高考数学二轮复习 第1部分 专题一 集合、常用逻辑用语、平面向量、复数、算法、合情推理、不等式 2
- 格式:doc
- 大小:66.01 KB
- 文档页数:4
1.1 集合与常用逻辑用语【课时作业】1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}解析: ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={}x |-1≤x ≤2. 故选B. 答案: B2.(2018·某某卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析: ∵A ={1,2,3,4},B ={-1,0,2,3}, ∴A ∪B ={-1,0,1,2,3,4}. 又C ={x ∈R |-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}. 答案: C3.(2018·某某皖南八校3月联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( )A .1B .3C .5D .7解析: 由⎩⎪⎨⎪⎧x 2=4y ,y =x得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B的真子集个数为22-1=3.故选B.答案: B4.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )>0 解析: 因为f ′(x )=3cos x -π,所以当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.又全称命题的否定是特称命题,所以綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0.答案: C5.(2018·卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: a ,b ,c ,d 是非零实数,若a <0,d <0,b >0,c >0,且ad =bc ,则a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).若a ,b ,c ,d 成等比数列,则由等比数列的性质可知ad =bc .所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B. 答案: B6.(2018·某某市第一统考)设全集U =R ,集合A ={x |log 2x ≤1},B ={x |x 2+x -2≥0},则A ∩∁U B =( )A .(0,1]B .(-2,2]C .(0,1)D .[-2,2]解析: 不等式log 2x ≤1即log 2x ≤log 22,由y =log 2x 在(0,+∞)上单调递增,得不等式的解集为(0,2],即A =(0,2].由x 2+x -2≥0,得(x +2)(x -1)≥0,得B ={x |x ≤-2或x ≥1},所以∁U B =(-2,1),从而A ∩∁U B =(0,1).故选C.答案: C7.设全集U 是自然数集N ,集合A ={x |x 2>9,x ∈N },B ={0,2,4},则图中阴影部分所表示的集合是( )A .{x |x >2,x ∈N }B .{x |x ≤2,x ∈N }C .{0,2}D .{1,2}解析: 由题图可知,图中阴影部分所表示的集合是B ∩(∁U A ),∁U A ={x |x 2≤9,x ∈N }={x |-3≤x ≤3,x ∈N }={0,1,2,3},因为B ={0,2,4},所以B ∩(∁U A )={0,2}.答案: C8.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B .命题“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析: C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.答案: C9.(2018·某某省质量检测(一))已知命题p :对任意的x ∈R ,总有2x>0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q解析: 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 是假命题.由复合命题真值表可知p ∧綈q 是真命题,故选D.答案: D10.(2018·某某省五校协作体联考)已知命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,则实数a 的取值X 围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析: 因为命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,所以其否定“∀x ∈R,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.答案: D11.(2018·某某某某3月联考)下列命题正确的是( )A .命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”解析: 对于选项A ,命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题,q 为真命题,则綈q为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D.答案: D12.(2018·某某某某一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x-a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值X 围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析: 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2.∀x >0,2x-a >0等价于a <2x在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值X 围是(1,2),故选C.答案: C13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :____________________.解析: 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案: ∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 017+b 2 017的值为________.解析: 因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a2 017+b2 017=-1.答案: -115.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析: 集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案: {(2,3)}16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.解析: 显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案: c ,a ,b。
专题一集合、常用逻辑用语、平面向量、复数、算法、合情推理、不等式必考点一集合、常用逻辑用语[高考预测]——运筹帷幄1.以函数的定义域、值域、不等式的解集等为背景考查集合之间的交集、并集及补集的基本运算.2.利用集合之间的关系求解参数的值或取值范围.3.考查全称命题、特称命题的否定,以及全称命题与特称命题的真假判断.4.考查充分必要条件与集合、函数、方程、数列、三角函数、不等式、平面向量、立体几何中的线面位置关系等相交汇的问题.[速解必备]——决胜千里1.设有限集合A,card(A)=n(n∈N*),则(1)A的子集个数是2n;(2)A的真子集个数是2n-1;(3)A的非空子集个数是2n-1;(4)A的非空真子集个数是2n-2.2.(1)(∁R A)∩B=B⇔B⊆∁R A;(2)A∪B=B⇔A⊆B⇔A∩B=A;(3)∁U(A∪B)=(∁U A)∩(∁U B);(4)∁U(A∩B)=(∁U A)∪(∁U B).3.若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件.[速解方略]——不拘一格类型一集合的概念及运算[例1] (1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}解析:基本法:化简集合B,利用交集的定义求解.由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.速解法:验证排除法:∵-1∈B,故排除B、D.∵1∉B,∴1∉A∩B,排除C.答案:A(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1 B.3C.5 D.9解析:基本法:用列举法把集合B中的元素一一列举出来.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.故选C.速解法一:排除法:估算x-y值的可能性,排除不可能的结果.∵x∈A,y∈A,∴x-y=±1,x-y=±2.B中至少有四个元素,排除A、B,而D选项是9个元素.即3×3更不可能.故选C.速解法二:当x=y时,x-y=0;当x≠y时,x与y可以相差1,也可以相差2,即x-y=±1,x-y=±2.故B中共有5个元素,B={0,±1,±2}.故选C.答案:C错误!1.(2016·河南郑州市高三质检)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=( )A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}解析:基本法:本题主要考查集合的基本运算.因为U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故选A.速解法:∵A∩B={4}.∴4∉∁U(A∩B),排除B、C、D只能选A.答案:A2.(2016·高考全国甲卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=( ) A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}解析:基本法:(直接法)先化简集合B,再利用交集定义求解.∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A ={1,2,3},∴A ∩B ={1,2,3}∩{x |-3<x <3}={1,2},故选D. 速解法:(代入检验法)12<9,22<9,32=9,且A ∩B ⊆A . 故A ∩B ={1,2},选D. 答案:D类型二 充分、必要条件[例2] (1) 函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:基本法:利用命题和逆命题的真假来判断充要条件,注意判断为假命题时,可以采用反例法.当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. 答案:C(2)“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:基本法:若函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数,则-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,即-3π4+2k π≤x ≤π4+2k π,k ∈Z .从而函数y =sin ⎝ ⎛⎭⎪⎫x +π4的单调递增区间是⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ).因此若x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,则函数y =sin ⎝ ⎛⎭⎪⎫x +π4为单调递增函数; 若函数y =sin ⎝ ⎛⎭⎪⎫x +π4为单调递增函数⇒/ x ∈⎣⎢⎡⎦⎥⎤-3π4,π4.