运筹学概述1
- 格式:doc
- 大小:58.50 KB
- 文档页数:6
⏹运筹学:Operational Research,是一门应用科学。
从实际出发解决实际问题的方法。
⏹建模七步:第一步,定义问题;第二步,收集数据;第三步,构造模型;第四步,验证模型;第五步,计算结果;第六步,提交报告;第七步,投入使用⏹线性规划是由丹捷格(G. B. Dantzig)在1947提出的,并提出了求解线性规划的单纯形法,成为运筹学的标志性成就,被誉为「线性规划」之父。
⏹线性规划模型就是目标函数为线性函数,约束条件也是线性函数的最优化模型。
⏹线性规划模型包括三个部分:目标函数;决策变量;约束条件。
⏹满足所有约束条件的解称为该线性规划的可行解;线性规划问题可行解的集合,称为可行域。
⏹把使得目标函数值最大(或最小)的可行解称为该线性规划的最优解,此目标函数称为最优目标函数值,简称最优值。
⏹图解法只适合于二维线性规划问题⏹松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松弛或空闲能力)⏹剩余变量,约束方程左边为“≥”不等式时,变成等式约束条件⏹如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点)⏹唯一最优解:只在其一个顶点达到⏹无穷多个最优解:在其两个顶点的连线上达到⏹无界解:可行域无界。
缺少必要的约束⏹无可行解(无解):可行域为空集。
约束条件自相矛盾导致的建模错误⏹灵敏度分析:在建立数学模型和求得最优解之后,研究线性规划的一些系数ci、aij、bj变化时,对最优解产生什么影响。
或者是这些参数在什么范围内发生变化,最优解不变。
⏹对偶价格:在约束条件右边常量增加一个单位而使最优目标函数得到改进的数量称之为这个约束条件的对偶价格。
⏹对偶价格可以理解为对目标函数的贡献。
如果对偶价格大于零,则其最优目标函数值得到改进。
即求最大值时,变得更大;求最小值时,变得更小。
⏹如果对偶价格小于零,则其最优目标函数值变坏。
运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。
线性规划的三要素:变量或决策变量、目标函数、约束条件。
目标函数:是变量的线性函数。
约束条件:变量的线性等式或不等式。
可行解:满足所有约束条件的解称为该线性规划的可行解。
可行域:可行解的集合称为可行域。
最优解:使得目标函数值最大的可行解称为该线性规划的最优解。
唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。
凸集:要求集合中任意两点的连线段落在这个集合中。
等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。
松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。
剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。
2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。
4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。
5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。
当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。
第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。
2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。
4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。
