高二数学必修5第一章解三角形单元测试
- 格式:doc
- 大小:141.50 KB
- 文档页数:4
必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
高中数学必修五《解三角形》单元测试(含答案)一、选择题1.已知方程x2sin A+2x sin B+sin C=0有重根,则△ABC的三边a,b,c的关系满足() A.b=ac B.b2=acC.a=b=c D.c=ab【解析】由方程有重根,∴Δ=4sin2B-4sin A sin C=0,即sin2B=sin A sin C,∴b2=ac.【答案】 B2.在△ABC中,A=60°,b=1,S△ABC=3,则角A的对边的长为()A.57B.37C.21 D.13【解析】∵S△ABC =12bc sin A=12×1×c×sin 60°=3,∴c=4.由余弦定理a2=b2+c2-2bc cos 60°=1+16-2×1×4×12=13.∴a=13.【答案】 D3.在△ABC中,a=1,B=45°,S△ABC=2,则此三角形的外接圆的半径R=()A.12B.1C.2 2 D.52 2【解析】S△ABC =12ac sin B=24c=2,∴c=4 2.b2=a2+c2-2ac cos B=1+32-82×22=25,∴b=5.∴R=b2sin B=52×22=522.【答案】 D4.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于()A.32 B.332C.3+62D.3+394【解析】在△ABC 中,由余弦定理可知:AC 2=AB 2+BC 2-2AB ·BC cos B ,即7=AB 2+4-2×2×AB ×12.整理得AB 2-2AB -3=0.解得AB =-1(舍去)或AB =3.故BC 边上的高AD =AB ·sin B =3×sin 60°=332.【答案】 B5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4【解析】 由题意知:a =b +1,c =b -1,所以3b =20a cos A =20(b +1)·b 2+c 2-a 22bc=20(b +1)·b 2+(b -1)2-(b +1)22b (b -1), 整理得7b 2-27b -40=0,解之得:b =5(负值舍去),可知a =6,c =4.结合正弦定理可知sin A ∶sin B ∶sin C =6∶5∶4.【答案】 D二、填空题6.在△ABC 中,B =60°,AB =1,BC =4,则BC 边上的中线AD 的长为 .【解析】 画出三角形知AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=3,∴AD = 3.【答案】 37.有一三角形的两边长分别为3 cm,5 cm ,其夹角α的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是 cm 2.【解析】 解方程5x 2-7x -6=0,得x =2或x =-35,∵|cos α|≤1,∴cos α=-35,sin α=45.故S △=12×3×5×45=6(cm 2).【答案】 68.(2021·郑州模拟)在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为 .【解析】 由余弦定理得b 2=a 2+c 2-2ac cos B ,即49=a 2+25-2×5×a cos 120°.整理得a 2+5a -24=0,解得a =3或a =-8(舍).∴S △ABC =12ac sin B =12×3×5sin 120°=1534.【答案】 1534三、解答题9.已知△ABC 的三内角满足cos(A +B )cos(A -B )=1-5sin 2C ,求证:a 2+b 2=5c 2.【证明】 由已知得cos 2A cos 2B -sin 2A sin 2B =1-5sin 2C ,∴(1-sin 2A )(1-sin 2B )-sin 2A sin 2B =1-5sin 2C ,∴1-sin 2A -sin 2B =1-5sin 2C ,∴sin 2A +sin 2B =5sin 2C .由正弦定理得,所以⎝ ⎛⎭⎪⎫a 2R 2+⎝ ⎛⎭⎪⎫b 2R 2=5⎝ ⎛⎭⎪⎫c 2R 2, 即a 2+b 2=5c 2.10.(2014·全国卷Ⅱ)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C . ②由①,②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2·sin 60°=2 3. [能力提升]1.为了测量某塔的高度,某人在一条水平公路C ,D 两点处进行测量.在C 点测得塔底B 在南偏西80°,塔顶仰角为45°,此人沿着南偏东40°方向前进10米到D 点,测得塔顶的仰角为30°,则塔的高度为( )A .5米B .10米C .15米D .20米【解析】 如图,由题意得,AB ⊥平面BCD ,∴AB ⊥BC ,AB ⊥BD .设塔高AB =x ,在Rt △ABC 中,∠ACB =45°,所以BC =AB =x ,在Rt △ABD 中,∠ADB =30°,∴BD =AB tan 30°=3x ,在△BCD 中,由余弦定理得BD 2=CB 2+CD 2-2CB ·CD ·cos 120°,∴(3x )2=x 2+100+10x ,解得x =10或x =-5(舍去),故选B.【答案】 B2.甲船在岛A 的正南B 处,以每小时4千米的速度向正北航行,AB =10千米,同时乙船自岛A 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为( ) A.1507分钟 B.157分钟 C .21.5分钟 D .2.15小时【解析】 如图,设t 小时后甲行驶到D 处,则AD =10-4t ,乙行驶到C 处,则AC =6t .∵∠BAC =120°,∴DC 2=AD 2+AC 2-2AD ·AC ·cos 120°=(10-4t )2+(6t )2-2×(10-4t )×6t ×cos 120°=28t 2-20t +100=28⎝ ⎛⎭⎪⎫t -5142+6757.当t =514时,DC 2最小,即DC 最小,此时它们所航行的时间为514×60=1507分钟.【答案】 A3.如图1-2-28所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ= .图1-2-28【解析】 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.由正弦定理AB sin ∠ACB =BC sin ∠BAC⇒ sin ∠ACB =AB BC ·sin ∠BAC =217,∠BAC =120°,则∠ACB 为锐角,cos ∠ACB =277.由θ=∠ACB+30°,则cos θ=cos(∠ACB+30°)=cos∠ACB·cos 30°-sin∠ACB·sin 30°=2114.【答案】21 144.如图1-2-29,某军舰艇位于岛屿A的正西方C处,且与岛屿A相距120海里.经过侦察发现,国际海盗船以100海里/小时的速度从岛屿A出发沿东偏北60°方向逃窜,同时,该军舰艇从C处出发沿东偏北α的方向匀速追赶国际海盗船,恰好用2小时追上.图1-2-29(1)求该军舰艇的速度;(2)求sin α的值.解(1)依题意知,∠CAB=120°,AB=100×2=200,AC=120,∠ACB=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠CAB=2002+1202-2×200×120cos 120°=78 400,解得BC=280.所以该军舰艇的速度为BC2=140海里/小时.(2)在△ABC中,由正弦定理,得ABsin α=BCsin 120°,即sin α=AB sin 120°BC=200×32280=5314.。