所以“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数”的充分不必要条件.故选A.速解法:当x ∈⎣⎢⎡⎦⎥⎤-3π4,π4时⇒x +π4∈⎣⎢⎡⎦⎥⎤-π2,π2⇒y =sin ⎝ ⎛⎭⎪⎫x +π4为增函数,但y =sin ⎝ ⎛⎭⎪⎫x +π4为增函数――→周期性⇒/ x +π4∈⎣⎢⎡⎦⎥⎤-π2,π2⇒/ x ∈⎣⎢⎡⎦⎥⎤-3π4,π4.答案:A方略点评:1.此类问题实质是判断命题真假或条件与结论的推导关系.第(1)题采用了特例(y =x 3)验证,第(2)题采用了“⇒”形式进行简单推理.2.先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .3.准确转化:若綈p 是綈q 的必要不充分条件,则p 是q 的充分不必要条件;若綈p 是綈q 的充要条件,那么p 是q 的充要条件.1.已知x ∈R ,则“x 2-3x >0”是“x -4>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:基本法:判断x 2-3x >0⇒x -4>0还是x -4>0⇒x 2-3x >0.注意到x 2-3x >0⇔x <0或x >3,x -4>0⇔x >4.由x 2-3x >0不能得出x -4>0;反过来,由x -4>0可得出x 2-3x >0,因此“x 2-3x >0”是“x -4>0”的必要不充分条件.故选B. 答案:B速解法:利用反例和实数的运算符号寻找推导关系.如x =4时,满足x 2-3x >0,但不满足x -4>0,即不充分.若x -4>0,则x (x -3)>0,即必要.故选B. 答案:B2.(2016·高考山东卷)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:根据直线、平面的位置关系及充分、必要条件的定义进行判断.由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件. 答案:A类型三 命题判定及否定[例3] (1)设命题p :∃n ∈N ,n 2>2n,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:基本法:因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.故选C.答案:C(2)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ) A .p ∧q B .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )解析:基本法:当x =0时,有2x =3x ,不满足2x <3x ,∴p :∀x ∈R,2x <3x是假命题. 如图,函数y =x 3与y =1-x 2有交点,即方程x 3=1-x 2有解,∴q :∃x ∈R ,x 3=1-x 2是真命题. ∴p ∧q 为假命题,排除A.∵綈p 为真命题,∴(綈p )∧q 是真命题.选B.速解法:当x =0时,不满足2x<3x,∴p 为假,排除A 、C.利用图象可知,q 为真,排除D ,必选B. 答案:B 方略点评:基本法是具体判断p ,綈p ,q ,綈q 的真假.速解法是利用“当p 、q 全真时,p ∧q 为真”的道理,利用逻辑关系排除.要判定一个全称命题是真命题,必须对限定集合M 中的每一个元素x 验证p x 成立,要判定其为假命题,只需举出一个反例即可.要判定一个特称存在性命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p x 0成立即可;否则,这一特称存在性命题就是假命题.特别注意:命题的否命题是既否定命题的条件,又否定命题的结论;而命题的否定是只否定命题的结论.1.(2016·山西四校联考)已知命题p :∃x ∈R,2x >3x;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sinx ,则下列是真命题的是( )A .(綈p )∧qB .(綈p )∨(綈q )C .p ∧(綈q )D .p ∨(綈q )解析:基本法:先判断命题p 、q 的真假,然后根据选项得出正确结论. 当x =-1时,2-1>3-1,所以p 为真命题;当x ∈⎝⎛⎭⎪⎫0,π2时,tan x -sin x =sin x-cos xcos x>0,所以q 为真命题,所以p ∨(綈q )是真命题,其他选项都不正确,故选D.速解法:p 为真时,p 或任何命题为真,故选D. 答案:D2.(2016·陕西西安市高三质检)已知命题p :∃x ∈R ,log 2(3x+1)≤0,则( ) A .p 是假命题;綈p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>0解析:基本法:本题主要考查命题的真假判断、命题的否定.∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题;綈p :∀x ∈R ,log 2(3x+1)>0.故应选B. 答案:B[终极提升]——登高博见 选择题、填空题的解法——直接法限时速解训练一 集合、常用逻辑用语(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}解析:选C.由补集的定义,得∁U A ={2,4,7}.故选C.2.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =B D .A ∪B =B解析:选C.由题知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C. 3.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]解析:选A.M ={x |x 2=x }={0,1},N ={x |lg x ≤0}= {x |0<x ≤1},M ∪N =[0,1],故选A.4.(2016·山东聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4解析:选D.因为A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},所以⎩⎪⎨⎪⎧a 2=16,a =4,则a =4.5.(2016·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.因为a >2,则a 2>2a 成立,反之不成立,所以“a >2”是“a 2>2a ”成立的充分不必要条件.6.已知集合A ={z ∈C |z =1-2a i ,a ∈R },B ={z ∈C ||z |=2},则A ∩B 等于( ) A .{1+3i,1-3i} B .{3-i} C .{1+23i,1-23i} D .{1-3i}解析:选A.问题等价于|1-2a i|=2,a ∈R ,解得a =±32.故选A. 7.已知命题p :对任意x >0,总有e x≥1,则綈p 为( ) A .存在x 0≤0,使得e x 0<1B .存在x 0>0,使得e x 0<1C .对任意x >0,总有e x<1 D .对任意x ≤0,总有e x<1解析:选B.因为全称命题的否定是特称命题,所以,命题p :对任意x >0,总有e x≥1的否定綈p 为:存在x 0>0,使得e x 0<1.故选B.8.已知命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( ) A .命题“p ∧q ”是真命题 B .命题“p ∧(綈q )”是假命题 C .命题“(綈p )∨q ”是真命题 D .命题“(綈p )∧(綈q )”是假命题解析:选D.取x 0=π4,有tan π4=1,故命题p 是真命题;当x =0时,x 2=0,故命题q 是假命题.再根据复合命题的真值表,知选项D 是正确的. 9.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b”的逆否命题; ④若p 且q 为假命题,则p ,q 均为假命题. 其中真命题是( ) A .①②③ B .①②④ C .①③④ D .②③④解析:选A.①中不等式可表示为(x -1)2+2>0,恒成立; ②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A ,B 是两个非空集合,定义运算A ×B ={x |x ∈A ∪B ,且x ∉A ∩B }.已知A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A ×B =( )A .[0,1]∪(2,+∞) B.[0,1)∪[2,+∞) C .[0,1] D .[0,2]解析:选A.由题意得A ={x |2x -x 2≥0}={x |0≤x ≤2},B ={y |y >1},所以A ∪B =[0,+∞),A ∩B =(1,2],所以A ×B =[0,1]或(2,+∞).11.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.若“直线y =x +b 与圆x 2+y 2=1相交”,则圆心到直线的距离为d =|b |2<1,即|b |<2,不能得到0<b <1;反过来,若0<b <1,则圆心到直线的距离为d =|b |2<12<1,所以直线y =x +b 与圆x 2+y 2=1相交,故选B. 12.(2016·陕西五校二模)下列命题正确的个数是( )①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件; ③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”. A .1 B .2 C .3 D .4解析:选B.易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b <0得向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0且a 与b 不反向”,故④不正确. 二、填空题(把答案填在题中横线上)13.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m+2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)14.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________.解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1. 答案:(1,+∞)15.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.解析:因为p ∨q 是假命题, 所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知, 綈p :∀x ∈R ,mx 2+2>0为真命题, 所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知, 綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1. 答案:[1,+∞)16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”成立的充分不必要条件;②命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”;③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点.解析:①若c =0,则不论a ,b 的大小关系如何,都有ac 2=bc 2,而若ac 2>bc 2,则有a >b ,故“ac 2>bc 2”是“a >b ”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,故②为真命题;③命题“若p ,则q ”形式的命题的否命题是“若綈p ,则綈q ”,故命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”,故③为真命题;④由于f (1)f (2)=⎝⎛⎭⎪⎫ln 1+1-32⎝ ⎛⎭⎪⎫ln 2+2-32=⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫ln 2+12<0,则函数f (x )=ln x +x -32在区间(1,2)上存在零点,又函数f (x )=ln x +x -32在区间(1,2)上为增函数,所以函数f (x )=ln x+x -32在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④必考点二 平面向量、复数运算[高考预测]——运筹帷幄1.