第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
运筹学,又称管理科学或决策科学,是一门研究如何有效地管理和决策的学科。
它运用数学、统计学和计算机科学等工具和方法,以科学的方式来解决组织和管理中的问题。
运筹学的目标是通过优化资源的利用和提高决策效率,来达到组织和管理的最佳运作状态。
1. 定义运筹学是一门多学科交叉的学科,它包括了数学、统计学、计算机科学、经济学和管理学等领域的知识和方法。
它主要研究如何在资源有限的情况下,通过科学的方法进行决策和管理,以实现最优的效果。
2. 历史运筹学起源于第二次世界大战期间,当时许多国家面临着资源短缺和战争需求的挑战,政府和军队需要通过科学的方法来管理和决策。
运筹学正是在这样的背景下应运而生的,它最初被广泛应用于军事、工程和生产等领域。
随着社会的发展和经济的增长,运筹学逐渐被应用到了更广泛的领域,如交通运输、金融、医疗等。
3. 应用领域运筹学的应用领域非常广泛,它可以用来解决各种类型的问题。
在生产管理中,它可以帮助企业优化生产流程、减少成本、提高效率。
在物流管理中,它可以帮助货物的运输路线规划、仓储管理等。
在市场营销中,它可以帮助企业进行市场定位、价格策略等决策。
在金融领域,它可以用来进行投资组合的优化、风险管理等。
在医疗领域,它可以用来进行疾病的预测、医院资源的优化分配等。
运筹学的应用足以贯穿于各行各业,无所不在。
4. 方法与工具运筹学包括了许多方法和工具,例如线性规划、整数规划、动态规划、排队论、模拟等。
这些方法和工具可以帮助人们建立数学模型,通过计算机对这些模型进行求解,从而得出最优的决策结果。
运筹学也借鉴了许多其他学科的知识和方法,如统计学、优化理论、算法等,使得它的应用范围更加广泛和灵活。
5. 发展趋势随着信息技术的发展和大数据的兴起,运筹学正在迎来新的发展机遇。
人工智能、机器学习等新技术的应用,为运筹学提供了更强大的工具。
全球化的发展也为运筹学的应用提供了更加广阔的空间。
未来,运筹学将继续发展,为人们解决更多更复杂的管理和决策问题。
(名词解释)运筹学
运筹学是一门研究如何在有限资源下做出最佳决策的学科。
它
涉及数学、统计学和计算机科学等多个领域,旨在找到最优解决方
案以最大程度地满足特定目标或约束条件。
运筹学的应用范围非常
广泛,包括生产调度、物流管理、供应链优化、交通规划、金融风
险管理等诸多领域。
在运筹学中,常用的方法包括线性规划、整数规划、动态规划、排队论、模拟等。
线性规划用于解决线性约束条件下的最优化问题,整数规划则是在变量为整数时的最优化问题,动态规划通过分阶段
决策来解决多阶段问题,排队论则研究排队系统的性能指标,模拟
则是通过构建模型来模拟实际系统的运行情况。
运筹学的发展历史可以追溯到二战期间,当时运筹学被用于军
事决策和战争规划,随后逐渐应用于工业生产和商业管理领域。
如今,随着信息技术的发展,运筹学在大数据分析、人工智能和机器
学习等方面也得到了广泛应用。
总的来说,运筹学致力于通过科学的方法和技术手段,帮助人
们做出最佳决策,提高资源利用效率,降低成本,优化系统运行,对于提升生产效率和管理水平具有重要意义。
运筹学的概念运筹学是一种综合性学科,它在现代管理中起着至关重要的作用。
运筹学是一种运用数学、统计学、计算机科学以及其他相关领域的方法和理论来帮助制定最优决策的学科。
它的主要目标是通过通过信息分析和决策模型来使决策者在制定决策时更加合理、科学和精准。
下面是对运筹学概念的详细介绍。
一、运筹学的基本定义运筹学(Operations Research,简称OR)是一门科学,通过使用计算机和数学模型,研究如何最好地利用有限资源来达到预期目标,主要研究方法包括优化、数理统计、决策分析、模拟等。
二、运筹学的发展历程运筹学是在二战期间发展出来的,主要应用于军事后勤问题的解决。