必修5 解三角形 测试题单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明一、选择题:(本大题一一共12小题,每一小题5分,一共60分)1. 在ABC ∆中,假设::1:2:3A B C ∠∠∠=,那么::a b c 等于〔 〕A.1:2:3B.3:2:1C.2:1D.22.在△ABC 中,222a b c bc =++ ,那么A 等于〔 〕A .60°B .45°C .120°D .30°3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,那么坡底要伸长〔 〕A. 1公里B. sin10°公里C. cos10°公里D. cos20°公里4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,那么底边长=〔 〕A .2B .23 C .3 D .32 5.锐角三角形的边长分别为2、3、x ,那么x 的取值范围是〔 〕A .135<<xB .13<x <5C .2<x <5D .5<x <56. 在ABC ∆中,60A ∠=,a =3b =,那么ABC ∆解的情况〔 〕A. 无解B. 有一解C. 有两解D. 不能确定 7.边长为5、7、8的三角形的最大角与最小角之和为〔 〕A. 90B. 120C. 135D. 1508.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,那么塔高为〔 〕 A. 3400米 B. 33400米 C. 2003米 D. 200米 9.在△ABC 中,假设)())((c b b c a c a +=-+,那么∠A=〔 〕A .090B .060C .0120D .015010.某人朝正向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值是〔 〕 A. 3 B. 23 C. 23或者3 D. 311.在△ABC 中,A 为锐角,lg b +lg(c1)=lgsin A =-lg 2, 那么△ABC 为〔 〕 A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形12.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于 他看见第二辆车与第三辆车的俯角差,那么第一辆车与第二辆车的间隔 1d 与第二辆车与第三 辆车的间隔 2d 之间的关系为〔 〕A. 21d d >B. 21d d =C. 21d d <D. 不能确定大小二、填空题:〔本大题一一共6小题,每一小题6分,一共36分〕13.在ABC ∆中,三边a 、b 、c 所对的角分别为A 、B 、C ,3a =,2b =,ABC ∆的面积S=3,那么C =14.在△ABC 中,AB =4,AC =7,BC 边的中线72AD =,那么BC = 15.在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,那么|AB -AC |=________ 16.一船以每小时15km 的速度向东航行,船在A 处看到一个B 在北偏东60,行驶4h 后,船到达C 处,看到这个在北偏东15,这时船与的间隔 为 km .17.三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,那么这个三角形的面积为 。
高二周末测试(一)第Ⅰ卷(选择题 共60分)一 选择题:(本大题共12小题,每小题5分,共60分。
在每小题的四个选项中,只有一项是符合题目要求的)1.已知△ABC 中,30A =,105C =,8b =,则等于 ( )A 4B 2. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( )A 3B 2C 12 D 23.长为5、7、8的三角形的最大角与最小角之和为 ( ) A 90° B 120° C 135° D 150°4. △ABC 中,cos cos cos a b cA B C ==,则△ABC 一定是 ( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形5. △ABC 中,60B =,2b ac =,则△ABC 一定是 ( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )A 有 一个解B 有两个解C 无解D 不能确定7. △ABC 中,8b =,c =,ABCS=A ∠等于 ( )A 30B 60C 30或150D 60或1208.△ABC 中,若60A =,a =sin sin sin a b cA B C +-+-等于 ( )A 2B 12 C 29. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( ) A 13 B 12 C 34D 0 10.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定11 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( ) A.3400米 B.33400米 C. 2003米 D. 200米12 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( )A.10 海里B.5海里C. 56 海里D.53 海里第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。
第一章 解三角形检测卷班级__________座号________学生__________一、 选择题1、某次测量中,A 处测得同一方向的B 点仰角为60o ,C 点俯角为70o ,则∠BAC 等于 ( )A. 10oB. 50oC. 120oD. 130o 2、 ABC 中,已知A =30°,且3a =3b =12,则c 的值为( ) A .4 B .8 C .4或8D .无解3、在高150米山顶上,测得山下一铁塔塔顶与塔底的俯角分别为30,60,o o 则铁塔高( )A . 100米B . 150米C . 200米D .300米4、三角形的两边长为3 cm 、5 cm ,其夹角的余弦是方程5x 2-7x -6=0的根,则此三角形的面积是( )A .6 cm 2 B.152cm 2 C .8 cm 2D .10 cm 25、△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( ) A .4 3B .5C .5 2D .6 26、在△ABC 中,b =8,c =3,A =60°,则此三角形外接圆面积是( ) A.1963B.196π3C.493D.49π37、某人先向正东方向走了x km ,然后他向右转150°,向新的方向走了3 km ,结果他离出发点恰好为 3 km ,那么x 的值为( )A. 3 B .2 3 C .23或 3 D .3 8、如图所示,在河岸AC 测量河的宽度BC ,图中所标的数据a ,b ,c ,α,β是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜的是( )A .c 和αB .c 和bC .c 和βD .b 和α9、△ABC 的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若a =52b ,A =2B ,则cos B =( ) A.53B.54 C.55D.5610、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b a=( ) A .2 3B .2 2 C. 3D. 211、△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( )A.π6B.π3C.π2D.2π312、如图,某炮兵阵地位于A 点,两观察所分别位于C ,D 两点.已知△ACD 为正三角形,且DC = 3 km ,当目标出现在B 点时,测得∠CDB =45°,∠BCD =75°,则炮兵阵地与目标的距离是( )A .1.1 kmB .2.2 kmC .2.9 kmD .3.5 km二、 填空题13、ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________. 14、△ABC 为钝角三角形,且∠C 为钝角,则a 2+b 2与c 2的大小关系为________. 15、在△ABC 中,S △ABC =14(a 2+b 2-c 2),b =1,a = 2.则c =________.16、如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为____________.三、解答题17、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边长,已知b 2=ac ,且a 2-c 2=ac -bc .求:(1)角A 的大小; (2)b sin Bc的值.18、△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).(1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状.19、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab,(1)求sin Csin A的值;(2)若cos B =14,b =2,求△ABC 的面积S .20、如图所示,在地面上有旗杆OP ,为测得它的高度h ,在地面上取一基线AB ,AB=20 m,在A 处测得P 点的仰角∠OAP=30o ,在B 处测得P 点的仰角∠OBP=45o ,又测得∠AOB=300,求旗杆的高度.21、△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ), n =(sin B ,sin A ),p()2,2--=a b .