第一章 聚合物的结构_7
- 格式:ppt
- 大小:378.00 KB
- 文档页数:28
高分子物理(何曼君版)复习材料高分子物理(何曼君版)复习材料何曼君版高分子物理复习笔记第一章聚合物的链结构1.1高分子结构的特点和内容高聚物结构的特点:1.它是由多价原子通过主价键相互结合而成的长链分子。
相对分子质量大,且相对分子质量往往是分布的。
2.一般高分子主链都有一定的内旋转自由度,可以使主链弯曲而具有柔性。
3.晶态有序性较差,但非晶态却具有一定的有序性。
4.要使高聚物加工成有用的材料,往往需要在其中加入填料,各种助剂,色料等.。
5.凝聚态结构的复杂性:结构单元间的相互作用对其聚集态结构和物理性能有着十分重要的影响。
1.2聚合物的短程结构结构单元的化学成分结构单元键合模式结构单元的空间结构??短程结构??分支?聚合物链结构??交联结构单元键合顺序???聚合物结构???聚合物链尺寸(分子量、均方半径和均方端距)远程结构聚合物链的形态(构象、柔韧性和刚性)无定形结构晶体结构???聚合物聚集结构?液晶结构?方向结构??多相结构?链结构:指单个分子的结构和形态链段:指由高分子链中划出来的可以任意取向的最小链单元.短程结构:指链结构单元的化学组成、键合模式、空间模式、空间结构、支化与交联、序列结构等问题共聚物:由两种以上单体所组成的聚合物.结构化聚合物:指其化学结构单元包含至少一个主链碳原子和两个不同的取代原子或基团,并且沿着整个等规分子链围绕该碳原子是规则的:聚合物均由光学异构单元间规结构键合:由两个光学异构单元交替键合无规立构:两种旋光异构单元完全无规则键接时.等规度:均规和间规聚合物的总百分比临界聚合度:聚合物的分子量或聚合度一定要达到某一数值后,才能显示出适用的机械强度,这一数值称为~.键合结构:指聚合物链中结构单元的连接方式支化度:以支化点密度或相邻支化点之间的链的平均分子量来表示运货的程度.交联结构:高分子链之间通过支链联结成一个三维空间网型大分子时即成为交联结构.交联度:通常用两个相邻交联点之间链的平均分子量MC表示交联点密度:为交联的结构单元占总结构单元的分数,即每一结构单元的交联几率.1.3聚合物的远程结构:指链中原子的类型和排列、取代基和端基的类型、单体单元的排列顺序、支链的类型和长度等构象:由于单键内旋转而产生的分子在空间的不同形态称为~构型:是指某一原子的取代基在空间的排列.遥爪聚合物:它是一种在端基具有特定反应性技术的聚合物聚集态结构:是指高分子材料整体的内部结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构以及织态结构.无规卷曲:聚合物链不规则卷曲的构象称为~自由联结链:假定分子是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中生个键在任何方向取向的几率都相等.自由旋转链:假设分子链中的每个键可以在键角允许的方向上自由旋转,而不考虑空间位阻对旋转的影响末端距:指线型高分子链的一端至另一端的直线距离,用h表示.均方末端距:求平均末端距或末端距的平方的平增色值.h2?Nl2(n是键数)自由结合链:假定分子是由不占有体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相等.自由旋转链:假设分子链中的每个键可以在键角允许的方向上自由旋转,而不考虑空间位阻对旋转的影响均方旋转半径:假定高分子链中包含许多个链单元,每个链单元的质量都是m,设从高分子链的重心到第i个链单元的距离为si,它是一个向量,则全部链单元的si2的重量均方根就是链的旋转半径s,其平均值为:22h0?6s0?s2?misi2/?