2
由 动能定理 FS
由 动 2 mv c 能 4 对t求导,得 C 3 mvC a定 Fv C 理 2 故 Fr J C α
3
v
m
r
C
F
C
F
Cv
S
Cv
即动量矩定理
6-2 质点系动能定理
d LC dt
v
MC
v
6-2-1 动能定理的三种形式 问题 3 图(a)系统由静平衡位置转动 角, 此时,系统势能以静平衡为“0”,
V 1 2 k( l 2
k
) 2 对吗?为什么?
l 2
l 2
对!弹簧静平衡力与重力在转动时仍平衡, 其功之和为零,可同时不考虑。
k
a
又如图(b)所示:
V 1 2
6-2 质点系动能定理
O
m
k
2
b
6-2-2 动能定理的应用 1. 应用特点 (1)与位形变化有关 (突出空间过程) 已知运动求力,由 T W F
FT
WG GS sin
WF 0 ,
N
S
C
WF 0 ,
T
G
C
FS
FN
WF 2 FS S
S
6-1 功与动能
6-1-1 力的功
2.内力的功
一对内力, FA -FB
d W FA drA FB drB
FA drA drB FA drAB
Cv
求 ,v 问题 2均质轮在OA杆上滚动,已知 m,r,l,ω1求Cr 轮 T 。
T 1 2 m vC
2
1 2
JC
2