(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p , c =2,3π=C,求△ABC 的面积S .解三角形检测卷1.D2.C3.A4.A5.C6.D7.C8.D9.B 10.D 11.B 12.C; 13.255 210,14.a 2+b 2<c 2, 15.1,16.1762(海里/小时);17.解:(1)∵b 2=ac ,且a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理的推论,得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.(2)在△ABC 中,由正弦定理得sin B =b sin A a .∵b 2=ac ,A =60°,∴b sin B c =b 2sin 60°ac=sin 60°=32. 18.解:(1)因为a 2=b (b +c ),即a 2=b 2+bc ,所以在△ABC 中,由余弦定理可得,cos B =a 2+c 2-b 22ac =c 2+bc2ac=b +c 2a =a 22ab =a 2b =sin A 2sin B,所以sin A =sin 2B ,故A =2B . (2) 因为a =3b ,所以a b=3,由a 2=b (b +c )可得c =2b ,cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b2=32, 所以B =30°,A =2B =60°,C =90°.所以△ABC 为直角三角形.19.解:(1)法一:在△ABC 中,由cos A -2cos C cos B =2c -a b 及正弦定理可得cos A -2cos Ccos B =2sin C -sin Asin B,即cos A sin B -2cos C sin B =2sin C cos B -sin A cos B . 则cos A sin B +sin A cos B =2sin C cos B +2cos C sin B , 即sin(A +B )=2sin(C +B ),而A +B +C =π, 则sin C =2sin A ,即sin Csin A=2.法二:在△ABC 中,由cos A -2cos C cos B =2c -ab可得b cos A -2b cos C =2c cos B -a cos B由余弦定理可得b 2+c 2-a 22c -a 2+b 2-c 2a =a 2+c 2-b 2a -a 2+c 2-b 22c, 整理可得c =2a ,由正弦定理可得sin C sin A =c a =2.法三:利用教材习题结论解题,在△ABC 中有结论a =b cos C +c cos B ,b =c cos A +a cos C ,c =a cos B +b cos A .由cos A -2cos C cos B =2c -ab可得b cos A -2b cos C =2c cos B -a cos B ,即b cos A +a cos B =2c cos B +2b cos C ,则c =2a ,由正弦定理可得sin C sin A =c a =2.(2)由c =2a 及cos B =14,b =2可得4=c 2+a 2-2ac cos B =4a 2+a 2-a 2=4a 2,则a =1,c =2. ∴S =12ac sin B =12×1×2×1-cos 2B =154.20.解:设旗杆的高度为x m 在AOP RT ∆中,x xAO 330tan 0==,BOP RT ∆中,x xBO ==045tan ,在AOB ∆中,022230cos 2⋅⋅-+=BO AO BO AO AB ,22233400x x x -+=解得20=x .答:旗杆的高度为20m.21、解:(1)证明:∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b2R ,其中R 是△ABC 外接圆半径,∴a =b ,∴△ABC 为等腰三角形.(2)∵m ⊥p ,∴a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab =(a +b )2-3ab =4,∴(ab )2-3ab-4=0.∴ab =4或ab =-1(舍去).∴S =12ab sin C =12×4×sin π3= 3.即△ABC 的面积为 3.。
第一章综合检测一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的.)1.在△ABC 中,a =80,b =100,A =45°,则此三角形解的情况是( ) A .一解 B .两解 C .一解或两解 D .无解[答案] B[解析] ∵b sin A =100×22=502<80, ∴b sin A <a <b , ∴此三角形有两解.2.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A .31010B .-31010C .55D .-55[答案] D[解析] BC 2=AC 2+AB 2-2AC ·AB cos A =16+2-82cos45°=10,∴BC =10, cos B =AB 2+BC 2-AC 22AB ·BC =-55.3.在△ABC 中,b =3,c =3,B =30°,则a 的值为( ) A . 3 B .2 3 C .3或2 3 D .2[答案] C[解析] ∵sin C =sin B b ·c =32,∴C =60°或C =120°, ∴A =30°或A =90°, 当A =30°时,a =b =3; 当A =90°时,a =b 2+c 2=2 3.故选C .4.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形[答案] C[解析] 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ),∴12(cos A ·cos B +sin A ·sin B )=12,∴cos(A -B )=1, ∴A -B =0,∴A =B ,∴△ABC 为等腰三角形,故选C .5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④ [答案] A[解析] ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的有①②,故选A .6.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15°[答案] A[解析] 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B . ∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°.7.在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( ) A .725B .-725C .±725D .2425[答案] A[解析] 由b sin B =c sin C 及8b =5c ,C =2B 得,5sin2B =8sin B ,∴cos B =45,∴cos C =cos2B =2cos 2B-1=725.8.△ABC 中,|AB →|=5,|AC →|=8,AB →·AC →=20,则|BC →|为( ) A .6 B .7 C .8 D .9 [答案] B[解析] ∵AB →·AC →=20, ∴|AB →||AC →|cos A =20,∴cos A =12,由余弦定理,得|BC →|2=|AB →|2+|AC →|2-2|AB →||AC →|cos A =49, ∴|BC →|=7.9.已知钝角三角形的三边长分别为2、3、x ,则x 的取值范围是( ) A .1<x <5 B.5<x <13C .1<x <5或13<x <5D .1<x < 5 [答案] C[解析] 当x 为最大边时⎩⎨⎧3<x <5x 2>32+22,∴13<x <5;当3为最大边时⎩⎨⎧1<x <332>x 2+22,∴1<x < 5.∴x 的取值范围是:1<x <5或13<x <5.10.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( )A .154B .1534C .2134D .3534[答案] B[解析] ∵三边不等,∴最大角大于60°, 设最大角为α,故α对的边长为a +2. ∵sin α=32,∴α=120°, 由余弦定理,得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,解得a =5,∴三边长为3,5,7, S △ABC =12×3×5×sin120°=1534.11.