惯性矩ii远程相互作用:指沿柔性链相距较远的原子或原子基团由于主链单键的内旋转而当接近小于范德华半径体积效应的距离时产生的斥力:实际链段总是有一定的体积,任意两个链段不能在同一时间占据相同的空间持久性长度a:无限长链的末端距离在链的初始(即第一个键)方向上的平均投影值越大,链的刚性越强蠕虫状链模型:把模型链分成很小的单元,以使链上任何一点的取向相对相邻的这些点几乎是连续变化的,并且假设链轮廓中任何点的曲率方向都是随机的。
高分子物理习题集-答案之勘阻及广创作第一章高聚物的结构4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
构象:由于单键内旋转而发生的分子在空间的分歧形态。
构象的改变速率很快,构象时刻在变,很不稳定,一般不克不及用化学方法来分离。
不克不及。
提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本分歧。
构象是围绕单键内旋转所引起的排列变更,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)酿成全同PP(间同PP);而改变构型必须经过化学键的断裂才干实现。
5、试写出线型聚异戊二烯加聚产品可能有那些分歧的构型。
答:依照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成(一)键接异构:主要包含1,4-加成、1,2-加成、3,4-加成三种键接异构体。
(二)分歧的键接异构体可能还存在下列6中有规立构体。
①顺式1,4-加成②反式1,4-加成③1,2-加成全同立构④1,2-加成间同立构⑤3,4-加成全同立构⑥3,4-加成间同立构6.分子间作用力的实质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力?答:分子间作用力的实质是:非键合力、次价力、物理力。
影响因素有:化学组成、分子结构、分子量、温度、分子间距离。
PE 、PP 是非极性聚合物,其分子间作用力为:色散力;PVC 是极性分子,其分子间作用力为:静电力、诱导力、色散力;尼龙-66是极性分子,结构为其分子间作用力为:静电力、诱导力、色散力,氢键; 聚丙烯酸是极性分子,结构为 其分子间作用力为:静电力、诱导力、色散力,氢键。
聚合物的结构和性质聚合物是由许多单体分子连接而成的高分子化合物。
聚合物的结构相对复杂,包括链状、分支、交联以及网络结构。
这种复杂的结构赋予了聚合物独特的性质和用途。
1. 链状聚合物链状聚合物是由相同的单体分子连接而成的长链分子。
其分子链可以通过键键相连,形成线性链、弯曲链以及环状链等不同形态。
链状聚合物具有以下性质:(1) 高分子量:由于链状聚合物是由若干单体分子连接而成的,其分子量往往会非常大。
(2) 高分子稳定性:由于分子链往往是线性或弯曲的,相对稳定。
链状聚合物的热稳定性、化学稳定性等均较为优异。
(3) 高分子合成方便:链状聚合物的合成方法较为简单,容易掌握,重复性、扩展性较强。
2. 分支聚合物分支聚合物是由一个或几个核心结构上连接若干单体分子而形成的。
分支聚合物具有以下性质:(1) 分子体积大:由于分支结构紧密,空隙较小,其分子体积往往较大。
(2) 分子构造复杂:分支聚合物的结构通常是分子核心 + 分子支链,有些还包含有分子夹层等结构。
分支聚合物的结构复杂度相对较高。
(3) 物理性能特别:由于分支聚合物分子内部空间充足,分子间相互作用力较弱。