用平面向量的几何运算、坐标运算进行线性运算和数量积的运算. 2.复数的代数形式的四则运算及几何意义. [速解必备]——决胜千里1.向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).2.三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →、OB →的关系是OP →=12(OA →+OB →).3.三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.OA →·OB →=OB →·OC →=OC →·OA →⇔O 为△ABC 垂心. 4.a ⊥b ⇔a ·b =0(a ≠0,b ≠0). 5.i 4n=1,i4n +1=i ,i4n +2=-1,i4n +3=-i.6.z ·z =|z |2,(1+i)2=2i ,(1-i)2=-2i ,1+i 1-i =i ,1-i 1+i =-i.[速解方略]——不拘一格类型一 平面向量的概念及线性运算[例1] (1)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)解析:基本法:设C (x ,y ),则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A.速解法:∵AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 答案:A方略点评:1.基本法是设出点C 坐标,并利用AC →=(-4,-3)求出点C 坐标,然后计算BC →的坐标.速解法是利用向量减法的意义:BC →=AC →-AB →.2.向量的三角形法则要保证各向量“首尾相接”;平行四边形法则要保证两向量“共起点”,结合几何法、代数法(坐标)求解.(2)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.AD →B.12AD →C.BC →D.12BC →解析:基本法一:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选A.基本法二:如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 答案:A方略点评:基本法一是利用了基本定理运算.基本法二是利用了三角形法则进行运算.1.(2016·河北唐山市高三统考)在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( )A.12AB →+12AD →B.34AB →+12AD →C.34AB →+14AD →D.12AB →+34AD → 解析:基本法:由于M 为BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B. 答案:B2.(2016·高考全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:基本法:∵a ∥b ,∴a =λb 即(m,4)=λ(3,-2)=(3λ,-2λ)∴⎩⎪⎨⎪⎧m =3λ,4=-2λ,故m =-6.速解法:根据向量平行的坐标运算求解: ∵a =(m,4),b =(3,-2),a ∥b ∴m ×(-2)-4×3=0 ∴-2m -12=0,∴m =-6. 答案:-6类型二 平面向量数量积的计算与应用[例2] (1)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2解析:基本法:因为2a +b =2(1,-1)+(-1,2)=(2,-2)+(-1,2)=(1,0),所以(2a +b )·a =(1,0)·(1,-1)=1×1+0×(-1)=1.故选C. 速解法:∵a =(1,-1),b =(-1,2),∴a 2=2,a·b =-3, 从而(2a +b )·a =2a 2+a·b =4-3=1.故选C. 答案:C方略点评:1.基本法是把2a +b 看作一个向量,求其坐标,最终用坐标法求数量积.速解法是通过展开(2a +b )·b ,分别计算a 2及a ·b ,较简单.2.当向量以几何图形的形式(有向线段)出现时,其数量积的计算可利用定义法;当向量以坐标形式出现时,其数量积的计算用坐标法;如果建立坐标系,表示向量的有向线段可用坐标表示,计算向量较简单.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 解析:基本法:以AB →、AD →为基底表示AE →和BD →后直接计算数量积. AE →=AD →+12AB →,BD →=AD →-AB →,∴AE →·BD →=⎝ ⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=|AD →|2-12|AB →|2=22-12×22=2.速解法:(坐标法)先建立平面直角坐标系,结合向量数量积的坐标运算求解.如图,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),D (0,2),E (1,2),∴AE →=(1,2),BD →=(-2,2), ∴AE →·BD →=1×(-2)+2×2=2. 答案:2方略点评:1.向量的模的求法一是根据向量的定义,二是将向量的模转化为三角形的某条边求其长.2.求非零向量a ,b 的夹角一般利用公式cos 〈a ,b 〉=a ·b|a ||b |先求出夹角的余弦值,然后求夹角.也可以构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.1.(2016·高考全国丙卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30° B.45° C .60° D.120°解析:基本法:根据向量的夹角公式求解.∵BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,∴|BA →|=1,|BC →|=1,BA →·BC →=12×32+32×12=32,∴cos ∠ABC =cos 〈BA →,BC →〉=BA →·BC →|BA →|·|BC →|=32.∵0°≤〈BA →,BC →〉≤180°,∴∠ABC =〈BA →,BC →〉=30°.速解法:如图,B 为原点,则A ⎝ ⎛⎭⎪⎫12,32∴∠ABx =60°,C ⎝ ⎛⎭⎪⎫32,12∠CBx =30°,∴∠ABC =30°. 答案:A2.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b·c =0,则t =________. 解析:基本法:∵b ·c =0,∴b ·[t a +(1-t )b ]=0,t a·b +(1-t )·b 2=0, 又∵|a |=|b |=1,〈a ,b 〉=60°, ∴12t +1-t =0,t =2. 速解法:由t +(1-t )=1知向量a 、b 、c 的终点A 、B 、C 共线,在平面直角坐标系中设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,则c =⎝ ⎛⎭⎪⎫32,-32.把a 、b 、c 的坐标代入c =t a +(1-t )b ,得t =2.答案:2类型三 复数的代数运算及几何意义[例3] (1)设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .2解析:基本法:由已知1+z1-z =i ,可得z =i -1i +1=-2+-=-2i -2=i ,∴|z |=|i|=1,故选A. 速解法:∵1+i1-i =i ,∴z =i ,∴|z |=1.答案:A方略点评:1.基本法是利用解方程思想求出未知数z . 速解法是利用了一个常用特殊运算结果直接得出z .2.复数的代数形式的运算,类比于多项式的乘除法与合并同类项,只是利用z z =|z |2,把i 2换为-1,复数除法的关键是将分母实数化.3.与复数的模、共轭复数、复数相等有关的问题,可设z =a +b i(a ,b ∈R ),利用待定系数法求解.(2)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .2解析:基本法:∵(2+a i)(a -2i)=-4i ⇒4a +(a 2-4)i =-4i ,∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4,解得a =0.速解法:检验法:将a =0代入适合题意,故选B. 答案:B方略点评:1.基本法是利用复数相等的条件求解,速解法是代入检验排除法,较简单.2.利用复数相等转化为实数运算是复数实数化思想的具体应用,是解决复数问题的常用方法.1.(2016·高考全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2 D .3解析:基本法:先化简复数,再根据实部与虚部相等列方程求解.(1+2i)(a +i)=a -2+(1+2a )i ,由题意知a -2=1+2a ,解得a =-3,故选A. 答案:A2.若a 为实数,且2+a i 1+i =3+i ,则a =( )A .-4B .-3C .3D .4解析:基本法:由已知得2+a i =(1+i)(3+i)=2+4i ,所以a =4,故选D. 答案:D[终极提升]——登高博见 速解选择题方法——排除法限时速解训练二 平面向量、复数运算(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .2-3i B .2+3i C .3+2i D .3-2i解析:选A.∵z =i(3-2i)=3i -2i 2=2+3i ,所以z =2-3i ,故选A. 2.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2得(BC →+BA →-AC →)·AC →=0,则2BA →·AC →=0,即BA ⊥AC ,故选C. 3.已知-2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:选D.z =-21+i=-2i 1+i =--+-=-1-i.4.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( ) A .-32a 2 B .-34a 2C.34a 2D.32a 2解析:选D.BD →·CD →=(BC →+CD →)·CD →=BC →·CD →+CD →2=12a 2+a 2=32a 2.5.(2016·广西南宁适应性测试)已知i 是虚数单位,z 是复数z 的共轭复数,若(1-i)z =2,则z 为( ) A .1+i B .1-i C .2+i D .2-i 解析:选B.依题意得z =21-i=+i -+=1+i ,∴z =1-i ,选B.6.若向量AB →=(2,4),AC →=(1,3),则BC →=( ) A .(1,1) B .(-1,-1) C .(3,7) D .(-3,-7)解析:选B.因为AB →=(2,4),AC →=(1,3),所以BC →=AC →-AB →=(1,3)-(2,4)=(-1,-1),故选B.7.i 为虚数单位,则⎝ ⎛⎭⎪⎫1+i 1-i 2 018=( )A .-iB .-1C .iD .1 解析:选B.因为⎝⎛⎭⎪⎫1+i 1-i 2 018=(i 2)1 009=(-1)1 009=-1.8.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152C .-322D .-3152解析:选A.AB →=(2,1),CD →=(5,5),|CD →|=52, 故AB →在CD →上的投影为AB →·CD →|CD →|=1552=32 2.9.(2016·陕西西安质检)设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( ) A .-5+12i B .-5-12i C .-13+12i D .-13-12i解析:选A.z 1=3-2i ,由题意知z 2=-3+2i , ∴z 1·z 2=(3-2i)·(-3+2i)=-5+12i ,故选A.10.(2016·辽宁沈阳质检)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259 D.269解析:选B.