2018年沪教版九年级数学 复习与提升 第21章
- 格式:ppt
- 大小:1.23 MB
- 文档页数:12
《代数方程》全章复习与巩固知识讲解(提高)【学习目标】1.知道一元整式方程与高次方程的有关概念,知道一元整式方程的一般形式. 理解含字母系数的一元一次方程、一元二次方程的概念,掌握它们的基本解法.2.理解和掌握二项方程的意义以及二项方程的解法,理解双二次方程的意义,了解高次方程求解的基本方法是降次,会用换元法把双二次方程转化为一元二次方程;学会判断双二次方程的根的个数.3.会用“换元法”解特殊的分式方程(组).4.理解无理方程的概念,会识别无理方程,知道有理方程及代数方程的概念,领会无理方程“有理化”的化归思想. 会解简单的无理方程(方程中只含一个或两个关于未知数的二次根式).5.知道二元二次方程的概念和二元二次方程组的概念.6.掌握由“代入法”解由一个二元一次方程和二元二次方程组成的方程组;掌握用“因式分解法”解由两个二元二次方程组成的方程组.7.能熟练地列出方程组解应用题.并能根据具体问题的实际意义,检查结果是否合理.通过将实际生活中的问题抽象为方程模型,让学生形成良好思维习惯,学会从数学角度提出问题、理解问题.运用所学知识解决问题,发展应用意识,体会数学的情感与价值.【知识网络】【要点梳理】要点一、整式方程1. 一元整式方程:如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程;2.一元n次方程:一元整式方程中含未知数的项的最高次数是n(n是正整数),这个方程叫做一元n次方程.3.一元高次方程:一元整式方程中含有未知数的项的最高次数是n,若次数n是大于2的正整数,这样的方程统称为一元高次方程.要点诠释:一元高次方程应具备:整式方程;只含一个未知数;含未知数的项最高次数大于2次.4.二项方程概念:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.要点诠释:注:①nax=0(a≠0)是非常特殊的n次方程,它的根是0.②这里所涉及的二项方程的次数不超过6次.5.解的情况:当n为奇数时,方程有且只有一个实数根,x=;当n为偶数时,如果ab<0,那么方程有两个实数根,且这两个根互为相反数;如果ab>0,那么方程没有实数根.6.双二次方程概念:只含有偶数次项的一元四次方程.要点诠释:当常数项不是0时,规定它的次数为0.7.解双二次方程的常用方法:因式分解法与换元法(目的是降次,使它转化为一元一次方程或一元二次方程)通过换元,把双二次方程转化为一元方程体现了“降次”的策略.要点诠释:解高于一次的方程,基本思想就是“降次”,对有些高次方程,可以用因式分解的方法降次.用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解.要点二、分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程看联系:分式方程可以转化为整式方程.2.分式方程的解法1、解分式的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点诠释:1、熟练掌握用“去分母”法求解分式方程的方法.2、了解用“换元法”解特殊的分式方程(组).3、领会分式方程“整式化”的化归思想和方法.3.解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点三、无理方程1.无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.要点诠释:简单说,根号下含有未知数的方程,就是无理方程.2.有理方程:整式方程和分式方程统称为有理方程.3.代数方程:有理方程和无理方程统称为代数方程.要点诠释:代数方程的共同点是:其中对未知数所涉及的运算是加、减、乘、除、乘方、开方等基本运算.4.含有一个根式(根式内有未知数的)的无理方程的解题步骤:①移项,使方程左边是含未知数的根式,其余都移到另一边;②两边同时乘方(若二次根式就平方,三次根式就立方)得整式方程;③解整式方程;④验根;⑤写答案.要点诠释:解简单无理方程的一般步骤,用流程图表示为:5.含有两个根式(根式内含有未知数)的无理方程的解题步骤:①移项,使方程等式的左边只含一个根式,其余移到另一边;②两边同时平方,得到只含有一个根式的无理方程;以下与1步骤相同.要点诠释:解无理方程的关键在于把它转化为有理方程,转化的基本方法是对方程两边同时乘方从而去掉根号,对于简单的无理方程,可通过“方程两边平方”来实施.要点四、二元二次方程组1. 二元二次方程定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点诠释:22ax bxy cy dx ey f o +++++=(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中22,,ax bxy cy 叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,,dx ey 叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点诠释:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.3.二元二次方程组概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点诠释:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.4. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.1. 