之后,运筹学学科马不停蹄地在各个领域快速发展,至今已经成为了一门广泛的学科。
三、运筹学的应用范围运筹学在各个领域都有广泛的应用,例如生产制造、物流管理、金融风险管理、医疗管理、资源分配等。
它在实践中的应用能够使企业和组织在有限的资源下获得最大收益。
例如,电商企业可以利用运筹学和网络优化技术来解决配送问题。
医院可以利用运筹学与供应链的整合优化来提高采购成本的效率。
银行等金融机构则可以利用运筹学来建立风险管理模型,减轻市场波动造成的经济损失。
四、运筹学的关键技术该学科主要基于优化、数学建模、统计推断和计算机仿真等关键技术。
对于不同的问题,会采用不同的技术手段。
例如,对于线性规划问题,使用线性规划算法进行求解;对于决策树问题,可以使用决策树算法进行求解;对于复杂的大规模问题,可以使用数学建模与计算机仿真技术进行求解。
总之,运筹学是为了解决实际问题而产生的一种学科,它在生产、经济、政策等许多领域有广泛应用,发展迅速,使得成本降低、管理规范化、业务流程优化等问题得到了解决。
运筹学复习资料导言:运筹学是一门研究管理、决策和规划问题的学科,使用数学、统计学和计算机科学等工具和技术来解决实际问题。
在现代社会中,运筹学在各个领域都有广泛的应用,包括制造业、物流管理、供应链管理、信息技术等。
本文档将介绍运筹学的基本概念、方法和应用,以帮助读者复习和理解该学科。
一、运筹学的概述1.1 定义和背景运筹学是一门综合性学科,旨在解决实际问题和优化决策。
它结合了数学、统计学和计算机科学等多个领域的方法和技术,可以帮助决策者做出最佳的决策。
1.2 运筹学的历史运筹学的起源可以追溯到第二次世界大战期间,当时运筹学的方法和技术被用于军事决策和规划。
随着计算机的发展和应用,运筹学得到了快速发展,并在各个领域都得到了广泛应用。
二、线性规划2.1 线性规划的基本概念线性规划是运筹学中最重要的方法之一,其基本思想是通过数学模型来描述和解决实际问题。
线性规划的目标是寻找一个最优解,使得目标函数最大或最小,同时满足一系列约束条件。
2.2 线性规划的求解方法线性规划的求解方法主要有图形法和单纯形法两种。
图形法适用于二维规划问题,通过绘制等式和不等式的图形来找到最优解。
而单纯形法适用于高维规划问题,通过迭代计算来找到最优解。
三、网络优化3.1 网络的基本概念在运筹学中,网络是指由节点和弧组成的图形,用于描述和解决一系列连接和流动问题。
节点表示供应点或需求点,弧表示连接的路径。
网络优化的目标是寻找最佳的路径和流量分布。
3.2 最小生成树算法最小生成树算法是网络优化中常用的一种算法,用于寻找一个连通图的最小生成树。
最小生成树算法主要有Prim算法和Kruskal 算法两种,可以有效地减少路径的总长度。
四、整数规划4.1 整数规划的概念整数规划是一种特殊的线性规划问题,其变量需要取整数值。
整数规划适用于某些决策变量只能是整数的问题,如分配问题、路径选择问题等。
4.2 整数规划的求解方法整数规划的求解方法主要有分支定界法和割平面法两种。
第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
只不过没有详细介绍在实际决策过程中的应用。
而线性规划是运筹学的主要决策工具,并且我们这堂课所研究的优化决策问题,几乎全部用的都是线性规划。
因此,谈不上有多难。
仅仅是对具体方法的理解和应用的技巧做进一步的研究。
学习运筹学,技术不是问题,关键是运用。
我们现在谈的运筹学的来历源自于西方国家,原称为:美:Operations Research 欧:Operational Research不同的国家和地区有不同的译意,有:操作研究、作业研究、作战研究,我们国家译为“运筹学”。
是从《史记》的“运筹于帷幄之中,决胜于千里之外”一语中的“运筹”二字,其含义是运用筹划,出谋献策,以策略取胜,既显示其军事的起源特征,也表明它在我们已早有萌芽。