由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,它们的长不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝ ⎛⎭⎪⎫23,23, F ⎝ ⎛⎭⎪⎫13,43,所以AE →=⎝ ⎛⎭⎪⎫23,23,AF →=⎝ ⎛⎭⎪⎫13,43,所以AE →·AF →=23×13+23×43=109.11.(2016·辽宁五校联考)已知复数z =1+i ,则z 2-2zz -1=( )A .-2iB .2iC .-2D .2解析:选B.z 2-2z z -1=1+i2-21+i i =-2i=2i ,故选B.12.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( ) A. 5 B.10 C .2 5 D .10解析:选B.由⎩⎪⎨⎪⎧a ⊥c ,b ∥c ⇒⎩⎪⎨⎪⎧2x -4=0,2y +4=0⇒⎩⎪⎨⎪⎧x =2,y =-2,∴a =(2,1),b =(1,-2),a +b =(3,-1), ∴|a +b |=10,故选B.二、填空题(把答案填在题中横线上)13.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 解析:∵λa +b =0,即λa =-b ,∴|λ||a |=|b |. ∵|a |=1,|b |=5,∴|λ|= 5. 答案: 514.设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=__________.解析:复数a +b i(a ,b ∈R )的模为a 2+b 2=3,则a 2+b 2=3,则(a +b i)(a -b i)=a 2-(b i)2=a 2-b 2·i 2=a 2+b 2=3. 答案:315.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=__________. 解析:∵OA →⊥AB →,∴OA →·AB →=0, 即OA →·(OB →-OA →)=0, ∴OA →·OB →=OA →2=9. 答案:916.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________. 解析:∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚数,∴⎩⎪⎨⎪⎧1-2a ≠0,2+a =0,解得a =-2.答案:-2必考点三 算法、框图与推理[高考预测]——运筹帷幄1.根据框图的程序进行结果的求解,判断条件的补写、完善过程. 2.以数表、数阵、图形、代数式为背景进行归纳推理与类比推理. [速解必备]——决胜千里 1.程序框图中有S =S +1-+,i =i +1时,表示数列裂项求和.2.程序中有“S =S +2n+n ,n =n +1”表示等比数列与等差数列求和. 3.三角形数N (n,3)=12n 2+12n (第n 个三角形数)四边形数N (n,4)=n 2(第n 个四边形数) 五边形数N (n,5)=32n 2+-12n (第n 个五边形数)k 边形数N (n ,k )=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k 2-2n (k ≥3)(第n 个k 边形数)4.类比推理常见的类比内容 平面几何中的点↔空间几何中的线 平面几何中的线↔空间几何中的面 平面几何中的三角形↔空间几何中的三棱锥 平面几何中的圆↔空间几何中的球 [速解方略]——不拘一格类型一 求算法与框图的输入或输出值[例1] (1)执行下面的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8解析:基本法:逐次运行程序,直至输出n . 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01;运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01;运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01.输出n =7.故选C.速解法:由框图可知S =1-121-122-123-124-…-12n=1-12⎝ ⎛⎭⎪⎫1-12n 1-12=12n ≤0.01输出n ,∴2n≥100,∴n 的最小值为7. 答案:C方略点评:1.基本法是按程序一次次循环计算,当不满足条件时跳出循环得出结果. 2.速解法是归纳S =S -m 的运算规律利用数列求和进行估算,稍简单一点.(2)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =()A .0B .2C .4D .14解析:基本法:逐次运行程序,直至程序结束得出a 值.a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4; 第二次循环:14≠4且14>4,a =14-4=10; 第三次循环:10≠4且10>4,a =10-4=6; 第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a =b =2,跳出循环,输出a =2,故选B.速解法:“更相减损术”是求两个正整数的最大公约数,本题求14,18的最大公约数,结合选项知为2,选B. 答案:B方略点评:1.基本法是按更相减损术的运算过程逐步求解.速解法是利用更相减损术的作用和公约数的定义直接得答案,显然简单.2.求输出结果的题目,要认清输出变量是什么,有的是求函数值,有的是求和、差、积、商的运算结果,有的是计数变量等.1.(2016·高考全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7 B.12C.17 D.34解析:基本法:逐次运行程序,直到满足条件时输出s值终止程序.输入x=2,n=2.第一次,a=2,s=2,k=1,不满足k>n;第二次,a=2,s=2×2+2=6,k=2,不满足k>n;第三次,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17.答案:C2.阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n后,输出的S∈(10,20),那么n的值为( )A.3 B.4C .5D .6解析:基本法:依据初始条件,逐步求出S 的值,判断n 的值. 由S =0,k =1得S =1,k =2,应该为否,即2≤n ⇒S =1+2×1=3,k =3为否,即3≤n ⇒S =1+2×3=7,k =4为否,即4≤n ⇒S =1+2×7=15,k =5为是,即5>n 综上,4≤n <5,∴n =4.故选B.速解法:先读出框图的计算功能,再结合等比数列求和公式求解. 框图功能为求和,即S =1+21+22+…+2n -1.由于S =-2n1-2=2n-1∈(10,20),∴10<2n-1<20,∴11<2n<21, ∴n =4,即求前4项和.∴判断框内的条件为k >4,即n =4.故选B. 答案:B类型二 补写、完善程序框图[例2] (1)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34?B .s ≤56?C .s ≤1112?D .s ≤2524?解析:基本法:由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,输出k =8,所以应填s ≤1112.速解法:由题意可知S =12+14+16+18=2524,此时输出8,是不满足条件,故选C.答案:C方略点评:基本法是按程序过程逐步判断是否满足条件速解法是归纳了s =s +1k的作用求和直接验算.(2)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )解析:基本法:当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10;当i =5时,不满足S <10,即此时S ≥10,输出i .此时A 项求得S =2×5-2=8,B 项求得S =2×5-1=9,C 项求得S =2×5=10,故只有C 项满足条件.故选C.答案:C方略点评:1.基本法是根据框图的程序对i 的取值验证,速解法是根据当s ≥10时,输出的i 值验证答案.2.循环结构有当型循环和直到型循环.当型循环是当满足条件时执行循环体.直到型循环是直到满足条件时才跳出循环.3.首先看懂每个图形符号的意义和作用,其次试走几步循环体,体会循环体的内容和功能,最后利用判断框中的条件确定循环的次数.1.给出30个数:1,2,4,7,11,16,…,要计算这30个数的和.下图给出了该问题的程序框图,那么框图中判断框①处和执行框②处可以分别填入( )A.i≤30?和p=p+i-1B.i≤31?和p=p+i+1C.i≤31?和p=p+iD.i≤30?和p=p+i解析:基本法:由题可知,程序要执行30次.所以①处应填i≤30?,②处应填p=p+i. 答案:D2.如图,给出的是计算12+14+16+…+12 016的值的程序框图,其中判断框内应填入的是( )A.i≤2 021? B.i≤2 019?C.i≤2 017? D.i≤2 015?解析:基本法:由题知,判断框内可填“i≤2016?”或“i≤2017?”或“i<2017?”或“i<2018?”,故选C.答案:C类型三合情推理、演绎推理[例3] (1)(2016·高考全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:基本法:根据丙的说法及乙看了丙的卡片后的说法进行推理.由丙说“我的卡片上的数字之和不是5”,可推知丙的卡片上的数字是1和2或1和3.又根据乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”可知,乙的卡片不含1,所以乙的卡片上的数字为2和3.再根据甲的说法“我与乙的卡片上相同的数字不是2”可知,甲的卡片上的数字是1和3. 答案:1和3 (2)观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …,照此规律, 第n 个等式可为________. 解析:基本法:12=1, 12-22=-(1+2), 12-22+32=1+2+3,12-22+32-42=-(1+2+3+4), …,12-22+32-42+…+(-1)n +1n 2=(-1)n +1(1+2+…+n )=(-1)n +1n n +2.速解法:设a 1=1,a 2=3,a 3=6,a 4=10 即a 1=+2,a 2=+2, a 3=+2,a 4=+2,其符号规律为(-1)n +1∴第n 个等式右侧为(-1)n +1n n +2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1n n +2方略点评:1.基本法是分析式子的特点归纳出运算方法,利用数列求和. 速解法是直接归纳“=”右侧的数字规律,较为简单.2.在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.3.在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.4.归纳推理关键是找规律,类比推理关键是看共性.1.观察下列等式 1-12 =12 , 1-12 +13-14=13+14, 1-12 +13-14+15-16=14+15+16, …,据此规律,第n 个等式可为________________________.解析:基本法:规律为等式左边共有2n 项且等式左边分母分别为1,2,…,2n ,分子为1,奇数项为正、偶数项为负,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n +1,n +2,…,2n ,分子为1,即为1n +1+1n +2+…+12n .所以第n 个等式可为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n. 答案:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)2.在平面几何中:△ABC 的∠C 的平分线CE 分AB 所成的线段的比为AC BC =AEBE(如图1).把这个结论类比到空间:在三棱锥A BCD 中(如图2),面DEC 平分二面角A CD B 且与AB 相交于E ,则类比得到的结论是________.解析:基本法:由平面中线段的比类比空间中面积的比可得AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD[终极提升]——登高博见求解选择题,填空题的方法——特例法限时速解训练三算法、框图及推理(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A.8 B.9C.10 D.11解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B.对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大前提错误,故选B.。