代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示;②把这个代数式代入二元二次方程,得到一个一元二次方程;③解这个一元二次方程,求得未知数的值;④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值;⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解; ⑥写出原方程组的解.要点诠释:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2. 因式分解法(1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解.(2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.5.方程(组)的应用应用二元二次方程组解应用题的一般步骤:(1)审题;(2)设未知数(2个);(3)列二元二次方程组;(4)解方程组;(5)检验是否是方程的解以及是否符合实际;(6)写出答案.要点诠释:一定要检验一下结果是否符合实际问题的要求.【典型例题】类型一、方程的判断1.下列方程中,哪些是二元二次方程?是二元二次方程的请指出它的二次项、一次项和常数项.2222(1) 1 ; (2)320;1(3)20 ; (4)3 1.x y y y y x x y xy+=-+=+-=++= 【思路点拨】该题主要依据二元二次方程的定义.【答案与解析】(1)是,二次项2x 、一次项y ,常数项-1.(2)不是,因为只含一个未知数.(3)不是,因为不是整式方程.(4)不是,因为不含二次项.【总结升华】对于二元二次方程的定义要加深全面的理解.举一反三:【变式】(2015秋•黄浦区期中)在方程2x 2﹣3x=4,xy=1,x 2﹣4y 2=9,中,是二元二次方程的共有( ) A .1个 B .2个 C .3个 D .4个【答案】B.解:2x 2﹣3x=4是一元二次方程;xy=1,x 2﹣4y 2=9是二元二次方程;是分式方程.故是二元二次方程的只有:xy=1,x 2﹣4y 2=9.故选B .2.(2016春•上海校级月考)下列关于x 的方程中,无理方程是( )A .B .C .D .+2x=7 【思路点拨】根号下含有未知数的方程是无理方程,依据定义即可作出判断.【答案】C .【解析】解:A 、x 2+x+1=0是一元二次方程,选项错误;B 、x+1=0是一元一次方程,选项错误;C 、+=0是无理方程,选项正确;D 、+2x=7是关于x 的一元一次方程,选项错误.故选C .【总结升华】本题考查了无理方程的定义,无理方程与整式方程的区别在于被开方数中是否含有未知数,理解定义是关键.举一反三:【变式】(2015春•闵行区期末)已知下列关于x 的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.其中,是无理方程的有()A.2个 B.3个 C.4个 D.5个【答案】B.解:①根号内不含未知数,所以,不是无理方程;故本项不符合题意;②根号内含未知数,所以,是无理方程;故本项符合题意;③根号内不含未知数,所以,不是无理方程;故本项不符合题意;④根号内含未知数,所以,是无理方程;故本项符合题意;⑤根号内含未知数,所以,是无理方程;故本项符合题意;⑥根号内不含未知数,所以,不是无理方程;故本项不符合题意;所以,②④⑤是无理方程;故选B.类型二、判断方程解的情况3.(2016春•上海校级月考)下列关于x的方程中,一定有实数根的是()A. B.x2+x+1=0 C. D.【思路点拨】根据表示a的算术平方根,一定是非负数,以及一元二次方程根的判别式即可作出判断.【答案】C.【解析】解:A、≥0,4>0,则原式一定不成立,则方程没有实数根,选项错误;B、a=1,b=1,c=1,则△=b2﹣4ac=1﹣4=﹣3<0,则方程无实数根,选项错误;C、当x=0时,=﹣x一定成立,即方程有实数根0,选项正确;D、≥0,≥0,则+≥0,因而+=﹣1一定不成立,没有实数根,选项错误.故选C.【总结升华】本题考查了算术平方根的定义以及一元二次方程根的判别式,理解任何非负数的算术平方根是非负数是关键.举一反三:【变式】(2016春•南京校级月考)下列方程中,有实数根的是()A.x2﹣3x+5=0 B.C. D.【答案】C.解:A、△=9﹣20=﹣11<0,方程没有实数解,所以A选项错误;B、方程=﹣1没有实数解,所以B选项错误;C 、解得x=﹣1,正确;D 、去分母得x=1,经检验x=1是不是原方程的解,所以D 选项错误;故选C .类型三、解方程4. 解关于x 的方程:1mx nx -=【思路点拨】解含字母系数的方程时,先化为最简形式ax b =,再考虑有解、无解、无穷多解的模式.然后进行分类讨论.【答案与解析】原方程可化为:()1m n x -=当0m n -≠,即m n ≠时,方程有唯一解为:1x m n=-; 当0m n -=,即m n =时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论. 举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴ 40k -≠原方程的解为:64x k =-为正整数,∴4k -应为6的正约数,即4k -可为:1,2,3,6 ∴k 为:5,6,7,10答:自然数k 的值为:5,6,7,105.(2016春•长宁区期末)解方程:2220383x x x x +-=+. 【思路点拨】根据换元法,设213u x x=+,可得关于u 的分式方程,根据解方程,可得答案. 