因此分支聚合物的物理性能常常非常特别,如超高分子材料等。
3. 交联聚合物交联聚合物是由可交联单体或可交联化合物单体所制备的高分子材料。
交联聚合物具有以下性质:(1) 耐火性和耐化学性较好:交联聚合物通常结构致密,交联度较高。
因此其耐火性和耐化学性均优异。
(2) 物理性质均匀:交联聚合物结构致密,分子间相互作用较强。
相当于是一个三维网状结构,物理性质较均匀。
(3) 生物相容性较差:交联聚合物一般具有化学反应性,因此在生物系统中应用较为有限。
4. 网络聚合物网络聚合物也称为化学凝胶,是由高分子单体经过交联反应在溶液或固态中形成的凝胶式高分子材料。
网络聚合物具有以下性质:(1) 密闭性极强:网络聚合物分子间交联后,形成一种网络结构,因此密闭性非常强。
(2) 可逆性预留时间较长:由于网络聚合物结构化学性质非常稳定,因此可逆性预留时间通常较长。
第1章高分子聚合物结构特点与性能高分子聚合物是由大量重复单元组成的大分子化合物。
它们具有独特的结构特点和性能,广泛应用于各个领域。
本章将介绍高分子聚合物的结构特点和性能。
一、高分子聚合物的结构特点1.1高分子链结构高分子聚合物的基本结构是由大量重复单元组成的链状结构。
这些单元可以是相同的,也可以是不同的。
高分子链的长度可以从几百到几百万个单元不等。
高分子链的长度和结构直接影响着高分子的性质和用途。
1.2高分子链的立体构型高分子链通常有不同的立体构型,如头尾排列、无序连续、有序排列等。
立体构型对高分子的物理性质和化学性质有重要影响。
有序排列的高分子链通常具有较高的晶澈度和熔点,而无序排列的高分子链则通常具有较低的晶澈度和熔点。
1.3二维和三维结构高分子聚合物可以形成二维或三维结构。
在二维结构中,高分子链通过静电相互作用或氢键相互作用形成具有一定结构的层状排列。
在三维结构中,高分子链通过包容物或交联等方式形成网络状结构。
这些二维和三维结构对高分子聚合物的力学性能和化学性质有重要影响。
二、高分子聚合物的性能2.1物理性能高分子聚合物通常具有较高的柔韧性、弹性和导电性能。
这些性能使得高分子聚合物在各个领域中被广泛应用,如塑料制品、橡胶制品和电子器件等。
2.2化学性能高分子聚合物通常具有较高的化学稳定性和耐酸碱性。
它们不容易与常见的溶剂、酸和碱发生反应,具有较好的耐腐蚀性。
同时,高分子聚合物还可以通过化学修饰来改变其性质和用途。
2.3热性能高分子聚合物通常具有较低的热导率和较高的热膨胀系数。
这使得高分子聚合物在高温条件下容易熔化和变形。
为了提高高分子聚合物的热性能,通常需要添加填充剂或进行交联改性。
2.4力学性能高分子聚合物的力学性能通常由其分子量、分子结构、取向和交联等因素决定。
高分子聚合物通常具有较低的弹性模量、较高的延展性和拉伸强度。
为了提高高分子聚合物的力学性能,可以通过增加分子量、调整分子结构和进行交联改性等方式进行改善。
聚合物材料的结构与性能聚合物材料是指由单体聚合而成的大分子有机化合物,它具有很多优异的性质和广泛的应用领域,如塑料、纤维、涂料、胶黏剂等。
其中,聚合物材料的结构对其性能具有极其重要的影响,本文将从聚合物基础结构、拓扑结构、化学结构三方面来探讨聚合物材料的结构与性能。
聚合物基础结构聚合物材料的基础结构分为线性聚合物、支化聚合物、交联聚合物和其它结构材料。
线性聚合物,就是由一条长链组成的聚合物,它拥有极高的延展性和柔韧性,如聚乙烯、聚丙烯、聚苯乙烯等。
线性聚合物的结构越规则,其性能就越稳定、耐久。
支化聚合物是在线性聚合物上引入支链的结构,支链的引入能改善聚合物的特性,如增强其耐热、抗氧化和耐寒性。