几乎每本运筹学的参考书,包括我们的教材上都对运筹学给出了多种不同的定义(由于是新兴学科,还没有公认为最权威的定义,只是不同的“说法”)。
其实我们对这些学术上定义并不感兴趣。
而结合应用于管理的语言来描述,(包括我们前面谈的实例)我们可以总结为:在有限的资源、环境及自身条件下,使企业获得最优经营效果的决策方法。
简称:OR即对现有资源的优化配置的多种方案中选择一种最优方案的过程。
他和公司的财务、会计一样,都是企业经营的战术决策工具。
我称他为一个新的学科------事理性学科。
事理性学科的特点:哲学(客观存在)物事“物理”学科“事理学科”-------事在人为(靠运筹)自然科学运筹学(法学、财务)社会科学研究内在的自然规律研究办事的方法(是什么?、为什么?)(做什么?、怎么做?)(靠科学)(靠经验、智慧)因此,认识和理解运筹学的关键是它操作性。
必须要动手操作才能深入理解,只有动手操作才能获得意想不到的效果。
为此,我们应该为运筹学正名--------将数学学科正名为管理学科;还应该为运筹学铺路--------将处理数学问题转变为处理管理问题。
二、怎么理解和学习运筹学从上面我们对运筹学的认识可以得到结论:运筹学是企业管理的一种优化方法。
处于市场化经营的企业,“挑战与机遇并存,降低成本、改进流程已成为必须,“有条件要优化,没有条件创造条件也要优化”。
说它是迎难而上也好,赶鸭子上架也罢,总之从前那种靠经验吃饭、一拍脑门想一条路线的日子,必定不能成为常态。
”怎么理解降低成本、改进流程的必要性和可能性?现在就用出租汽车管理和运营中的几个小问题来分析。
在现在各大小城市的出租汽车运营中,都是以空驶来拦客的(无空驶就无法拦客),的哥们把这种方式称做“扫街”的运营方式。
而随着燃油的不断涨价,使出租车主的赢利空间越来越小,今年就有多个城市由此原因造成出租车停运。
而空驶只能增加成本,不可能带来效益。
因此有必要考虑以通过适当的方式来避免,这就给我们提出了通过改进流程和降低成本来解决一些运营中的优化问题。
1、改进流程可以采用办法就是将“扫街”方式改为的哥口中的“趴活儿”方式,如有一些机场、大饭店等比较多的地方,出租车扎堆停在一起等客,而不是满街空驶拉客,这是很多有经验的的哥常用之计,但并不是所有的哥都能采用方式,若有条件使所有的哥都能用这种“守株待兔”的方法来运营,就可以几乎完全取消空驶(据统计,目前取消空驶,可使每车每天平均节省30-40元)。
我想这种模式实现并不难实现,现在很多车上都已安装了GPS定位和无线对讲装置,只用将无线对讲装置的功能加以扩充,使它能将自己车辆的GPS位置信息发到控制中心,在控制中心的GIS地图上就可以显示,这样控制中心的地图就会将所出租车的位置都显示出来,同时还可以看到每辆车是停止还是在运行状态。
另外控制中心向公众公布叫车电话,待乘车顾客只打这个电话,告诉控制中心需乘车的位置,中心立即可以在GIS地图找到距乘车位置最近的待客出租车(甚至可以做成计算机自动检索功能),用对讲方式通知该车主,就可以实现“趴活儿”式拦客。
这个流程的转换以及运行是需要成本的,只要将一次投资和运行过程的费用折合在出租车运营期间,每天费用低于30-40元,就会使车主愿意做的事。
(另:由于该业务增加了特号电话的通活量,可以找电信投一部分资。
)2、降低成本就在现有的运营模式下,也有的哥用到运筹学的概念解决了很多优化问题。
如由于有空驶率(有心的的哥做过数据分析,在大城市每次载客之间的空驶时间平均为7分钟)。
这样“成本就不能按公里算,只能按时间算”。
一般计算方法:“每天要交400元份线,油费大概240元左右。
一天17小时,平均每小时固定成本就是42.35元”。
“有一次我在上海距火车站30公里地方打车去火车站,的哥问我怎么走,说了我的计划后。
他说不行,那太慢,要上高架,再这么这么走。
我说,高架绕的太远了。
他说,没关系,你经常走你有经验,你那么走50块,上高架按我的走法,等里程表到50块了,我就翻表,你只给50快就好了,多的算我的。
按原路走要50分钟,而走高架这个方案走只要25分钟。