【答案与解析】解:设213u x x =+,则原方程化为:1208u u-=, 解得:1211102u ,u ==-, 当110u =时,2310x x +=,解得:1252x ,x =-=,经检验1252x ,x =-=是原分式方程的解; 当12u =-时,232x x +=-,解得:12317317x -+--==,经检验12317317x ,x -+--==是原分式方程的解; 所以原方程的解为:1252x ,x =-=,3431731722x ,x -+-==.【总结升华】本题考查了解分式方程的应用,能正确换元是解此题的关键,难度适中.6. 解方程 223152512x x x x ++++=【答案与解析】 251x x y ++=,则2222513153(1)x x y x x y ++=⇒+=-原方程可化为:23(1)22y y -+=,即23250y y +-=,解得:1y =或53y =-.(1)当1y =225115010x x x x x x ++=⇒+=⇒=-=或;(2)当53y =-2510x x y ++=≥,所以方程无解.检验:把1,0x x =-=分别代入原方程,都适合. 所以,原方程的解是1,0x x =-=.【总结升华】本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:2231533(51)x x x x ++=++.因此,251x x y ++=,这样就可将原方程先转化为关于y 的一元二次方程进行处理.举一反三: 【变式】解方程()223323532x x x x +-+=+ 【答案】解:原方程变形为,22352354022x x x x -++-+=, 2235x x -+,则23522x x -+=22y , 则方程可化为,22y +y-4=0, 整理得,2280y y +-=,解得,122,4,y y ==-当y=22235x x -+,解得,1211,2x x ==; 当y=-42235x x -+=-4,无解. 经检验,1211,2x x ==都是原方程的解,所以原方程的解为1211,2x x ==. 7、解方程49324492x x x x +-=+. 【答案与解析】解:设494x y x +=,则214+9x x y=, 原方程可化为,y-1y =32, 整理得,22320y y --=,解得,12,y =21,2y =-当y=2时,492,4x x +=解得,x=34; 当y=-12时,491,42x x +=-无解; 经检验,x=34是原方程的解, 所以原方程的解为x=34. 【总结升华】本题中494x x +与24+9x x 之间互为倒数,采用倒数换元法是本题的最佳选择. 举一反三:【变式】(杨浦区校级期中)解方程:4x 2﹣10x+=17. 【答案】解:方程变形为2(2x 2﹣5x+2)﹣﹣21=0 设=t ,则原方程转化为2t 2+t ﹣21=0,(t ﹣3)(2t+7)=0,解得t 1=3,t2=﹣,当t=3时,=3,则2x 2﹣5x+2=9, 整理得2x 2﹣5x ﹣7=0,解得x 1=,x 2=﹣1;当t=﹣时,=﹣,则方程无解,经检验原方程的解为x 1=,x 2=﹣1.类型四、解方程组 8. 解方程组【答案与解析】解:设1=+u x y ,1=-v x y,则原方程组可化为 80+42=7,40+70=7.u v u v ⎧⎨⎩解得 1=,201=.14u v ⎧⎪⎪⎨⎪⎪⎩ 于是,得 11=,+2011=.-14x y x y ⎧⎪⎪⎨⎪⎪⎩ 因此 +=20,-=14.x y x y ⎧⎨⎩解得 =17,=3.x y ⎧⎨⎩检验:把x=17,y=3代入原方程组中所含各分式的分母,各分母的值都不为零. 所以,原方程组的解是=17,=3.x y ⎧⎨⎩【总结升华】本题中直接去分母解比较麻烦,通过观察发现两个方程所含的分式的分母分别是x+y 和x-y ,所以想到“换元”,设1=+u x y ,1=-v x y,则原方程得以简化. 【变式】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩【答案与解析】根据一元二次方程的根与系数的关系,把x 、y 看成是方程211280z z -+=的两根,解方程得:4z =或z=7.∴ 原方程组的解是:1147x y =⎧⎨=⎩或2274x y =⎧⎨=⎩.【总结升华】本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解. (1) 对于这种对称性的方程组x y a xy b+=⎧⎨=⎩,利用一元二次方程的根与系数的关系构造方程时,未知数要换成异于x 、y 的字母,如z . (2) 对称形方程组的解也应是对称的,即有解47x y =⎧⎨=⎩,则必有解74x y =⎧⎨=⎩. 9.(2016•黄浦区二模)解方程式:.【答案与解析】解:由②可得,(x+y )(x ﹣5y )=0,即x+y=0或x ﹣5y=0,∴x=﹣y 或x=5y ,当x=﹣y 时,把x=﹣y 代入①,得:2y 2=26, 解得:y=±, 故方程组的解为:或; 当x=5y 时,把x=5y 代入①,得:25y 2+y 2=26,解得:y=±1, 故方程组的解为:或; 综上,该方程组的解为:或或或.【总结升华】本题主要考查解高次方程的能力,解高次方程的根本思想是化归思想,次数较高可通过因式分解再代入等方法降幂求解即可.类型五、应用10.(2016•黄埔区模拟)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.【思路点拨】设甲乙两人原来每小时各加工零件分别为x 个、y 个,根据各加工30个零件甲比乙少用1小时完成任务,改进操作方法之后,乙完成30个零件的时间比甲完成24个零件所用的时间少1小时,列方程组求解.【答案与解析】解:设甲乙两人原来每小时各加工零件分别为x个、y个,由题意得,,解得:.