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC →,则AD 的长为( )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3)[答案] C[解析] 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1),因为BD →=3-12BC →,所以BD =3-12BC .又BC =8,所以BD =4(3-1). 在△ABD 中, AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).12.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20n mile ,随后货轮按北偏西30°的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(2+6)n mile/hB .20(6-2)n mile/hC .20(3+6)n mile/hD .20(6-3)n mile/h [答案] B[解析] 由题意可知∠SMN =15°+30°=45°,MS =20,∠MNS =45°+(90°-30°)=105°,设货轮每小时航行x n mile ,则MN =12x ,∴∠MSN =180°-105°-45°=30°, 由正弦定理,得12x sin30°=20sin105°,∵sin105°=sin(60°+45°) =sin60°cos45°+cos60°sin45°=6+24, ∴x =20(6-2),故选B.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.在△ABC 中,已知b =1,sin C =35,b cos C +c cos B =2,则AC →·BC →=________.[答案] 85或-85[解析] 由余弦定理的推论,得cos C =a 2+b 2-c 22ab ,cos B =a 2+c 2-b 22ac .∵b cos C +c cos B =2,∴a 2+b 2-c 22a +a 2+c 2-b 22a =2,∴a =2,即|BC →|=2. ∵sin C =35,0°<C <180°,∴cos C =45,或cos C =-45.又∵b =1,即|AC →|=1, ∴AC →·BC →=85,或AC →·BC →=-85.14.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .若△ABC 的面积为16sin C ,则C =________.[答案] 60°[解析] ∵sin A +sin B =2sin C . ∴a +b =2C .又∵a +b +c =2+1,∴c =1,a +b = 2. 又S △ABC =12ab sin C =16sin C .∴ab =13,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,∴C =60°.15.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.[答案]102[解析] ∵tan A =13,∴sin A =1010,由正弦定理,得AB =BC ·sin C sin A =102.16.在△ABC 中,cos 2A 2=b +c2c ,则△ABC 的形状为________.[答案] 直角三角形 [解析]∵cos 2A 2=1+cos A 2=b +c 2c =12+b2c,∴cos A =bc.由余弦定理的推论,得 cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =b c ,∴a 2+b 2=c 2.∴△ABC 为直角三角形.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2014·新课标Ⅱ文,17)四边形ABCD 的内角A 与C 互补,AB =1,BC =3, CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. [解析] (1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =12-12cos C . ①BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C . ②由①,②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积 S =12AB ·DA sin A +12BC ·CD sin C =(12×1×2+12×3×2)sin60° =2 3.18.(本题满分12分)在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且3a =2c sin A . (1)确定角C 的大小;(2)若c =7,且△ABC 的面积为332,求a +b 的值.[解析] (1)由3a =2c sin A 及正弦定理得,3sin A =2sin C sin A .∵sin A ≠0,∴sin C =32. ∵△ABC 是锐角三角形,∴C =π3.(2)∵C =π3,△ABC 面积为332,∴12ab sin π3=332,即ab =6.① ∵c =7,∴由余弦定理得a 2+b 2-2ab cos π3=7,即a 2+b 2-ab =7.②由②变形得(a +b )2=3ab +7.③ 将①代入③得(a +b )2=25,故a +b =5.19.(本题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1km 内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约3km 有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12km/h 的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?[解析] 如图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1km. 在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32, ∴∠ACB =120°(∠ACB =60°不合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1. ∵BC12×60=5, ∴在BC 上需要5min ,CD 上需要5min.∴最长需要5min 检查员开始收不到信号,并至少持续5min 该考点才算合格.20.(本题满分12分)(2014·辽宁理,17)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3,求:(1)a 和c 的值; (2)cos(B -C )的值.[解析] (1)由BA →·BC →=2得c ·a cos B =2. 又cos B =13,所以ac =6.由余弦定理得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.因为a >c ,所以a =3,c =2. (2)在△ABC 中, sin B =1-cos 2B =1-(13)2=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-(429)2=79.于是cos(B -C )=cos B cos C +sin B sin C =13·79+223·429=2327.21.(本题满分12分)如图,已知半圆O 的半径为1,点C 在直径AB 的延长线上,BC =1,点P 是半圆O 上的一个动点,以PC 为边作正三角形PCD ,且点D 与圆心分别在PC 两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示成θ的函数; (2)求四边形OPDC 面积的最大值.[解析] (1)设∠POB =θ,且0°≤θ≤180°.在△OPC 中,OP =1,OC =2,由余弦定理,得PC 2=OP 2+OC 2-2OP ·OC ·cos θ=5-4cos θ,∴S OPDC =S △OPC +S △PDC =12OP ·OC ·sin θ+34PC 2=sin θ+34(5-4cos θ)=sin θ-3cos θ+534,即y =sin θ-3cos θ+543.