专题一集合、常用逻辑用语、平面向量、复数、算法、合情推理、不等式必考点一集合、常用逻辑用语[高考预测]——运筹帷幄1.以函数的定义域、值域、不等式的解集等为背景考查集合之间的交集、并集及补集的基本运算.2.利用集合之间的关系求解参数的值或取值范围.3.考查全称命题、特称命题的否定,以及全称命题与特称命题的真假判断.4.考查充分必要条件与集合、函数、方程、数列、三角函数、不等式、平面向量、立体几何中的线面位置关系等相交汇的问题.[速解必备]——决胜千里1.设有限集合A,card(A)=n(n∈N*),则(1)A的子集个数是2n;(2)A的真子集个数是2n-1;(3)A的非空子集个数是2n-1;(4)A的非空真子集个数是2n-2.2.(1)(∁R A)∩B=B⇔B⊆∁R A;(2)A∪B=B⇔A⊆B⇔A∩B=A;(3)∁U(A∪B)=(∁U A)∩(∁U B);(4)∁U(A∩B)=(∁U A)∪(∁U B).3.若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件.[速解方略]——不拘一格类型一集合的概念及运算[例1] (1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}解析:基本法:化简集合B,利用交集的定义求解.由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.速解法:验证排除法:∵-1∈B,故排除B、D.∵1∉B,∴1∉A∩B,排除C.答案:A(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1 B.3C.5 D.9解析:基本法:用列举法把集合B中的元素一一列举出来.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.故选C.速解法一:排除法:估算x-y值的可能性,排除不可能的结果.∵x∈A,y∈A,∴x-y=±1,x-y=±2.B中至少有四个元素,排除A、B,而D选项是9个元素.即3×3更不可能.故选C.速解法二:当x=y时,x-y=0;当x≠y时,x与y可以相差1,也可以相差2,即x-y=±1,x-y=±2.故B中共有5个元素,B={0,±1,±2}.故选C.答案:C错误!1.(2016·河南郑州市高三质检)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=( )A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}解析:基本法:本题主要考查集合的基本运算.因为U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故选A.速解法:∵A∩B={4}.∴4∉∁U(A∩B),排除B、C、D只能选A.答案:A2.(2016·高考全国甲卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=( ) A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}解析:基本法:(直接法)先化简集合B,再利用交集定义求解.∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A ={1,2,3},∴A ∩B ={1,2,3}∩{x |-3<x <3}={1,2},故选D. 速解法:(代入检验法)12<9,22<9,32=9,且A ∩B ⊆A . 故A ∩B ={1,2},选D. 答案:D类型二 充分、必要条件[例2] (1) 函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:基本法:利用命题和逆命题的真假来判断充要条件,注意判断为假命题时,可以采用反例法.当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. 答案:C(2)“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:基本法:若函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数,则-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,即-3π4+2k π≤x ≤π4+2k π,k ∈Z .从而函数y =sin ⎝ ⎛⎭⎪⎫x +π4的单调递增区间是⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ).因此若x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,则函数y =sin ⎝ ⎛⎭⎪⎫x +π4为单调递增函数; 若函数y =sin ⎝ ⎛⎭⎪⎫x +π4为单调递增函数⇒/ x ∈⎣⎢⎡⎦⎥⎤-3π4,π4.所以“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数”的充分不必要条件.故选A.速解法:当x ∈⎣⎢⎡⎦⎥⎤-3π4,π4时⇒x +π4∈⎣⎢⎡⎦⎥⎤-π2,π2⇒y =sin ⎝ ⎛⎭⎪⎫x +π4为增函数,但y =sin ⎝ ⎛⎭⎪⎫x +π4为增函数――→周期性⇒/ x +π4∈⎣⎢⎡⎦⎥⎤-π2,π2⇒/ x ∈⎣⎢⎡⎦⎥⎤-3π4,π4.答案:A方略点评:1.此类问题实质是判断命题真假或条件与结论的推导关系.第(1)题采用了特例(y =x 3)验证,第(2)题采用了“⇒”形式进行简单推理.2.先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .3.准确转化:若綈p 是綈q 的必要不充分条件,则p 是q 的充分不必要条件;若綈p 是綈q 的充要条件,那么p 是q 的充要条件.1.已知x ∈R ,则“x 2-3x >0”是“x -4>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:基本法:判断x 2-3x >0⇒x -4>0还是x -4>0⇒x 2-3x >0.注意到x 2-3x >0⇔x <0或x >3,x -4>0⇔x >4.由x 2-3x >0不能得出x -4>0;反过来,由x -4>0可得出x 2-3x >0,因此“x 2-3x >0”是“x -4>0”的必要不充分条件.故选B. 答案:B速解法:利用反例和实数的运算符号寻找推导关系.如x =4时,满足x 2-3x >0,但不满足x -4>0,即不充分.若x -4>0,则x (x -3)>0,即必要.故选B. 答案:B2.(2016·高考山东卷)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:根据直线、平面的位置关系及充分、必要条件的定义进行判断.由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件. 答案:A类型三 命题判定及否定[例3] (1)设命题p :∃n ∈N ,n 2>2n,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:基本法:因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.故选C.答案:C(2)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ) A .p ∧q B .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )解析:基本法:当x =0时,有2x =3x ,不满足2x <3x ,∴p :∀x ∈R,2x <3x是假命题. 如图,函数y =x 3与y =1-x 2有交点,即方程x 3=1-x 2有解,∴q :∃x ∈R ,x 3=1-x 2是真命题. ∴p ∧q 为假命题,排除A.∵綈p 为真命题,∴(綈p )∧q 是真命题.选B.速解法:当x =0时,不满足2x<3x,∴p 为假,排除A 、C.利用图象可知,q 为真,排除D ,必选B. 答案:B 方略点评:基本法是具体判断p ,綈p ,q ,綈q 的真假.速解法是利用“当p 、q 全真时,p ∧q 为真”的道理,利用逻辑关系排除. 2要判定一个全称命题是真命题,必须对限定集合M 中的每一个元素x 验证p x 成立,要判定其为假命题,只需举出一个反例即可.3要判定一个特称存在性命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p x 0成立即可;否则,这一特称存在性命题就是假命题.特别注意:命题的否命题是既否定命题的条件,又否定命题的结论;而命题的否定是只否定命题的结论.1.(2016·山西四校联考)已知命题p :∃x ∈R,2x >3x;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sinx ,则下列是真命题的是( )A .(綈p )∧qB .(綈p )∨(綈q )C .p ∧(綈q )D .p ∨(綈q )解析:基本法:先判断命题p 、q 的真假,然后根据选项得出正确结论. 当x =-1时,2-1>3-1,所以p 为真命题;当x ∈⎝⎛⎭⎪⎫0,π2时,tan x -sin x =sin x 1-cos xcos x >0,所以q 为真命题,所以p ∨(綈q )是真命题,其他选项都不正确,故选D.速解法:p 为真时,p 或任何命题为真,故选D. 答案:D2.(2016·陕西西安市高三质检)已知命题p :∃x ∈R ,log 2(3x+1)≤0,则( ) A .p 是假命题;綈p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>0解析:基本法:本题主要考查命题的真假判断、命题的否定.∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题;綈p :∀x ∈R ,log 2(3x+1)>0.故应选B. 答案:B[终极提升]——登高博见 选择题、填空题的解法——直接法限时速解训练一 集合、常用逻辑用语(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}解析:选C.由补集的定义,得∁U A ={2,4,7}.故选C.2.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =B D .A ∪B =B解析:选C.由题知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C. 3.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]解析:选A.M ={x |x 2=x }={0,1},N ={x |lg x ≤0}= {x |0<x ≤1},M ∪N =[0,1],故选A.4.(2016·山东聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4解析:选D.因为A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},所以⎩⎪⎨⎪⎧a 2=16,a =4,则a =4.5.(2016·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.因为a >2,则a 2>2a 成立,反之不成立,所以“a >2”是“a 2>2a ”成立的充分不必要条件.6.已知集合A ={z ∈C |z =1-2a i ,a ∈R },B ={z ∈C ||z |=2},则A ∩B 等于( ) A .{1+3i,1-3i} B .{3-i} C .{1+23i,1-23i} D .{1-3i}解析:选A.问题等价于|1-2a i|=2,a ∈R ,解得a =±32.故选A. 7.