经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.【总结升华】本题考查了二元一次方程组和分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解,注意检验.举一反三:【变式】甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?【答案与解析】解:设乙每小时走x千米,那么甲每小时走(x+1)千米,根据题意,得去分母,整理,得 x2+x-30=0.解这个方程,得 x1=5,x2=-6.经检验,x1=5,x2=-6都是原方程的根.但速度为负数不合题意,所以只取x=5,这时x+1=6.答:甲每小时走6千米,乙每小时走5千米.【总结升华】本题当中要特别注意理解“甲结果比乙早到半小时”这句话,说明乙用的时间长,要在乙的时间上减去12小时,才和甲所用的时间相等.11.k为何值时,方程组.(1)有两组相等的实数解;(2)有两组不相等的实数解;(3)没有实数解.【答案与解析】解:将(2)代入(1),整理得k2x2+(2k-4)x+1=0 (3)(1)当时,方程(3)有两个相等的实数根.即解得:,∴k=1.∴当k=1时,原方程组有两组相等的实数根.(2)当时,方程(3)有两个不相等的实数根.即解得:,∴k<1且k ≠0.∴当k<1且k ≠0时,原方程组有两组不等实根.(3)①若方程(3)是一元二次方程,无解条件是 ,即解得:, ∴k >1.②若方程(3)不是二次方程,则k=0,此时方程(3)为-4x+1=0,它有实数根x=. 综合①和②两种情况可知,当k>1时,原方程组没有实数根.【总结升华】因为在(1)、(2)中已知方程组有两组解,可以确定方程(3)是一元二次方程,但在(3)问中不能确定方程(3)是否是二次方程,所以需要分两种情况讨论.使用判别式“Δ”的前提条件是能确定方程为一元二次方程,不是一元二次方程不能使用Δ.12. 求直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标.【答案与解析】解:设满足题意的点为A(x,y),由题意得,2222(15)15(9)15x y x y ⎧+-=⎪⎨++=⎪⎩, 解得,93x y =⎧⎨=⎩或93x y =-⎧⎨=⎩, 经检验,两组都是方程组的解,所以A (9,3)或A (-9,3).答:直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标为(9,3)或(-9,3).。
【高效培优】2021—2022学年沪教版八年级数学下册轻松冲刺学神考霸必刷卷【单元测试】第二十一章 代数方程(综合能力提升卷)(考试时间:90分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________本卷试题共三大题,共25小题,单选10题,填空8题,解答7题,限时90分钟,满分100分,本卷题型精选核心常考重难易错典题,具备举一反三之效,覆盖面积广,可充分考查学生双基综合能力!一、单选题:本题共10个小题,每小题2分,共20分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.(2022·福建福州·九年级期末)关于x 的一元二次方程(a ﹣1)x 2+2x ﹣1=0有两个实数根,则a 的取值范围为( ) A .a ≥0B .a <2C .a ≥0且a ≠1D .a ≤2且a ≠12.(2022·黑龙江道里·九年级期末)方程13151x x =+-的解为( ) A .x =1 B .x =2C .x =3D .x =43.(2022·四川凉山·八年级期末)已知关于x 的分式方程2-2124x mxx x -=+-无解,则m 的值为( ) A .0 B .0或-8 C .-8 D .0或-8或-44.(2022·河南·郑州市第三中学八年级期末)已知函数3y ax =-和y kx = 的图象交于点P (-2,-1),则关于x ,y 的二元一次方程组3y ax y kx =-⎧⎨=⎩的解是( )A .21x y =⎧⎨=-⎩B .21x y =-⎧⎨=-⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩5.(2021·山东·日照港中学八年级期末)已知关于x 的分式方程3111m x x+=--的解是正数,则m 的取值范围是( ) A .2m >B .2m ≥C .2m ≥且3m ≠D .2m >且3m ≠6.(2021·上海市第四中学八年级期中)下列方程中,无理方程是( )A 0x =B .20x =C .20D 0=7.(2021·上海闵行·八年级期末)如果关于x x =有实数根1x =,那么m 的值是( )A .1-B .13C .0D .28.(2022·上海闵行·八年级期末)下列方程中,判断中错误的是( )A .方程20316x xx +-=+是分式方程 B .方程3210xy x ++=是二元二次方程C 20=是无理方程D .方程()()226x x +-=-是一元二次方程9.(2022·山东广饶·期末)某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( )A .x+3x=60B .1603x x -= C .6013x x -= D .x=3(60-x )10.(2022·陕西省汉阴县初级中学八年级期末)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A —B —C 横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC 路段,其中通过BC 路段的速度是通过AB 路段速度的1.2倍,则小敏通过AB 路段时的速度是( )A .0.5米/秒B .1米/秒C .1.5米/秒D .2米/秒二、填空题:本题共8个小题,每题3分,共24分。