最后,按的哥的方案多走了6公里,快了25分钟,他只收了50块。
的哥分析,乘客没有多花线,但节省了时间,固然会乘客很高兴。
多出来的这6公里对他来说就是2块多钱的油钱。
相当于他用2元多钱买了25分钟时间。
他认为很合算,因为刚才说了,一小时的成本42.35元。
账应该这么算”。
其实这里他就用到在经济学中的一个很常用的概念,叫“盈亏平衡分析”。
盈亏平衡分析是在成本性态分析和变动成本法的基础上进一步分析研究销量、价格、成本和利润直接的内在规律性联系,为企业进行预测、决策、控制和计划提供必要的财务信息的一种定量分析方法。
做为的哥,他并不会用学术的姿态来分析这个问题,而是很朴实地进行了盈亏平衡分析,这是运筹学应用的智慧。
近期看了一本书,《生活运筹之道》,内容介绍了运筹学的思想在日常生活中处处可以用到,并且从这本书的封面上我们就可以看到。
运筹学是培养精明人将运筹学的方法和工具以傻瓜的方式来使用。
定能获得奇效。
三、运筹学的实质现在的运筹学是将早期运筹学思想加以提炼,从技术上加以巩固,提高为用数学的方法解决决策的优化问题。
值得一提的是,一谈到数学,很多人都会头大,其实是我们对数学应用的现象和效果不够了解所引起的,象当前有很人认为运筹学有多难多难一样。
比如,一个很简单的数学现象大家可能就想象不到,一张报纸,重复叠30次会有多厚(0.00001×230=10737米)!!!!!!是一个不可想象的数字。
这个例子与古代故事“棋盘上的麦粒”一样,古印度国王舍罕,打算重赏国际象棋的发明者——宰相西萨。
西萨向国王请求说:“陛下,我想向你要一点粮食,然后将它们分给贫困的百姓。
麦粒的数量由这个棋盘决定,请您派人在这张棋盘的第一个小格内放上一粒麦子,在第二格放两粒,第三格放四粒……照这样下去,每一格内的数量比前一格增加一倍。
陛下啊,把这些摆满棋盘上所有64格的麦粒都赏赐给您的仆人吧!我只要这些就够了”。
国王高兴地同意了。
结果,随着放置麦粒的方格不断增多,搬运麦粒的工具也由碗换成盆,又由盆换成箩筐。
即使到这个时候,大臣们还是笑声不断,甚至有人提议不必如此费事了,干脆装满一马车麦子给西萨就行了!不知从哪一刻起,喧闹的人们突然安静下来,大臣和国王都惊诧得张大了嘴:因为,即使倾全国所有,也填不满下一个格子了。
只要在棋盘是按格放麦粒,结果国王无法兑现。
这就是数学的神奇、这就是数学应用的巨大贡献力。
这种神奇也已在企业管理中发挥了巨大的作用,只是我们还没有体会到。
运筹学的实质,可以从该课的两个名称来理解:《运筹学》与《数据模型与决策》。
其中的:《决策》-----就是在有限的资源、环境、条件下,有多种可以采取的方案,我们选取一个最好的方案来执行。
什么是最好,这正我们职业经理人们所关心的:利益最大化或成本最小化。
是一种决策方法:定量、准确的决策方法(重点是强调科学性和灵活性);《数据》-----就是定量决策中的量化参数,所有的决策因素及其关系都是用数字来表述的。
用数字说话是最有说服力的。
《模型》-----数学模型,是可以用一个固定的数值关系来解决多种场合、不同领域、不同时期的同一类问题。
(以一元二次方程和多元一次方程组为例。
)为了体现运筹学的实质,下面用两个例子来说明数学模型的应用。
1、上面谈到的《盈亏平衡分析》就是一个定量决策的数学模型。
其基本关系为:无论是超大型企业的经营(三峡工程),或是个人的最小本经营(如出租车运营),都是由固定投资打好经营基础,在生产产品过程中还要随产量不同而投入变动成本,将产品销售出去而获得收入。
若用:CV 代表变动成本; CF 代表固定成本;Q 代表产量; PI 代表价格;L 表示总销售额; CT 表示总费用。
则有:L=PI ×QCT=CF+CV ×Q在产量不断变化的过程中,总销售额和总成本也在不断变化,当总销售额等于总成本时,经营者将没有利润(正负都没有),此时对应一个边界产量(Q 0),当总产量小于该值时,经营者将面临亏损,当总产量大于该值时,经营者将获得利润。