已知命题p :对任意x >0,总有e x≥1,则綈p 为( ) A .存在x 0≤0,使得e x 0<1B .存在x 0>0,使得e x 0<1C .对任意x >0,总有e x<1 D .对任意x ≤0,总有e x<1解析:选B.因为全称命题的否定是特称命题,所以,命题p :对任意x >0,总有e x≥1的否定綈p 为:存在x 0>0,使得e x 0<1.故选B.8.已知命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( ) A .命题“p ∧q ”是真命题 B .命题“p ∧(綈q )”是假命题 C .命题“(綈p )∨q ”是真命题 D .命题“(綈p )∧(綈q )”是假命题解析:选D.取x 0=π4,有tan π4=1,故命题p 是真命题;当x =0时,x 2=0,故命题q 是假命题.再根据复合命题的真值表,知选项D 是正确的. 9.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b”的逆否命题; ④若p 且q 为假命题,则p ,q 均为假命题. 其中真命题是( ) A .①②③ B .①②④ C .①③④ D .②③④解析:选A.①中不等式可表示为(x -1)2+2>0,恒成立; ②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A ,B 是两个非空集合,定义运算A ×B ={x |x ∈A ∪B ,且x ∉A ∩B }.已知A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A ×B =( )A .[0,1]∪(2,+∞) B.[0,1)∪[2,+∞) C .[0,1] D .[0,2]解析:选A.由题意得A ={x |2x -x 2≥0}={x |0≤x ≤2},B ={y |y >1},所以A ∪B =[0,+∞),A ∩B =(1,2],所以A ×B =[0,1]或(2,+∞).11.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.若“直线y =x +b 与圆x 2+y 2=1相交”,则圆心到直线的距离为d =|b |2<1,即|b |<2,不能得到0<b <1;反过来,若0<b <1,则圆心到直线的距离为d =|b |2<12<1,所以直线y =x +b 与圆x 2+y 2=1相交,故选B. 12.(2016·陕西五校二模)下列命题正确的个数是( )①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件; ③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”. A .1 B .2 C .3 D .4解析:选B.易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b <0得向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0且a 与b 不反向”,故④不正确. 二、填空题(把答案填在题中横线上)13.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m+2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)14.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________.解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1. 答案:(1,+∞)15.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.解析:因为p ∨q 是假命题, 所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知, 綈p :∀x ∈R ,mx 2+2>0为真命题, 所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知, 綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1. 答案:[1,+∞)16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”成立的充分不必要条件;②命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”;③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点.解析:①若c =0,则不论a ,b 的大小关系如何,都有ac 2=bc 2,而若ac 2>bc 2,则有a >b ,故“ac 2>bc 2”是“a >b ”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,故②为真命题;③命题“若p ,则q ”形式的命题的否命题是“若綈p ,则綈q ”,故命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”,故③为真命题;④由于f (1)f (2)=⎝⎛⎭⎪⎫ln 1+1-32⎝ ⎛⎭⎪⎫ln 2+2-32=⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫ln 2+12<0,则函数f (x )=ln x +x -32在区间(1,2)上存在零点,又函数f (x )=ln x +x -32在区间(1,2)上为增函数,所以函数f (x )=ln x+x -32在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④必考点二 平面向量、复数运算[高考预测]——运筹帷幄1.用平面向量的几何运算、坐标运算进行线性运算和数量积的运算. 2.复数的代数形式的四则运算及几何意义. [速解必备]——决胜千里1.向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).2.三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →、OB →的关系是OP →=12(OA →+OB →).3.三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.OA →·OB →=OB →·OC →=OC →·OA →⇔O 为△ABC 垂心. 4.a ⊥b ⇔a ·b =0(a ≠0,b ≠0). 5.i 4n=1,i4n +1=i ,i4n +2=-1,i4n +3=-i.6.z ·z =|z |2,(1+i)2=2i ,(1-i)2=-2i ,1+i 1-i =i ,1-i 1+i =-i.[速解方略]——不拘一格类型一 平面向量的概念及线性运算[例1] (1)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)解析:基本法:设C (x ,y ),则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A.速解法:∵AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 答案:A方略点评:1.基本法是设出点C 坐标,并利用AC →=(-4,-3)求出点C 坐标,然后计算BC →的坐标.速解法是利用向量减法的意义:BC →=AC →-AB →.2.向量的三角形法则要保证各向量“首尾相接”;平行四边形法则要保证两向量“共起点”,结合几何法、代数法(坐标)求解.(2)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.AD →B.12AD →C.BC →D.12BC →解析:基本法一:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选A.基本法二:如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 答案:A方略点评:基本法一是利用了基本定理运算.基本法二是利用了三角形法则进行运算.1.(2016·河北唐山市高三统考)在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( )A.12AB →+12AD →B.34AB →+12AD →C.34AB →+14AD →D.12AB →+34AD → 解析:基本法:由于M 为BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B. 答案:B2.(2016·高考全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:基本法:∵a ∥b ,∴a =λb 即(m,4)=λ(3,-2)=(3λ,-2λ)∴⎩⎪⎨⎪⎧m =3λ,4=-2λ,故m =-6.速解法:根据向量平行的坐标运算求解: ∵a =(m,4),b =(3,-2),a ∥b ∴m ×(-2)-4×3=0 ∴-2m -12=0,∴m =-6. 答案:-6类型二 平面向量数量积的计算与应用[例2] (1)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2解析:基本法:因为2a +b =2(1,-1)+(-1,2)=(2,-2)+(-1,2)=(1,0),所以(2a +b )·a =(1,0)·(1,-1)=1×1+0×(-1)=1.故选C. 速解法:∵a =(1,-1),b =(-1,2),∴a 2=2,a·b =-3, 从而(2a +b )·a =2a 2+a·b =4-3=1.故选C. 答案:C方略点评:1.基本法是把2a +b 看作一个向量,求其坐标,最终用坐标法求数量积.速解法是通过展开(2a +b )·b ,分别计算a 2及a ·b ,较简单.2.当向量以几何图形的形式(有向线段)出现时,其数量积的计算可利用定义法;当向量以坐标形式出现时,其数量积的计算用坐标法;如果建立坐标系,表示向量的有向线段可用坐标表示,计算向量较简单.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 解析:基本法:以AB →、AD →为基底表示AE →和BD →后直接计算数量积. AE →=AD →+12AB →,BD →=AD →-AB →,∴AE →·BD →=⎝ ⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=|AD →|2-12|AB →|2=22-12×22=2.速解法:(坐标法)先建立平面直角坐标系,结合向量数量积的坐标运算求解.如图,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),D (0,2),E (1,2),∴AE →=(1,2),BD →=(-2,2), ∴AE →·BD →=1×(-2)+2×2=2. 答案:2方略点评:1.向量的模的求法一是根据向量的定义,二是将向量的模转化为三角形的某条边求其长.2.求非零向量a ,b 的夹角一般利用公式cos 〈a ,b 〉=a ·b|a ||b |先求出夹角的余弦值,然后求夹角.也可以构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.1.(2016·高考全国丙卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30° B.45° C .60° D.120°解析:基本法:根据向量的夹角公式求解.∵BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,∴|BA →|=1,|BC →|=1,BA →·BC →=12×32+32×12=32,∴cos ∠ABC =cos 〈BA →,BC →〉=BA →·BC →|BA →|·|BC →|=32.∵0°≤〈BA →,BC →〉≤180°,∴∠ABC =〈BA →,BC →〉=30°.速解法:如图,B 为原点,则A ⎝ ⎛⎭⎪⎫12,32∴∠ABx =60°,C ⎝ ⎛⎭⎪⎫32,12∠CBx =30°,∴∠ABC =30°. 答案:A2.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b·c =0,则t =________. 