(2)由(1)得y =sin θ-3cos θ+543=2sin(θ-60°)+534.∵0°≤θ≤180°,-60°≤θ-60°≤120°,∴当sin(θ-60°)=1,即θ-60°=90°,也即θ=150°时,S OPDC 有最大值,且为2+534,故当∠POC =150°时,四边形OPDC 的面积最大,最大值为2+534.22.(本题满分14分)如图所示,A 、B 两个小岛相距21n mile ,B 岛在A 岛的正南方,现在甲船从A 岛出发,以9n mile /h 的速度向B 岛行驶,而乙船同时以6n mile/h 的速度离开B 岛向南偏东60°方向行驶,问行驶多少时间后,两船相距最近,并求出两船的最近距离.[解析] 设行驶t 小时后,甲船行驶了9t n mile 到达C 处,乙船行驶了6t n mile 到达D 处. 当9t <21,即t <73时,C 在线段AB 上,此时BC =21-9t ,在△BCD 中,BC =21-9t ,BD =6t ,∠CBD =180°-60°=120°, 由余弦定理,得CD 2=BC 2+BD 2-2BC ·BD ·cos120° =(21-9t )2+(6t )2-2×(21-9t )·6t ·(-12)=63t 2-252t +441=63(t -2)2+189. ∴当t =2时,CD 取得最小值189=321.当t =73时,C 与B 重合,此时CD =6×73=14>321.当t >73时,BC =9t -21,则CD 2=(9t -21)2+(6t )2-2×(9t -21)×6t ×cos60°=63t 2-252t +441=63(t -2)2+189>189.综上可知,t =2时,CD 取最小值321n mile ,故行驶2h 后,甲、乙两船相距最近为321n mile.高中数学-打印版精校版。
高中数学必修五第一章单元测试题《解三角形》一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,下列等式不成立的是()A.c=a2+b2-2ab cos CB.asin A=bsin BC.a sin C=c sin AD.cos B=a2+c2-b22abc2.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为()A.75°B.60°C.45°D.30°3.已知△ABC中,c=6,a=4,B=120°,则b等于()A.76 B.219C.27 D.274.已知△ABC中,a=4,b=43,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°5.已知三角形的三边长分别为a,b,a2+ab+b2,则三角形的最大内角是()A.135°B.120°C.60°D.90°6.△ABC的三内角A,B,C所对边的长分别为a,b,c设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为()A.π6 B.π3C.π2 D.2π37.在△ABC 中,已知a =2b cos C ,那么△ABC 的内角B 、C 之间的关系是( )A .B >CB .B =C C .B <CD .关系不确定8.在△ABC 中,B =60°,b 2=ac ,则这个三角形是( )A .不等边三角形B .等边三角形C .等腰三角形D .直角三角形9.在△ABC 中,cos A cos B >sin A sin B ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形10.△ABC 中,已知sin B =1,b =3,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定11.在△ABC 中,若A <B <C ,b =10,且a +c =2b ,C =2A ,则a 与c 的值分别为( )A .8,10B .10,10C .8,12D .12,812.已知平面上有四点O ,A ,B ,C ,满足OA →+OB →+OC →=0,OA →·OB →=OB →·OC →=OC →·OA →=-1,则△ABC 的周长是( )A .3B .6C .3 6D .9 6二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.在△ABC 中,A =30°,C =105°,b =8,则a =________.14.在△ABC 中,若∠A =120°,AB =5,BC =7,则AC =________.15.在△ABC 中,已知CB =8,CA =5,△ABC 的面积为12,则cos2C =________.16.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m ,乙楼高为________m.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C-sin B sin C =12.(1)求A ;(2)若a =23,b +c =4,求△ABC 的面积.18.(12分)在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.19.(12分)如图,在△ABC中,AC=2,BC=1,cos C=3 4.(1)求AB的值;(2)求sin(2A+C)的值.20.(12分)已知△ABC顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).(1)若c=5,求sin A的值;(2)若∠A是钝角,求c的取值范围.21.(12分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60 °,AC=0.1 km.试探究图中B,D间距离与另外两点间距离哪个相等,然后求B,D的距离(计算结果精确到0.01 km,2=1.414,6≈2.449).22.(12分)设函数f(x)=cos(2x+π3)+sin2x.(1)求函数f(x)的最大值和最小正周期;(2)设A,B,C为△ABC的三个内角,若cos B=13,f(C2)=-14,且C为锐角,求sin A.高中数学必修五第一章单元测试题《解三角形》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,下列等式不成立的是()A.c=a2+b2-2ab cos CB.asin A=bsin BC.a sin C=c sin AD.cos B=a2+c2-b22abc答案 D解析很明显A,B,C成立;由余弦定理,得cos B=a2+c2-b22ac,所以D不成立.2.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为() A.75°B.60°C.45°D.30°答案 B解析由S△ABC=33=12×3×4sin C,得sin C=32,又角C为锐角,故C=60°.3.已知△ABC中,c=6,a=4,B=120°,则b等于() A.76 B.219C.27 D.27答案 B解析由余弦定理,得b2=a2+c2-2ac cos B=76,所以b=219. 4.已知△ABC中,a=4,b=43,A=30°,则B等于() A.30°B.30°或150°C.60°D.60°或120°答案 D解析由正弦定理,得asin A=bsin B.所以sin B=ba sin A=434sin30°=32.又a<b,则A<B,所以B=60°或120°.5.已知三角形的三边长分别为a,b,a2+ab+b2,则三角形的最大内角是()A.135°B.120°C.60°D.90°答案 B解析a2+ab+b2>a,a2+ab+b2>b,则长为a2+ab+b2的边所对的角最大.由余弦定理,得cosα=a2+b2-(a2+b2+ab)2ab=-12,所以三角形的最大内角是120°.6.△ABC的三内角A,B,C所对边的长分别为a,b,c设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为()A.π6 B.π3C.π2 D.2π3答案 B解析由p∥q,得(a+c)(c-a)=b(b-a),则b2+a2-c2=ab.由余弦定理,得cos C=a2+b2-c22ab=12,所以C=π3.7.在△ABC中,已知a=2b cos C,那么△ABC的内角B、C之间的关系是() A.B>C B.B=CC.B<C D.关系不确定答案 B8.在△ABC中,B=60°,b2=ac,则这个三角形是()A.不等边三角形B.等边三角形C.等腰三角形D.直角三角形答案 B9.在△ABC中,cos A cos B>sin A sin B,则△ABC是()A.锐角三角形B.直角三角形C .钝角三角形D .等边三角形答案 C 10.△ABC 中,已知sin B =1,b =3,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定答案 D11.