第一单元《复习与提高》(教案)二年级上册数学沪教版教学内容本单元为《复习与提高》,旨在帮助学生回顾和巩固二年级上册数学的基础知识,并在此基础上提高学生的数学能力。
主要内容包括:数的认识与运算、平面图形的认识、测量、数据的初步认识以及问题解决策略。
教学目标1. 让学生巩固和深化对二年级上册数学基础知识的理解和运用。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和创新思维能力。
4. 培养学生合作学习和自主学习的习惯。
教学难点1. 理解和运用数学知识解决实际问题。
2. 理解和运用数学语言进行逻辑推理和表达。
3. 理解和运用数学思想和方法进行创新思维。
教具学具准备1. 教师准备:教学课件、教学视频、教学图片、教学案例等。
2. 学生准备:学习用品、笔记本、计算器等。
教学过程1. 引入:通过问题或者案例引入本节课的内容,激发学生的学习兴趣。
2. 讲解:详细讲解本节课的知识点,通过实例讲解让学生理解并掌握知识点。
3. 练习:通过课堂练习,让学生运用所学的知识解决实际问题。
4. 讨论:通过小组讨论,让学生交流学习心得,提高学生的合作学习能力。
5. 总结:通过课堂总结,让学生回顾本节课的内容,加深对知识点的理解和记忆。
板书设计1. 第一单元《复习与提高》2. 目录:数的认识与运算、平面图形的认识、测量、数据的初步认识、问题解决策略3. 内容:每个知识点的关键词、重要公式、典型例题等作业设计1. 课后练习:针对本节课的内容,设计一些课后练习题,让学生在课后进行巩固练习。
2. 思考题:设计一些思考题,让学生在课后进行思考和探索,提高学生的创新思维能力。
3. 小组讨论:设计一些小组讨论题,让学生在课后进行小组讨论,提高学生的合作学习能力。
课后反思1. 教师反思:反思本节课的教学效果,找出教学中存在的问题,进行改进。
2. 学生反思:反思本节课的学习效果,找出学习中存在的问题,进行改进。
3. 家长反馈:通过家长反馈,了解学生的学习情况,进行针对性的教学调整。
沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计一. 教材分析《二次函数与反比例函数》是沪科版数学九年级上册第21章的内容,本章主要让学生掌握二次函数和反比例函数的性质、图象和应用。
内容涵盖了二次函数的定义、开口方向、对称轴、顶点坐标的求法,以及反比例函数的定义、图象、性质等。
这一章内容在初中数学中占有重要地位,对于学生来说,理解掌握二次函数和反比例函数的知识,对于高中阶段的学习有着重要的铺垫作用。
二. 学情分析九年级的学生已经学习过一次函数和二次函数的基础知识,对于函数的概念、图象和性质有一定的了解。
但是,对于二次函数和反比例函数的性质、图象和应用,部分学生可能还存在着一定的困难。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学设计,帮助学生理解和掌握二次函数和反比例函数的知识。
三. 教学目标1.知识与技能:使学生掌握二次函数和反比例函数的定义、性质、图象和应用,能够熟练运用二次函数和反比例函数解决实际问题。
2.过程与方法:通过自主学习、合作交流等方式,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学素养,使学生认识到数学在生活中的重要性。
四. 教学重难点1.重点:二次函数和反比例函数的定义、性质、图象和应用。
2.难点:二次函数和反比例函数的性质、图象和应用的理解和运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数和反比例函数的定义和应用。
2.自主学习法:鼓励学生自主探究二次函数和反比例函数的性质、图象,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,培养学生的合作交流能力。
4.案例教学法:通过分析实际问题,引导学生运用二次函数和反比例函数解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。
2.教学素材:准备相关的实际问题,作为教学案例。
沪版数学目录一年级上学期:一、10以内的数说一说分一分数一数几个与第几个比一比数射线二、10以内数的加减法分与合加法讲讲算算(一)减法讲讲算算(二)加与减看数射线做加、减法10的游戏连加、连减加减混合三、20以内的数及其加减法11—20的数十几就是十和几20以内数的排列加减法(一)加减法(二)讲讲算算(三)加进来,减出去数字的墙四、识别图形物体的形状五、整体与提高分彩色图形片推算比较加倍与一半大家来做加法大家来做减法组算式数学游乐场一年级下学期:一、复习与提高游数城玩数图比一比二、位置左与右在街上上、中、下,左、中、右路(前后,左右)三、100以内的数及其加减法十个十个地数百数图数的表示数射线上的数百数表数龙——百的数列两位数加减整十数两位数加减一位数(一)两位数加减一位数(二)两位数加两位数(不进位)两位数加两位数(进位)笔算加法(进位)两位数减两位数(不退位)笔算减法(退位)郊外活动连加、连减、混合加减四、应用长度比较度量线段长度计算人民币统计时间五、整理与提高两位数加法两位数减法交换滑雪天气统计各人眼中的20数学广场——掷数点块数学广场——七巧板我们的郊游二年级上学期:一、复习与提高游海岛——谁先上岸估算加与减“吃掉”的是几二、乘法、除法(一)乘法引入看图编乘法题游乐场统计图倍10的乘法5的乘法2的乘法4的乘法8的乘法2