解析:基本法:∵b ·c =0,∴b ·[t a +(1-t )b ]=0,t a·b +(1-t )·b 2=0, 又∵|a |=|b |=1,〈a ,b 〉=60°, ∴12t +1-t =0,t =2. 速解法:由t +(1-t )=1知向量a 、b 、c 的终点A 、B 、C 共线,在平面直角坐标系中设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,则c =⎝ ⎛⎭⎪⎫32,-32.把a 、b 、c 的坐标代入c =t a +(1-t )b ,得t =2.答案:2类型三 复数的代数运算及几何意义[例3] (1)设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .2解析:基本法:由已知1+z1-z =i ,可得z =i -1i +1=-2+-=-2i -2=i ,∴|z |=|i|=1,故选A. 速解法:∵1+i1-i =i ,∴z =i ,∴|z |=1.答案:A方略点评:1.基本法是利用解方程思想求出未知数z . 速解法是利用了一个常用特殊运算结果直接得出z .2.复数的代数形式的运算,类比于多项式的乘除法与合并同类项,只是利用z z =|z |2,把i 2换为-1,复数除法的关键是将分母实数化.3.与复数的模、共轭复数、复数相等有关的问题,可设z =a +b i(a ,b ∈R ),利用待定系数法求解.(2)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .2解析:基本法:∵(2+a i)(a -2i)=-4i ⇒4a +(a 2-4)i =-4i ,∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4,解得a =0.速解法:检验法:将a =0代入适合题意,故选B. 答案:B方略点评:1.基本法是利用复数相等的条件求解,速解法是代入检验排除法,较简单.2.利用复数相等转化为实数运算是复数实数化思想的具体应用,是解决复数问题的常用方法.1.(2016·高考全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2 D .3解析:基本法:先化简复数,再根据实部与虚部相等列方程求解.(1+2i)(a +i)=a -2+(1+2a )i ,由题意知a -2=1+2a ,解得a =-3,故选A. 答案:A2.若a 为实数,且2+a i 1+i =3+i ,则a =( )A .-4B .-3C .3D .4解析:基本法:由已知得2+a i =(1+i)(3+i)=2+4i ,所以a =4,故选D. 答案:D[终极提升]——登高博见 速解选择题方法——排除法限时速解训练二 平面向量、复数运算(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .2-3i B .2+3i C .3+2i D .3-2i解析:选A.∵z =i(3-2i)=3i -2i 2=2+3i ,所以z =2-3i ,故选A. 2.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2得(BC →+BA →-AC →)·AC →=0,则2BA →·AC →=0,即BA ⊥AC ,故选C. 3.已知-2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:选D.z =-21+i=-2i 1+i =--1+i 1-i=-1-i. 4.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( ) A .-32a 2 B .-34a 2C.34a 2D.32a 2解析:选D.BD →·CD →=(BC →+CD →)·CD →=BC →·CD →+CD →2=12a 2+a 2=32a 2.5.(2016·广西南宁适应性测试)已知i 是虚数单位,z 是复数z 的共轭复数,若(1-i)z =2,则z 为( ) A .1+i B .1-i C .2+i D .2-i 解析:选B.依题意得z =21-i =+1-i 1+i=1+i ,∴z =1-i ,选B. 6.若向量AB →=(2,4),AC →=(1,3),则BC →=( ) A .(1,1) B .(-1,-1) C .(3,7) D .(-3,-7)解析:选B.因为AB →=(2,4),AC →=(1,3),所以BC →=AC →-AB →=(1,3)-(2,4)=(-1,-1),故选B.7.i 为虚数单位,则⎝ ⎛⎭⎪⎫1+i 1-i 2 018=( )A .-iB .-1C .iD .1 解析:选B.因为⎝⎛⎭⎪⎫1+i 1-i 2 018=(i 2)1 009=(-1)1 009=-1.8.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152C .-322D .-3152解析:选A.AB →=(2,1),CD →=(5,5),|CD →|=52, 故AB →在CD →上的投影为AB →·CD →|CD →|=1552=32 2.9.(2016·陕西西安质检)设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( ) A .-5+12i B .-5-12i C .-13+12i D .-13-12i解析:选A.z 1=3-2i ,由题意知z 2=-3+2i , ∴z 1·z 2=(3-2i)·(-3+2i)=-5+12i ,故选A.10.(2016·辽宁沈阳质检)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259 D.269解析:选B.由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,它们的长不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝ ⎛⎭⎪⎫23,23, F ⎝ ⎛⎭⎪⎫13,43,所以AE →=⎝ ⎛⎭⎪⎫23,23,AF →=⎝ ⎛⎭⎪⎫13,43,所以AE →·AF →=23×13+23×43=109.11.(2016·辽宁五校联考)已知复数z =1+i ,则z 2-2zz -1=( )A .-2iB .2iC .-2D .2解析:选B.z 2-2z z -1=1+i2-21+i i =-2i=2i ,故选B.12.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( ) A. 5 B.10 C .2 5 D .10解析:选B.由⎩⎪⎨⎪⎧a ⊥c ,b ∥c ⇒⎩⎪⎨⎪⎧2x -4=0,2y +4=0⇒⎩⎪⎨⎪⎧x =2,y =-2,∴a =(2,1),b =(1,-2),a +b =(3,-1), ∴|a +b |=10,故选B.二、填空题(把答案填在题中横线上)13.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 解析:∵λa +b =0,即λa =-b ,∴|λ||a |=|b |. ∵|a |=1,|b |=5,∴|λ|= 5. 答案: 514.设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=__________.解析:复数a +b i(a ,b ∈R )的模为a 2+b 2=3,则a 2+b 2=3,则(a +b i)(a -b i)=a 2-(b i)2=a 2-b 2·i 2=a 2+b 2=3. 答案:315.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=__________. 解析:∵OA →⊥AB →,∴OA →·AB →=0, 即OA →·(OB →-OA →)=0, ∴OA →·OB →=OA →2=9. 答案:916.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________. 解析:∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚数,∴⎩⎪⎨⎪⎧1-2a ≠0,2+a =0,解得a =-2.答案:-2必考点三 算法、框图与推理[高考预测]——运筹帷幄1.根据框图的程序进行结果的求解,判断条件的补写、完善过程. 2.以数表、数阵、图形、代数式为背景进行归纳推理与类比推理. [速解必备]——决胜千里 1.程序框图中有S =S +12i -12i +1,i =i +1时,表示数列裂项求和.2.程序中有“S =S +2n+n ,n =n +1”表示等比数列与等差数列求和. 3.三角形数N (n,3)=12n 2+12n (第n 个三角形数)四边形数N (n,4)=n 2(第n 个四边形数) 五边形数N (n,5)=32n 2+-12n (第n 个五边形数)k 边形数N (n ,k )=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k 2-2n (k ≥3)(第n 个k 边形数)4.类比推理常见的类比内容 平面几何中的点↔空间几何中的线 平面几何中的线↔空间几何中的面 平面几何中的三角形↔空间几何中的三棱锥 平面几何中的圆↔空间几何中的球 [速解方略]——不拘一格类型一 求算法与框图的输入或输出值[例1] (1)执行下面的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8解析:基本法:逐次运行程序,直至输出n . 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01;运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01;运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01.输出n =7.故选C.速解法:由框图可知S =1-121-122-123-124-…-12n=1-12⎝ ⎛⎭⎪⎫1-12n 1-12=12n ≤0.01输出n ,∴2n≥100,∴n 的最小值为7. 答案:C方略点评:1.基本法是按程序一次次循环计算,当不满足条件时跳出循环得出结果. 2.速解法是归纳S =S -m 的运算规律利用数列求和进行估算,稍简单一点.(2)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =()A .0B .2C .4D .14解析:基本法:逐次运行程序,直至程序结束得出a 值.a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4; 第二次循环:14≠4且14>4,a =14-4=10; 第三次循环:10≠4且10>4,a =10-4=6; 第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a =b =2,跳出循环,输出a =2,故选B.速解法:“更相减损术”是求两个正整数的最大公约数,本题求14,18的最大公约数,结合选项知为2,选B. 答案:B方略点评:1.基本法是按更相减损术的运算过程逐步求解.速解法是利用更相减损术的作用和公约数的定义直接得答案,显然简单.2.求输出结果的题目,要认清输出变量是什么,有的是求函数值,有的是求和、差、积、商的运算结果,有的是计数变量等.1.(2016·高考全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7 B.12C.17 D.34解析:基本法:逐次运行程序,直到满足条件时输出s值终止程序.输入x=2,n=2.第一次,a=2,s=2,k=1,不满足k>n;第二次,a=2,s=2×2+2=6,k=2,不满足k>n;第三次,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17.答案:C2.阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n后,输出的S∈(10,20),那么n的值为( )A.3 B.4C .5D .6解析:基本法:依据初始条件,逐步求出S 的值,判断n 的值. 由S =0,k =1得S =1,k =2,应该为否,即2≤n ⇒S =1+2×1=3,k =3为否,即3≤n ⇒S =1+2×3=7,k =4为否,即4≤n ⇒S =1+2×7=15,k =5为是,即5>n 综上,4≤n <5,∴n =4.故选B.速解法:先读出框图的计算功能,再结合等比数列求和公式求解. 框图功能为求和,即S =1+21+22+…+2n -1.