在△ABC 中,若A <B <C ,b =10,且a +c =2b ,C =2A ,则a 与c 的值分别为( )A .8,10B .10,10C .8,12D .12,8 答案 C解析 ∵C =2A ,∴sin C =sin2A =2sin A ·cos A .由正弦定理,余弦定理可得c =2a ·100+c 2-a 22×10c, 将a =20-c 代入上式整理,得c 2-22c +120=0,解得∴c =10(舍去)或c =12.∴a =8.12.已知平面上有四点O ,A ,B ,C ,满足OA →+OB →+OC →=0,OA →·OB →=OB →·OC →=OC →·OA →=-1,则△ABC 的周长是( )A .3B .6C .3 6D .9 6 答案 C解析 由已知得O 是△ABC 的重心,由OA →·OB →=OB →·OC →,得OB →·(OA →-OC →)=0.∴OB →·CA →=0.∴OB ⊥CA .同理,OA ⊥BC ,OC ⊥AB .∴△ABC 为等边三角形.故∠AOB =∠BOC =∠COA =2π3,|OA →|=|OB →|=|OC →|= 2.在△AOB 中,由余弦定理,得AB2=OA2+OB2-2OA·OB cos 2π3=6.∴AB=6,故△ABC的周长是3 6.讲评本题是以向量的数量积给出条件,通过计算得出三角形中的一些量,再利用余弦定理可解.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.在△ABC中,A=30°,C=105°,b=8,则a=________.答案4 2解析B=180°-30°-105°=45°,由正弦定理,得a=sin Asin B b=sin30°sin45°×8=4 2.14.在△ABC中,若∠A=120°,AB=5,BC=7,则AC=________. 答案 3解析在△ABC中,由余弦定理,得cos A=cos120°=AB2+AC2-BC22×AB×AC,即25+AC2-492×5×AC=-12.解得AC=-8(舍去)或AC=3.15.在△ABC中,已知CB=8,CA=5,△ABC的面积为12,则cos2C=________.答案725解析由题意,得S=12CA×CB sin C,则12=12×5×8sin C.所以sin C=35.则cos2C=1-2sin2C=725.16.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m,乙楼高为________m.答案203403 3解析如下图所示,甲楼高为AB,乙楼高为CD,AC=20 m.则在△ABC 中,∠BAC =90°,AC =20(m),所以AB =AC tan60°=203(m),在△BCD 中,BC =40(m),∠BCD =90°-60°=30°,∠CBD =90°-30°-30°=30°,则∠BDC =180°-30°-30°=120°.由正弦定理,得BC sin ∠BDC =CDsin ∠CBD ,所以CD =sin ∠CBD sin ∠BDC BC =4033. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C-sin B sin C =12.(1)求A ; (2)若a =23,b +c =4,求△ABC 的面积.思路分析 (1)转化为求cos A ;(2)求出bc 的值即可.解析 (1)∵cos B cos C -sin B sin C =12,∴cos(B +C )=12.∵A +B +C =π,∴cos(π-A )=12.∴cos A =-12.又∵0<A <π,∴A =2π3.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A .则(23)2=(b +c )2-2bc -2bc ·cos 2π3.∴12=16-2bc -2bc ·(-12).∴bc =4.∴S △ABC =12bc ·sin A =12×4×32= 3.18.(12分)在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.解析 (1)由C -A =π2和A +B +C =π,得2A =π2-B,0<A <π4.故cos2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63.又由正弦定理,得BC sin A =AC sin B ,BC =sin A sin B AC =3 2.所以S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A =3 2.19.(12分)如图,在△ABC 中,AC =2,BC =1,cos C =34.(1)求AB 的值;(2)求sin(2A +C )的值.解析 (1)由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C=4+1-2×2×1×34=2.∴AB = 2.(2)由cos C =34且0<C <π,得sin C =1-cos 2C =74.由正弦定理,得AB sin C =BC sin A ,解得sin A =BC sin C AB =148.所以cos A =528.由倍角公式,得sin2A =2sin A cos A =5716,且cos2A =1-2sin 2A =916.故sin(2A +C )=sin2A cos C +cos2A sin C =378.20.(12分)已知△ABC 顶点的直角坐标分别为A (3,4)、B (0,0)、C (c,0).(1)若c =5,求sin A 的值;(2)若∠A 是钝角,求c 的取值范围.解析 (1)方法一 ∵A (3,4)、B (0,0),∴|AB |=5,sin B =45.当c =5时,|BC |=5,|AC |=(5-3)2+(0-4)2=2 5.根据正弦定理,得|BC |sin A =|AC |sin B ⇒sin A =|BC ||AC |sin B =255.方法二 ∵A (3,4)、B (0,0),∴|AB |=5.当c =5时,|BC |=5,|AC |=(5-3)2+(0-4)2=2 5. 根据余弦定理,得cos A =|AB |2+|AC |2-|BC |22|AB ||AC |=55.sin A =1-cos 2A =255.(2)已知△ABC顶点坐标为A(3,4)、B(0,0)、C(c,0),根据余弦定理,得cos A=|AB|2+|AC|2-|BC|22|AB||AC|.若∠A是钝角,则cos A<0⇒|AB|2+|AC|2-|BC|2<0,即52+[(c-3)2+42]-c2=50-6c<0,解得c>25 3.21.(12分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60 °,AC=0.1 km.试探究图中B,D间距离与另外两点间距离哪个相等,然后求B,D的距离(计算结果精确到0.01 km,2=1.414,6≈2.449).解析在△ABC中,∠DAC=30°,∠ADC=60°-∠DAC=30°,所以CD=AC=0.1.又∠BCD=180°-60°-60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA.在△ABC中,ABsin∠BCA=ACsin∠ABC,即AB=AC sin60°sin15°=32+620,因此,BD=32+620≈0.33 km.故B、D的距离约为0.33 km22.(12分)设函数f(x)=cos(2x+π3)+sin2x.(1)求函数f(x)的最大值和最小正周期;(2)设A,B,C为△ABC的三个内角,若cos B=13,f(C2)=-14,且C为锐角,求sin A.解析(1)f(x)=cos2x cos π3-sin2x sin π3+1-cos2x2=12cos2x-32sin2x+12-12cos2x=12-32sin2x.所以当2x=-π2+2kπ,即x=-π4+kπ(k∈Z)时,f(x)取得最大值,f(x)最大值=1+32,f(x)的最小正周期T=2π2=π,故函数f(x)的最大值为1+32,最小正周期为π.(2)由f(C2)=-14,即12-32sin C=-14,解得sin C=32,又C为锐角,所以C=π3.由cos B=13,求得sin B=223.由此sin A=sin[π-(B+C)]=sin(B+C)=sin B cos C+cos B sin C=223×12+13×32=22+36.。