、4、8的乘法之间的关系分一分与除法用乘法口诀求商几倍盒子是空的——被除数为0三、乘法、除法(二)7的乘、除法3的乘、除法6的乘、除法9的乘、除法3、6、9的乘法之间的关系快乐的节日分拆为乘与加乘一乘,填一填“九九”——乘法口诀表有余数的除法做有余数的除法掷骰子,做除法几张长椅四、几何小实践角与直角正方体、长方体长方形、正方形五、整理与提高数学广场——点图与数乘法表乘法大游戏5个3加3个3等于8个35个3减3个3等于2个3乘与除数学广场——幻方数学广场——视图数学广场——折纸二年级下学期:一、复习与提高登险峰植树分拆成几个几加几个几正方体的展开图连乘、连除相差多少二、千以内数的认识与表达千以内数的认识与表达小探究数射线(千)位值图上的游戏三、三位数的加减法整百数、整十数的加减法三位数加减一位数三位数加法三位数减法估算与精确计算应用题四、应用轻与重直接比较间接比较称和它的使用方法克、千克与计算时间(时、分、秒)五、几何小实践东西南北轴对称角三角形与四边形锐角三角形、钝角三角形、直角三角形三、整理与提高万以内数的认识与表达大数的读与写游国家森林公园巧算数学广场——给小兔涂色数学广场——加或减三年级上学期:一、复习与提高登月减法塔正方形组成的图形——多连块二、乘与除乘整十数、整百数整十数、整百数的除法大卖场中的乘法用一位数乘用一位数除三、应用元、角、分——用小数表示千克、克——用小数表示千米、米——用小数表示米、厘米——用小数表示长度单位年、月、日四、几何小实践三角形面积长方形与正方形的面积平方米五、整理与提高乘乘除除灯市我们来认识图形它们有多大?数学广场——数苹果数学广场——放苹果数学广场——分段问题解决——喜迎新年三年级下学期:一、复习与提高乘除法计算括号先算树叶的面积面积单位面积计算二、乘与除谁跑得快用两位数乘用两位数除运动会上的小统计三、分数的初步认识整体与部分几分之一几分之几四、计算器从算筹到计算器算盘计算器使用计算器计算五、几何小实践周长长方形、正方形的周长六、整理与提高乘与除分数应用周长与面积数学广场——谁围出的面积最大数学广场——搭配四年级上学期:一、复习与提高加法与减法乘法与除法用计算器计算节约用水分数二、数与量大数的认识四舍五入法平方千米从平方厘米到平方千米从克到吨从毫升到升三、分数的初步认识(二)比一比分数的加减计算小探究——“分数墙”四、整数的四则运算工作效率树状算图与算法流程三步计算式题正推逆推文字计算题运算定律应用五、几何小实践圆的初步认识线段、射线、直线角角的度量角的计算六、整理与提高大数与凑整分数几何小练习数学广场——相等的角数学广场——通过网格来计算四年级下学期:一、复习与提高四则运算整数的运算性质看谁算的巧愉快的寒假二、小数的认识与加减法生活中的小数小数的意义你知道吗?小数的大小比较小数的性质小练习综合练习小数点移动小数加减法三、统计折线统计图的认识折线统计图的画法四、几何小实践垂直平行小练习你知道吗?五、整理与提高问题的解决小数加减法的应用小数与测量凑整垂直与平行数学广场——用多功能三角尺画垂线与平行线数学广场——五舍六入数学广场——计算比赛场次数学广场——位置的表示方法五年级上学期:一、复习与提高符号表示数小数二、小数乘除法小数乘整数小数乘小数连乘、乘加、乘减整数乘法运算定律推广到小数除数是整数的小数除法除数是小数的除法循环小数用计算器计算积、商的凑整三、统计平均数平均数的计算平均数的应用四、简易方程用字母表示数化简与求值方程找等量关系列方程,解应用题五、几何小实践平行四边形平行四边形的面积三角形的面积梯形梯形的面积六、整理与提高小数的四则混合运算水、电、天然气的费用——小数应用问题解决图形的面积数学广场——时间的计算数学广场——编码五年级下学期:一、复习与提高小数的四则混合运算方程面积的估测自然数二、正数和负数的初步认识正数和负数数轴三、简易方程(二)列方程解应用题小总结四、几何小实践体积立方厘米、立方分米、立方米长方体和正方体的体积组合体的体积正方体、长方体的表面积小练习体积与容积五、问题解决行程表面积的变化体积与重量可能性可能情况的个数可能性的大小六、总复习数与运算练习一方程与代数练习二图形与几何练习三统计初步练习四六年级第一册第一章数的整除第1节整数和整除1.1 整数和整除的意义1.2 因数和倍数1.3 能被2,5整除的数第2节分解素因数1.4 素数、合数与分解素因数1.5 公因数与最大公因数1.6 倍数与最小公倍数拓展求三个整数的最小公倍数第二章分数第1节分数的意义和性质2.1 分数与除法2.2 分数的基本性质2.3 分数的大小比较第2节分数的运算2.4 分数的加减法2.5 分数的乘法2.6 分数的除法2.7 分数与小数的互化拓展无限循环小数与分数的互化2.8 分数、小数的四则混合运算2.9 分数运算的应用第三章比和比例第1节比和比例3.1 比的意义3.2 比的基本性质3.3 比例第2节百分比3.1 百分比的意义3.2 百分比的应用3.3 等可能事件第四章圆和扇形第1节圆的周长和弧长4.1 圆的周长4.2 弧长第2节圆和扇形的面积4.3 圆的面积4.4 扇形的面积六年级第二册第五章有理数第1节有理数5.1 有理数的意义5.2 数轴5.3 绝对值第2节有理数的运算5.4 有理数的加法5.5 有理数的减法5.6 有理数的乘法5.7 有理数的除法5.8 有理数的乘方5.9 有理数的混合运算5.10 科学记数法第六章一次方程(组)和一次不等式(组)第1节方程与方程的解6.1 列方程6.2 方程的解第2节一元一次方程6.3 一元一次方程及其解法6.4 一元一次方程的应用第3节一元一次不等式(组)6.5 不等式及其性质6.6 一元一次不等式的解法6.7 一元一次不等式组第4节一次方程组6.8 二元一次方程6.9 二元一次方程组及其解法6.10 三元一次方程组及其解法6.11 一次方程组的应用第七章线段与角的画法第1节线段的相等与和、差、倍7.1 