形状和结构来提取特征。
例如,在人脸识别中,可以通过提取人脸的轮廓和关键点来描述人脸的特征。
在物体识别中,可以通过提取物体的边界和尺寸来描述物体的特征。
4. 基于机器学习的特征提取方法基于机器学习的特征提取方法通过训练模型自动学习和提取有用的特征。
常见的方法包括主成分分析(PCA)、线性判别分析(LDA)和深度学习。
这些方法可以自动地从数据中学习到最优的特征表示,提高模式识别的准确率和鲁棒性。
三、模式识别技术的应用领域特征提取与模式识别技术在许多领域都得到了广泛的应用。
1. 图像处理和计算机视觉在图像处理和计算机视觉领域,特征提取与模式识别技术可以用于图像识别、目标检测、人脸识别等任务。