支化聚合物具有良好的弹性、韧性和可加工性,如聚丙烯、丙烯腈-丁二烯-苯乙烯共聚物等。
交联聚合物是通过交联剂将线性聚合物交联成三维网络结构,使其具有更强的力学性能,如聚氯丁二烯橡胶、聚氨酯泡沫等。
交联聚合物还可通过交联剂的不同组合,调节其硬度、弹性和耐久性等性能,其性能更加多变和可定制化。
其他结构材料包括固体聚合物、液晶聚合物、高分子共价键网络材料等。
这些结构材料的特点和应用比较独特和特殊,但它们都具有聚合物材料独有的柔性、可塑性和设计性等特点。
聚合物拓扑结构聚合物材料的拓扑结构是指其它多重基元的组合方式,包括线性、支化、平面、星形、环状、螺旋等几何形状。
不同的聚合物结构具有不同的物理、化学和力学性质,如韧性、刚度、柔韧性、可加工性、分子分布、链分布等。
线性结构的聚合物是最基本和最常见的结构,在其它结构中也普遍存在。
线性结构聚合物的物理性质可通过PEG和PEG-PEO均聚物、PEG和PEG-g-PEO共聚物体系中的模拟来更好地理解。
支化聚合物中,平面和星形结构在抗拉强度和刚度方面比较优异,而三分子分岔的树枝聚合物具有良好的可加工性、熔体黏度和流动性。
环状聚合物具有特殊的结构和性能,如导电性、功能性、生物相容性能。
Polymer聚合物1. 引言Polymer(聚合物)是由许多重复单元组成的大分子,它们通过共价键连接在一起。
聚合物在自然界和人工合成中广泛存在,具有多种重要的应用。
本文将深入探讨聚合物的结构、性质和应用领域。
2. 聚合物的结构聚合物由重复单元组成,这些重复单元通过共价键连接在一起。
聚合物可以分为线性聚合物、支化聚合物和交联聚合物三种类型。
2.1 线性聚合物线性聚合物是由一条主链上的重复单元组成的,重复单元通过共价键连接在一起,形成一条直线状的结构。
线性聚合物具有良好的延展性和可塑性,常见的线性聚合物有聚乙烯和聚丙烯等。
2.2 支化聚合物支化聚合物是在主链上引入支链的聚合物,支链与主链通过共价键连接在一起。
支化聚合物具有更高的分子量和分子量分布,能够提高聚合物的熔点和热稳定性。
聚苯乙烯和聚苯乙烯共聚物是常见的支化聚合物。
2.3 交联聚合物交联聚合物是由主链和交联链组成的聚合物,主链和交联链通过共价键连接在一起,形成一个网状结构。
交联聚合物具有良好的强度和耐热性,常见的交联聚合物有硅橡胶和环氧树脂等。
3. 聚合物的性质聚合物具有多种特殊的性质,这些性质使得聚合物在各个领域具有广泛的应用。
3.1 高分子量聚合物的分子量通常非常高,可以达到数百万甚至数千万。
高分子量使得聚合物具有良好的力学性能和耐久性。
3.2 可变形性聚合物具有良好的可塑性和可变形性,可以通过加热、拉伸等方式改变其形状和性能。
3.3 耐热性聚合物具有较高的熔点和热稳定性,可以在高温环境下保持其结构和性能。
3.4 绝缘性能聚合物具有良好的绝缘性能,可以在电气和电子领域中广泛应用。
3.5 化学稳定性聚合物具有良好的化学稳定性,可以抵抗酸碱、溶剂和氧化剂等化学物质的侵蚀。
4. 聚合物的应用聚合物在各个领域具有广泛的应用,以下是一些常见的应用领域。
4.1 塑料制品聚合物是塑料制品的主要成分,塑料制品广泛应用于包装、建筑、汽车等领域。
4.2 纤维材料聚合物纤维材料具有良好的柔软性和耐磨性,广泛用于纺织品、绝缘材料等领域。
高分子聚合物结构与性能高分子聚合物是由许多重复单元通过化学键连接形成的巨大分子。
它们在人类社会中发挥着重要的作用,广泛应用于塑料、橡胶、纤维和膜等领域。
高分子聚合物的结构和性能紧密相关,对于理解和应用这些材料至关重要。
在本文中,我们将探讨高分子聚合物的结构特点以及它们如何影响材料的性能。