解三角形一、选择题:(每小题5分,共计60分)1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A B C 等边三角形 D 等腰三角形2. 在△ABC 中,c=3,B=300,则a 等于( )A B . C D .23. 不解三角形,下列判断中正确的是( )A .a=7,b=14,A=300有两解B .a=30,b=25,A=1500有一解C .a=6,b=9,A=450有两解D .a=9,c=10,B=600无解4. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为( ) A .41- B .41 C .32- D .32 5. 在△ABC 中,A =60°,b =1,其面积为3,则C B A c b a sin sin sin ++++等于( ) A .33B .3392C .338D .239 6. 在△ABC 中,AB =5,BC =7,AC =8,则⋅的值为( )A .79B .69C .5D .-5 7.关于x 的方程02cos cos cos 22=-⋅⋅-C B A x x 有一个根为1,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形8. 设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( )A.0<m <3B.1<m <3C.3<m <4D.4<m <69. △ABC 中,若c=ab b a ++22,则角C 的度数是( )A.60°B.120°C.60°或120°D.45°10. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( )A.0°<A <30°B.0°<A ≤45°C.0°<A <90°D.30°<A <60° 11.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是( ) A .锐角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形12. 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定二、填空题(每小题4分,满分16分)13.在△ABC 中,有等式:①asinA=bsinB ;②asinB=bsinA ;③acosB=bcosA ;④sin sin sin a b c A B C+=+. 其中恒成立的等式序号为______________14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 。
必修5第一章《解三角形》综合测试题(A )及解析班级:________ 姓名:________ 座号:________ 得分:________第Ⅰ卷(选择题)一、选择题(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某三角形的两个内角为o 45和o 60,若o 45角所对的边长是6,则o 60角所对的边长是 【 A 】 A. B. C. D. 答案:A .解析:设o 60角所对的边长是x ,由正弦定理得o o6sin 45sin 60x=,解得x =故选A . 2.在ABC ∆中,已知a =10c =,o 30A =,则B 等于 【 D 】 A .o 105 B .o 60 C .o 15 D .o 105或o 15 答案:D .解析:在ABC ∆中,由sin sin a cA C=,得sin sin 2c A C a ==,则o 45C =或o 135C =.故 当o 45C =时,o 105B =;当o 135C =时,o 15B =.故选D .3.在ABC ∆中,三边长7AB =,5BC =,6AC =,则AB BC ⋅的值等于 【 D 】 A .19 B .14- C .18- D .19- 答案:D .解析:由余弦定理得49253619cos 27535B +-==⨯⨯,故AB BC ⋅=||AB ⋅||cos(BC π)B -= 1975()1935⨯⨯-=-.故选D . 4.在ABC ∆中,sin <sin A B ,则 【 A 】 A .<a b B .>a b C .a b ≥ D .a 、b 的大小关系不确定 答案:A .解析:在ABC ∆中,由正弦定理2sin sin a b R A B ==,得sin 2a A R =,sin 2bB R=,由sin A <sin B ,得<22a bR R,故<a b .故选A . 5.ABC ∆满足下列条件:①3b =,4c =,o 30B =;②12b =,9c =,o60C =;③b =,6c =,o60B =;④5a =,8b =,o30A =.其中有两个解的是 【 B 】 A .①② B .①④ C .①②③ D .②③题号 1 2 3 4 5 6 7 8 答案ADDABABC答案:B .解析:① sin <<c B b c ,三角形有两解;②o <sin 60c b ,三角形无解;③b =sin c B ,三角 形只有一解;④sin <<b A a b ,三角形有两解.故选B .6.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是 【 A 】A .2B C .2 D .3 答案:A .解析:由2220b bc c --=,得(2)()0b c b c -+=,故2b c =或b c =-(舍去),由余弦定理2222cos a b c bc A =+-及已知条件,得23120c -=,故2c =,4b =,又由7cos 8A =及A 是ABC ∆的内角可得sin A =,故1242S =⨯⨯=.故选A . 7.设a 、1a +、2a +是钝角三角形的三边长,则a 的取值范围为 【 B 】 A .0<<3a B .1<<3a C .3<<4a D .4<<6a 答案:B .解析:设钝角为C ,由三角形中大角对大边可知C 的对边为2a +,且cos C =222(1)(2)2(1)a a a a a ++-+⋅⋅+(3)(1)<02(1)a a a a -+=+,因为>0a ,故1>0a +,故0<<3a ,又(1)>+2a a a ++,故>1a ,故1<<3a .故选B .8.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,且4a =,5b c +=,tan tan A B ++tan A B =⋅,则ABC ∆的面积为 【 C 】A .32 B . C .2 D .52答案:C .解析:由已知,得tan tan tan tan )A B A B +=-⋅,即tan()A B +=A 、B 是ABC ∆的内角,故o 120A B +=,则o 60C =,由2224(5)24(5)c c c =+--⨯⨯-ocos60,解得72c =,故32b =,故113sin 422222ABC S ab C ∆==⨯⨯⨯=.故选C .第Ⅱ卷(非选择题)二、填空题(每小题5分,共30分)9.在ABC∆中,1sin3A=,cos B=,1a=,则b=_________..解析:由cos B=sinB===,由sin sina bA B=,得b=1sin31sin3a BA⨯==10.ABC∆的内角A、B、C的对边分别为a、b、c,若c=b=o120B=,则a=______..解析:由余弦定理得2222cosb ac ac B=+-,即2o62cos120a=+-,即24a+-0=,解得a=舍去负值).11.如果ABC∆的面积是222S=,那么C=____________.答案:o30.解析:由题意得2221sin2ab C=cosC C=,故tan C=,故o30C=. 12.ABC∆的三内角A、B、C的对边分别为a、b、c,若o60A=,1b=,三角形的面积S= sin sin sina b cA B C++++的值为____________..解析:由o11sin sin6022S bc A c===4c=.由余弦定理得22a b=+22cosc bc A-13=,故a=.故sin sin sina b cA B C====,由等比性质,得sin sin sin sin a b c a A B C A ++==++13.一蜘蛛沿正北方向爬行x cm 捉到一只小虫,然后向右转o105,爬行10cm 捉到另一只小虫,这 时它向右转o135爬行回它的出发点,那么x =____________.答案:3. 解析:由题意作出示意图如图所示,则ABC ∠=ooo18010575-=,BCA ∠=ooo18013545-=,10BC =,故ooo1807545A =--=o 60,由正弦定理得o o10sin 45sin 60x =,解得x =(cm ). 14.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,向量(3,1)m =-,(cos ,sin )n A A =, 若m n ⊥,且cos cos sin a B b A c C +=,则B =____________. 答案:6π或o 30. 