运筹学概述一、运筹学的定义 运筹学(Operational Research...
- 格式:ppt
- 大小:171.50 KB
- 文档页数:44
⏹运筹学:Operational Research,是一门应用科学。
从实际出发解决实际问题的方法。
⏹建模七步:第一步,定义问题;第二步,收集数据;第三步,构造模型;第四步,验证模型;第五步,计算结果;第六步,提交报告;第七步,投入使用⏹线性规划是由丹捷格(G. B. Dantzig)在1947提出的,并提出了求解线性规划的单纯形法,成为运筹学的标志性成就,被誉为「线性规划」之父。
⏹线性规划模型就是目标函数为线性函数,约束条件也是线性函数的最优化模型。
⏹线性规划模型包括三个部分:目标函数;决策变量;约束条件。
⏹满足所有约束条件的解称为该线性规划的可行解;线性规划问题可行解的集合,称为可行域。
⏹把使得目标函数值最大(或最小)的可行解称为该线性规划的最优解,此目标函数称为最优目标函数值,简称最优值。
⏹图解法只适合于二维线性规划问题⏹松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松弛或空闲能力)⏹剩余变量,约束方程左边为“≥”不等式时,变成等式约束条件⏹如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点)⏹唯一最优解:只在其一个顶点达到⏹无穷多个最优解:在其两个顶点的连线上达到⏹无界解:可行域无界。
缺少必要的约束⏹无可行解(无解):可行域为空集。
约束条件自相矛盾导致的建模错误⏹灵敏度分析:在建立数学模型和求得最优解之后,研究线性规划的一些系数ci、aij、bj变化时,对最优解产生什么影响。
或者是这些参数在什么范围内发生变化,最优解不变。
⏹对偶价格:在约束条件右边常量增加一个单位而使最优目标函数得到改进的数量称之为这个约束条件的对偶价格。
⏹对偶价格可以理解为对目标函数的贡献。
如果对偶价格大于零,则其最优目标函数值得到改进。
即求最大值时,变得更大;求最小值时,变得更小。
⏹如果对偶价格小于零,则其最优目标函数值变坏。
第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
天津外国语大学国际商学院本科生课程论文课程名称:运筹学论文题目:运筹学概述姓名:卢楠学号:1307144036专业:财务管理年级:2013级班级:13711任课教师:张琼2016 年 3月内容摘要运筹学是20世纪三四十年代发展起来的一门新兴交叉学科,它主要研究如何应用数学和计算的理论与方法对社会系统和工程系统做出最优或满意的决策。
本文概述了运筹学的研究对象、特点、定义、主要内容和方法,简述了运筹学的发展历程以及运筹学的应用,展望了运筹学未来发展的方向。
关键词:运筹学;概述目录一、引言 (1)二、运筹学的发展 (1)三、运筹学的研究对象、定义和特点 (2)(一)运筹学定义 (2)(二)运筹学研究对象 (3)(三)运筹学特点 (3)四、运筹学的主要内容和研究方法 (3)五、运筹学的应用 (3)六、结语 (4)参考文献: (5)运筹学概述一、引言运筹学是20世纪三四十年代发展起来的一门新兴交叉学科。
它主要研究人类对各种资源的运用及筹划活动,以期通过了解和发展这种运用及筹划活动的基本规律,发挥有限资源的最大效益,达到总体最优的目标。
从问题的形成开始,到构造模型、提出解案、进行检验、建立控制,直至付诸实施为止的所有环节构成了运筹学研究的全过程。
运筹学研究对象的客观普遍性,以及强调研究过程完整性的重要特点,决定了运筹学应用的广泛性,它的应用范围遍及工农业生产、经济管理、工程技术、国防安全、自然科学等各个方面和领域。
二、运筹学的发展朴素的运筹思想在中国古代历史发展中源远流长。
公元前6世纪的著作《孙子兵法》是我国古代军事运筹思想最早的典籍,研究如何筹划兵力以争取全局胜利。
同一时期,我国创造的轮作制、间作制与绿肥制等先进的耕作技术暗含了现代运筹学中二阶段决策问题的雏形。
总之,统筹、多阶段决策、多目标优化、合理运输、选址问题、都市规划、资源综合利用等运筹思想方法屡见不鲜,但很少有人从数学的角度将这些运筹思想和方法进行提升。
运筹学概述摘要:运筹学是包含多种学科的综合性学科,是最早形成的一门软科学。
它把科学的方法、技术和工具应用到包括一个系统管理在内的各种问题上,以便为那些掌管系统的人们提供最佳的解决问题的办法。
它用科学的方法研究与某一系统的最优管理有关的问题。
它能帮助决策人解决那些可以用定量方法和有关理论来处理的问题。
本文首先对运筹学做了简单介绍,并回顾了运筹学的产生和历史,同时介绍了运筹学研究对象、定义和特点,以及运筹学的内容和研究方法,深入探讨了运筹学自形成以后在国内外的发展情况,最后概述了运筹学在实际生活中应用。
关键词:运筹学,历史,特点,内容和方法,发展,应用,领域运筹学(Operational Research(英国)或者是Operations Research(美国),在台湾有时又被称作作业研究),是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。
一、运筹学的简介在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。
田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。