线段的大小比较7.2 画线段的和、差、倍第2节角7.3 角的概念与表示7.4 角的大小比较、画相等的角7.5 画角的和、差、倍7.6 余角、补角第八章长方体的再认识第1节长方体的元素第2节长方体直观图的画法第3节长方体的棱与棱位置关系的认识第4节长方体中棱与平面位置关系的认识第5节长方体中平面与平面位置关系的认识七年级第一册第九章整式第1节整式的概念9.1 字母表示数9.2 代数式9.3 代数式的值9.4 整式第2节整式的加减9.5 合并同类项9.6 整式的加减第3节整式的乘法9.7 同底数幂的乘法9.8 幂的乘方9.9 积的乘方9.10 整式的乘法第4节乘法公式9.11 平方差公式9.12 完全平方公式第5节因式分解9.13 提取公因式发9.14 公式法9.15 十字相乘法9.16 分组分解法第6节整式的除法9.17 同底数幂的除法9.18 单项式处以单项式9.19 多项式除以单项式第十章分式第1节分式10.1 分式的意义10.2 分式的基本性质第2节分式的运算10.3 分式的乘除10.4 分式的加减10.5 可化为一元一次方程的分式方程10.6 整数指数幂及其运算第十一章图形的运动第1节图形的运动11.1 图形的平移第2节图形的旋转11.2 旋转11.3 旋转对称图形与中心对称图形11.4 中心对称第3节图形的翻折11.5 翻折与轴对称图形11.6 轴对称七年级第二册第十二章实数第1节实数的概念12.1 实数的概念第2节数的开方12.2 平方根和开平方12.3 立方根和开立方12.4 n次方根第3节实数的运算12.5 用数轴上的点表示实数12.6 实数的运算第4节分数指数幂12.7 分数指数幂第十三章相交线平行线第1节相交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角第2节平行线13.4 平行线的判定13.5 平行线的性质第十四章三角形第1节三角形的有关概念与性质14.1 三角形的有关概念14.2 三角形的内角和第2节全等三角形14.3 全等三角形的概念与性质14.4 全等三角形的判定第3节等腰三角形14.5 等腰三角形的性质14.6 等腰三角形的判定14.7 等边三角形第十五章平面直角坐标系第1节平面直角坐标系15.1 平面直角坐标系第2节直角坐标平面内点的运动15.2 直角坐标平面内点的运动八年级第一册第十六章二次根式第1节二次根式的概念和性质16.1 二次根式16.2 最简二次根式和同类二次根式第2节二次根式的运算16.3 二次根式的运算第十七章一元二次方程第1节一元二次方程的概念17.1 一元二次方程的概念第2节一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程根的判别式第3节一元二次方程的应用17.4 一元二次方程的应用第十八章正比例函数和反比例函数第1节正比例函数18.1 函数的概念18.2 正比例函数第2节反比例函数18.3 反比例函数第3节函数的表示法18.4 函数的表示法第十九章几何证明第1节几何证明19.1 命题和证明19.2 证明举例第2节线段的垂直平分与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5 角的平分线19.6 轨迹第3节直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式八年级第二册第二十章一次函数第1节一次函数的概念20.1 一次函数的概念第2节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第3节一次函数的应用20.4 一次函数的应用第二十一章代数方程第1节整式方程21.1 一元整式方程21.2 特殊的高次方程的解法第2节分式方程21.3 可化为一元二次方程的分式方程第3节无理方程21.4 无理方程第4节二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法第5节列方程(组)解应用题21.7 列方程(组)解应用题第二十二章四边形第1节多边形22.1 多边形第2节平行四边形22.2 平行四边形22.3 特殊的平行四边形第3节梯形22.4 梯形22.5 等腰梯形22.6 三角形、梯形的中位线第4节平面向量及其加减运算22.7 平面向量22.8 平面向量的加法22.9 平面向量的减法第二十三章概率初步第1节事件及其发生的肯能性23.1 确定事件和随机事件23.2 事件发生的可能性第2节事件的概率23.3 事件的概率23.4 概率计算举例九年级第一册第二十四章相似三角形第1节相似形24.1 放缩与相似形第2节比例线段24.2 比例线段24.3 三角形一边的平行线第3节相似三角形24.4 相似三角形的判定24.5 相似三角形的性质第4节平面向量的线性运算24.6 实数与向量相乘24.7 向量的线性运算第二十五章锐角的三角比第1节锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值第2节解直角三角形25.3 解直角三角形25.4 解直角三角形的应用第二十六章二次函数第1节二次函数的概念26.1 二次函数的概念第2节二次函数的图像26.2 特殊二次函数的图像26.3 二次函数kmxay++=2)(的图像九年级第二册第二十七章圆与多边形第1节圆的基本性质27.1 圆的确定27.2 圆心角、弧、弦、弦心距之间的关系27.3 垂径定理第2节直线与圆、圆与圆的位置关系27.4 直线与圆的位置关系27.5 圆与圆的位置关系第3节正多边形与圆27.6 正多边形与圆第二十八章统计初步第1节统计的意义28.1 数据整理与表示28.2 统计的意义第2节基本的统计量28.3 表示一组数据平均水平的量28.4 表示一组数据波动程度的量28.5 表示一组数据分布的量28.6 