第一部分:高分子聚合物的结构高分子聚合物的结构通常由四个方面来描述:聚合度、分子量分布、链结构和侧链。
1. 聚合度聚合度是指聚合物中重复单元的数量。
聚合度高,即重复单元数量多的聚合物通常具有更大的分子量。
聚合度可以影响聚合物的物理性质,如溶解性、熔点和力学性能。
2. 分子量分布分子量分布描述了聚合物样品中分子量的分布情况。
分子量分布可以分为窄分子量分布和宽分子量分布。
窄分子量分布表示聚合物样品中分子量接近的程度,而宽分子量分布意味着分子量差异较大。
3. 链结构高分子聚合物可以存在不同的链结构,包括直线链、支化链和交联链等。
直线链是聚合物中重复单元直接相连的链结构,而支化链和交联链则有额外的支链或交联单元。
4. 侧链聚合物的侧链是指与主链相连的额外分支。
侧链的类型和长度可以对聚合物的性能产生重要影响。
例如,具有疏水性侧链的聚合物可能表现出更好的疏水性能。
第二部分:高分子聚合物的性能高分子聚合物的性能受其结构的影响。
下面将讨论结构对热性能、力学性能和光学性能的影响。
1. 热性能高分子聚合物通常具有较低的熔点和玻璃化转变温度。
聚合度高和交联度高的聚合物通常具有较高的熔融温度。
热性能对于聚合物在高温环境下的应用具有重要意义。
2. 力学性能高分子聚合物的力学性能是其在受力作用下的表现。
聚合度和交联度对力学性能有重要影响。
聚合度高的聚合物往往具有更高的拉伸强度和耐磨性。
3. 光学性能高分子聚合物的光学性能与其透明度和折射率相关。
聚合物中杂质的存在可能会导致光学性能下降。
聚合物的结构变化可以改变其在光的传输和反射方面的性能。
结论高分子聚合物的结构和性能紧密相连。
聚合物材料的结构和性能研究聚合物材料是指由单体经过聚合反应形成的高分子化合物,具有许多种类和广泛的应用领域。
随着科学技术的不断发展,对聚合物材料的性能和结构研究越来越深入,对于提高材料的性能和开发新材料具有重要意义。
一、聚合物的结构聚合物的结构对于材料的性能有着决定性的影响。
从宏观上来看,聚合物材料一般是由线性、支化、交联和网状四种结构组成。
其中,线性结构是指聚合物链呈直线状排列;支化结构是指聚合物链呈分支状排列;交联结构是指聚合物链之间通过交联作用连接在一起;网状结构是指聚合物链互相连接形成一个三维网状结构。
从微观结构来看,聚合物的化学结构和形态也会对材料的性能产生影响。
例如,在聚合物链的化学结构方面,聚合物可以分为有机聚合物和无机聚合物两大类。
在形态方面,可以分为均聚物和共聚物。
其中,均聚物是指由同一种单体聚合而成的聚合物,而共聚物则是由两种或两种以上不同的单体聚合而成的聚合物。
二、聚合物的性能聚合物材料的性能包括力学性质、热学性质、光学性质、电学性质、气体渗透性和水合性等方面。
其中,力学性质是指聚合物材料对力的响应能力和承受力的极限能力。
对于高分子材料而言,力学性质是其中最为重要的性质之一。
在热学性质方面,聚合物材料的热稳定性能和耐热性能对于材料的应用也具有重要的意义。
在光学性质方面,聚合物材料主要表现为透明或半透明和不同颜色的吸光特性。
在电学性质方面,聚合物材料常常用来制作电池、电容器、传感器等电子器件。
气体渗透性是聚合物材料在化学工业、环保等方面被广泛应用的领域之一,而水合性也对于有机高分子材料的制备具有重要的影响。
三、聚合物材料的研究方向随着社会科技的发展,聚合物材料的研究方向也发生了明显的变化。
目前,聚合物材料的研究重点已经从传统的结构与性能关系研究转向功能化、加工性能改善和绿色可持续发展方向。
在功能化方面,科学家们正在努力研制具有特定功能的聚合物材料,例如具有生物相容性、耐磨性、阻燃性、自修复性等特点的聚合物材料。