解析:由m n ⊥得0m n ⋅=sin 0A A-=,即sin 0A A =,故2sin()3A π-0=,故3A π=.由cos cos sin a B b A c C +=,得sin cos sin cos A B B A +=2sin C ,即2sin()sin A B C +=,故2sin sin C C =,故sin 1C =,又C 为ABC ∆的内角,故2C π=,故()()326B AC πππππ=-+=-+=.三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)在ABC ∆中,已知2a=,c =o 45A =,解此三角形.解:由正弦定理,得sin sin 222c A C a ==⨯=,故o 60C ∠=或o 120. 当o 60C ∠=时,oo180()75B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=+1b =+.当o 120C ∠=时,o o180()15B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=-1b =-.故1b =,o 60C ∠=,o 75B ∠=或1b =,o 120C ∠=,o 15B ∠=.16.(本题满分12分)如图,在四边形ABCD 中,已知BA AD ⊥,10AB =,BC =o60BAC ∠=,o135ADC ∠=,求CD 的长.解:在ABC ∆中,由正弦定理,得sin sin AB BACBCA BC⋅∠∠=DAxABC o135o105o==,因>BC AB,故>CAB BCA∠∠,故o45BCA∠=,故o75B=,由正弦定理,得oo10sin751)sin45AC==,在ACD∆中,因o o9030CAD BAC∠=-∠=,由正弦定理,得oosin30sin1352ACCD+==.答:CD.17.(本题满分14分)a、b、c是ABC∆的内角A、B、C的对边,S是ABC∆的面积,若4a=,5b=,S=c.解:由11sin45sin22Sab C C==⋅⋅⋅=,得sin C=,则1cos2C=或1cos2C=-.(1)当1cos2C=时,由余弦定理,得211625245212c=+-⋅⋅⋅=,故c=;(2)当1cos2C=-时,由余弦定理,得211625245612c=++⋅⋅⋅=,故c=.综上可知c18.(本题满分14分)在ABC∆中,sin sin cosB A C=,其中A、B、C是ABC∆的三个内角,且ABC∆最大边是12,最小角的正弦值是13.(1)判断ABC∆的形状;(2)求ABC∆的面积.解:(1)由sin sin cosB A C=根据正弦定理和余弦定理,得2222a b cb aab+-=⋅,得222b c a+=,故ABC∆是直角三角形.(2)由(1)知12a=,设最小角为α,则1sin3α=,故cosα=(舍去负值),故ABCS∆=1111sin cos121222233bc a aαα=⋅=⋅⋅⋅⋅=19.(本题满分14分)海上某货轮在A处看灯塔B在货轮的北偏东o75,距离为海里;在A 处看灯塔C在货轮的北偏西o30,距离为由A处行驶到D处时看灯塔B在货轮的北偏东o120.求(1)A处与D处之间的距离;(2)灯塔C与D处之间的距离.解:由题意画出示意图,如图所示.(1)ABD ∆中,由题意得o 60ADB ∠=,o 45B ∠=,由正弦定理得o osin 45sin 60ABAD =24= (海里).(2)在ABD ∆中,由余弦定理,得2222CD AD AC AD AC =+-⋅o cos302224=+-2242⨯⨯,故CD =海里).答:A 处与D 处之间的距离为24海里,灯塔C 与D 处之间的距离为.● 以下两题任选一题作答20.(本题满分14分)在锐角ABC ∆中,边a 、b 是方程220x -+=的两根,A 、B 满足2sin()A B +0=,解答下列问题:(1)求C 的度数; (2)求边c 的长度; (3)求ABC ∆的面积.解:(1)由题意,得sin()A B +=ABC ∆是锐角三角形,故o 120A B +=,o 60C =;(2)由a 、b 是方程220x -+=的两根,得a b +=2a b ⋅=,由余弦定理,得22222cos ()31266c a b ab C a b ab =+-=+-=-=,故c =(3)故1sin 2ABC S ab C ∆==122⨯⨯=. 20.(本题满分14分)ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若AB AC BA BC ⋅=⋅1=.解答下列问题:(1)求证:A B =; (2)求c 的值;(3)若||6AB AC +=,求ABC ∆的面积.证:(1)因AB AC BA BC ⋅=⋅,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得 sin cos sin cos B A A B =,故sin()0A B -=,因为<<A B ππ--,故0A B -=,故 A B =.解:(2)因1AB AC ⋅=,故cos 1bc A =,由余弦定理得22212b c a bc bc+-⋅=,即222b c a +-= 2;又由(1)得a b =,故22c =,故2c =.解:(3)由||6AB AC +=22||||2||6AB AC AB AC ++⋅=,即2226c b ++=,故22c b +4=,因22c =,故b =ABC ∆是正三角形,故面积2ABC S ∆=⨯=.。
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
高二数学必修5第一章解三角形单元测试 班级:_________学号:__________姓名:__________成绩:__________
一、 选择题。
(每题4分,10题共40分)
1、在ABC △中,已知4,6a b ==,60B = ,则sin A 的值为( )
A 、3
B 、2
C 、3
D 、2
2、在△ABC 中,a =3,b =7,c =2,那么B 等于( )
A . 30°
B .45°
C .60°
D .120°
3、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )
A . 23
B .43
C .2
3或3 D .43或23 4.在△ABC 中,222a b c bc =++ ,则A 等于( )
A .60°
B .45°
C .120°
D .30°
5、在ABC △中,根据下列条件解三角形,则其中有二个解的是( )
A 、10,45,70b A C ===
B 、60,48,60a c B ===
C 、7,5,80a b A ===
D 、14,16,45a b A ===
6.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长=( )
A .2
B .2
3 C .3 D .32 7.边长为5、7、8的三角形的最大角与最小角之和为( )
A. 90
B. 120
C. 135
D. 150
8、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( )
A .51<<x
B .135<<x
C .50<<x
D .513<<x
9.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长 ( )公里.
A .1
B .sin10°
C .cos10°
D .cos20°
10.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为( ) A. 3 B. 23 C. 23或3 D. 3
二、填空题。
(每题4分,4题共16分)
11、在△ABC 中,===B c a ,2,33150°,则b =
12.在ABC ∆中,三边a 、b 、c 所对的角分别为A 、B 、C ,已
知a =,2b =,ABC ∆ 的面积S=3,则C =
13、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a ::
14.在△ABC 中,B=1350,C=150,a =5,则此三角形的最大边长为
三、解答题。
(共44分)
(10分)
16、已知在ABC
△中,
2
2
tan
tan
A a
B b
=,判断ABC
△的形状。
(10分)
00
15.30,60,2,.
A B C a c
=-==
已知求
17.在△ABC 中,求证:)cos cos (a
A b
B c a b b a -=-.(12分)
18.茂名市新建滨海公园,为测量河对岸的塔高AB ,可以选与塔底B 在同一水平面内的两个测点C 与D ,如图所示测得∠BCD =150, ∠BDC =300,CD=30m ,并在点C 测得塔顶A 的仰角为600,求塔高AB 。
(12分)。