统计实习九年级拓展第一章一元二次方程与二次函数第1节一元二次方程的根与系数关系1.1 一元二次方程的根与系数关系第2节二次函数的解析式1.2 二次函数与一元二次方程1.3 二次函数解析式的确定第二章直线与圆第1节圆的切线2.1 圆的切线第2节与圆有关的角及线段2.2 与圆有关的角2.3 与圆有关的线段第3节圆内接四边形2.4 圆内接四边形高一上第一章集合与命题一集合1.1集合及其表示法1.2集合之间的关系1.3集合的运算二四种命题的形式1.4命题的形式及等价关系三充分条件与必要条件1.5充分条件、必要条件1.6子集与推出关系第二章不等式2.1不等式的基本性质2.2一元二次不等式的解法2.3其他不等式的解法2.4基本不等式及其应用*2.5不等式的证明第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1幂函数的性质与图像二指数函数4.2指数函数的性质与图像*4.3借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4对数的概念及其运算四反函数4.5反函数的概念五对数函数4.6对数函数的性质与图像六指数方程和对数方程4.7简单的指数方程4.8简单的对数方程第五章三角比一任意角的三角比5.1任意角及其度量5.2任意角的三角比二三角恒等式5.3同角三角比的关系和诱导公式5.4两角和与差的正弦、余弦和正切5.5二倍角与半角的正弦、余弦和正切三解斜三角形5.6正弦定理、余弦定理和解斜三角形第六章三角函数一三角函数的图像及性质6.1正弦函数和余弦函数的图像与性质6.2正切函数的图像与性质6.3函数()siny A xωφ=+的图像与性质二反三角函数与最简三角方程6.4反三角函数6.5最简三角方程高二上第七章数列与数学归纳法一数列7.1数列7.2等差数列7.3等比数列二数学归纳法7.4数学归纳法7.5数学归纳法的应用7.6归纳—猜想—证明三数列的极限7.7数列的极限7.8无穷等比数列各项的和第八章平面向量的坐标表示8.1向量的坐标表示及其运算8.2向量的数量积8.3平面向量的分解定理8.4向量的应用第九章矩阵和行列式初步一矩阵9.1矩阵的概念9.2矩阵的运算二行列式9.3二阶行列式9.4三阶行列式第十章算法初步10.1算法的概念10.2程序框图*10.3计算机语句和算法程序高二下第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离第十二章圆锥曲线12.1曲线和方程12.2圆的方程12.3椭圆的标准方程12.4椭圆的性质12.5双曲线的标准方程12.6双曲线的性质12.7抛物线的标准方程12.8抛物线的性质第十三章复数13.1复试的概念13.2复数的坐标表示13.3复数的加法和减法13.4复数的乘法和除法13.5复数的平方根和立方根13.6实系数的一元二次方程高三上第十四章空间直线与平面14.1平面及其基本性质14.2空间直线与直线的位置关系14.3空间直线与平面的位置关系14.4空间平面与平面的位置关系第十五章简单集合体一多面体15.1多面体的概念15.2多面体的直观图二旋转体15.3旋转体的概念三几何体的表面积、体积和球面距离15.4几何体的表面积15.5几何体的体积15.6球面距离第十六章排列组合与二项式定理16.1计数原理Ⅰ——乘法原理16.2排列16.3计数原理Ⅱ——加法原理16.4组合16.5二项式定理高三下第十七章概率论初步17.1古典概型17.2频率与概率第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析*18.5概率统计实验。
沪科版数学九年级上册21.2.2《二次函数y=a2+b+c的图象和性质》(第5课时)教学设计一. 教材分析《二次函数y=a2+b+c的图象和性质》是沪教版数学九年级上册第21章第2节的内容。
这部分内容是在学生已经掌握了二次函数的一般形式y=ax^2+bx+c的基础上,进一步探讨二次函数的图象和性质。
本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来理解和掌握。
教材中提供了丰富的例题和练习题,以及一些探究活动,帮助学生逐步深入理解二次函数的图象和性质。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式已经有了一定的了解。
但是,对于二次函数的图象和性质,学生可能还存在一些困惑和疑问。
因此,在教学过程中,需要引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
同时,学生对于数学的兴趣和积极性也需要教师的激发和引导。
三. 教学目标1.让学生理解二次函数的图象和性质,能够运用二次函数的性质解决一些实际问题。
2.培养学生的观察能力、分析能力和推理能力。
3.激发学生对数学的兴趣和积极性,培养学生的合作意识和探究精神。
四. 教学重难点1.二次函数的图象和性质的理解和运用。
2.二次函数的图象和性质的推导和证明。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
2.运用多媒体教学手段,展示二次函数的图象和性质的实例,帮助学生直观地理解和掌握。
3.学生进行小组讨论和探究活动,培养学生的合作意识和探究精神。
六. 教学准备1.多媒体教学设备。
2.相关的教学PPT或投影片。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象和性质的概念。
2.呈现(10分钟)利用多媒体展示一些二次函数的图象和性质的实例,让学生直观地感受和理解二次函数的图象和性质。
3.操练(10分钟)让学生通过观察和分析,找出二次函数的图象和性质的特点,并进行推理和证明。