由于S =-2n1-2=2n-1∈(10,20),∴10<2n-1<20,∴11<2n<21, ∴n =4,即求前4项和.∴判断框内的条件为k >4,即n =4.故选B. 答案:B类型二 补写、完善程序框图[例2] (1)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34?B .s ≤56?C .s ≤1112?D .s ≤2524?解析:基本法:由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,输出k =8,所以应填s ≤1112.速解法:由题意可知S =12+14+16+18=2524,此时输出8,是不满足条件,故选C.答案:C方略点评:基本法是按程序过程逐步判断是否满足条件速解法是归纳了s =s +1k的作用求和直接验算.(2)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )解析:基本法:当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10;当i =5时,不满足S <10,即此时S ≥10,输出i .此时A 项求得S =2×5-2=8,B 项求得S =2×5-1=9,C 项求得S =2×5=10,故只有C 项满足条件.故选C.答案:C方略点评:1.基本法是根据框图的程序对i 的取值验证,速解法是根据当s ≥10时,输出的i 值验证答案.2.循环结构有当型循环和直到型循环.当型循环是当满足条件时执行循环体.直到型循环是直到满足条件时才跳出循环.3.首先看懂每个图形符号的意义和作用,其次试走几步循环体,体会循环体的内容和功能,最后利用判断框中的条件确定循环的次数.1.给出30个数:1,2,4,7,11,16,…,要计算这30个数的和.下图给出了该问题的程序框图,那么框图中判断框①处和执行框②处可以分别填入( )A.i≤30?和p=p+i-1B.i≤31?和p=p+i+1C.i≤31?和p=p+iD.i≤30?和p=p+i解析:基本法:由题可知,程序要执行30次.所以①处应填i≤30?,②处应填p=p+i. 答案:D2.如图,给出的是计算12+14+16+…+12 016的值的程序框图,其中判断框内应填入的是( )A.i≤2 021? B.i≤2 019?C.i≤2 017? D.i≤2 015?解析:基本法:由题知,判断框内可填“i≤2016?”或“i≤2017?”或“i<2017?”或“i<2018?”,故选C.答案:C类型三合情推理、演绎推理[例3] (1)(2016·高考全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:基本法:根据丙的说法及乙看了丙的卡片后的说法进行推理.由丙说“我的卡片上的数字之和不是5”,可推知丙的卡片上的数字是1和2或1和3.又根据乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”可知,乙的卡片不含1,所以乙的卡片上的数字为2和3.再根据甲的说法“我与乙的卡片上相同的数字不是2”可知,甲的卡片上的数字是1和3. 答案:1和3 (2)观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …,照此规律, 第n 个等式可为________. 解析:基本法:12=1, 12-22=-(1+2), 12-22+32=1+2+3,12-22+32-42=-(1+2+3+4), …,12-22+32-42+…+(-1)n +1n 2=(-1)n +1(1+2+…+n )=(-1)n +1n n +2.速解法:设a 1=1,a 2=3,a 3=6,a 4=10 即a 1=+2,a 2=+2, a 3=+2,a 4=+2,其符号规律为(-1)n +1∴第n 个等式右侧为(-1)n +1n n +2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1n n +2方略点评:1.基本法是分析式子的特点归纳出运算方法,利用数列求和. 速解法是直接归纳“=”右侧的数字规律,较为简单.2.在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.3.在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.4.归纳推理关键是找规律,类比推理关键是看共性.1.观察下列等式 1-12 =12 , 1-12 +13-14=13+14, 1-12 +13-14+15-16=14+15+16, …,据此规律,第n 个等式可为________________________.解析:基本法:规律为等式左边共有2n 项且等式左边分母分别为1,2,…,2n ,分子为1,奇数项为正、偶数项为负,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n +1,n +2,…,2n ,分子为1,即为1n +1+1n +2+…+12n .所以第n 个等式可为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n. 答案:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)2.在平面几何中:△ABC 的∠C 的平分线CE 分AB 所成的线段的比为AC BC =AEBE(如图1).把这个结论类比到空间:在三棱锥A BCD 中(如图2),面DEC 平分二面角A CD B 且与AB 相交于E ,则类比得到的结论是________.解析:基本法:由平面中线段的比类比空间中面积的比可得AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD[终极提升]——登高博见求解选择题,填空题的方法——特例法限时速解训练三算法、框图及推理(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A.8 B.9C.10 D.11解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B.对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大前提错误,故选B.。
限时速解训练二 平面向量、复数运算
(建议用时40分钟)
一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)
1.若复数z =i(3-2i)(i 是虚数单位),则z =( )
A .2-3i
B .2+3i
C .3+2i
D . 3-2i
解析:选A.∵z =i(3-2i)=3i -2i 2=2+3i ,所以z =2-3i ,故选A.
2.在△ABC 中,(BC →+BA →)·AC →=|AC →
|2,则△ABC 的形状一定是( )
A .等边三角形
B .等腰三角形
C .直角三角形
D .等腰直角三角形
解析:选C.由(BC →+BA →)·AC →=|AC →|2得(BC →+BA →-AC →)·AC →=0,则2BA →·AC →
=0,即BA ⊥AC ,
故选C.
3.已知-2z =1+i(i 为虚数单位),则复数z =( ) A .1+i
B .1-i
C .-1+i
D .-1-i 解析:选D.z =-
2
1+i =-2i 1+i =--+-=-1-i.
4.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →
=( )
A .-32
a 2 B .-34a 2 C.34a 2 D.32
a 2 解析:选D.BD →·CD →=(BC →+CD →)·CD →=BC →·CD →+CD →2=12a 2+a 2=32
a 2. 5.(2016·广西南宁适应性测试)已知i 是虚数单位,z 是复数z 的共轭复数,若(1-i)z =2,则z 为( )
A .1+i
B .1-i
C .2+i
D .2-i 解析:选B.依题意得z =21-i =+-+=1+i ,∴z =1-i ,选B.
6.若向量AB →=(2,4),AC →=(1,3),则BC →
=( )
A .(1,1)
B .(-1,-1)
C .(3,7)
D .(-3,-7)
解析:选B.因为AB →=(2,4),AC →=(1,3),所以BC →=AC →-AB →
=(1,3)-(2,4)=(-1,-1),故选B.
7.i 为虚数单位,则⎝
⎛⎭⎪⎫1+i 1-i 2 018=( ) A .-i
B .-1
C .i
D .1 解析:选B.因为⎝ ⎛⎭
⎪⎫1+i 1-i 2 018=(i 2)1 009=(-1)1 009=-1. 8.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →
方向上的投影为( ) A.322
B.3152 C .-322 D .-3152
解析:选A.AB →=(2,1),CD →=(5,5),|CD →
|=52,
故AB →在CD →上的投影为AB →·CD →|CD →|=1552=32
2. 9.(2016·陕西西安质检)设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( )
A .-5+12i
B .-5-12i
C .-13+12i
D .-13-12i
解析:选A.z 1=3-2i ,由题意知z 2=-3+2i ,
∴z 1·z 2=(3-2i)·(-3+2i)=-5+12i ,故选A.
10.(2016·辽宁沈阳质检)在△ABC 中,|AB →+AC →|=|AB →-AC →
|,AB =2,AC =1,E ,F 为BC
的三等分点,则AE →·AF →
=( )
A.89
B.109
C.259
D.269
解析:选B.由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →
=0,又因为AB 和AC 为三角形的两条边,
它们的长不可能为0,所以AB →与AC →
垂直,所以△ABC 为直角三角形.以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨
令E 为BC 的靠近C 的三等分点,则E ⎝ ⎛⎭
⎪⎫23,23, F ⎝ ⎛⎭⎪⎫13,43,所以AE →=⎝ ⎛⎭⎪⎫23,23,AF →=⎝ ⎛⎭⎪⎫13,43,所以AE →·AF →
=23×13+23×43=109. 11.(2016·辽宁五校联考)已知复数z =1+i ,则z 2-2z z -1
=( ) A .-2i B .2i
C .-2
D .2
解析:选B.z 2-2z z -1=1+i 2-21+i i =-2i
=2i ,故选B. 12.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( ) A. 5 B.10 C .2 5
D .10 解析:选B.由⎩⎪⎨⎪⎧ a ⊥c ,b ∥c ⇒⎩⎪⎨⎪⎧ 2x -4=0,2y +4=0⇒⎩⎪⎨⎪⎧ x =2,y =-2,
∴a =(2,1),b =(1,-2),a +b =(3,-1),
∴|a +b |=10,故选B.
二、填空题(把答案填在题中横线上)
13.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 解析:∵λa +b =0,即λa =-b ,∴|λ||a |=|b |.
∵|a |=1,|b |=5,∴|λ|= 5. 答案: 5
14.设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=__________.
解析:复数a +b i(a ,b ∈R )的模为a 2+b 2=3,则a 2+b 2=3,则(a +b i)(a -b i)=a 2-(b i)2
=a 2-b 2·i 2=a 2+b 2=3.
答案:3
15.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →
=__________.
解析:∵OA →⊥AB →,∴OA →·AB →
=0,
即OA →·(OB →-OA →
)=0,
∴OA →·OB →=OA →
2=9.
答案:9
16.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________. 解析:∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚数,
∴⎩⎪⎨⎪⎧
1-2a ≠0,2+a =0,解得a =-2. 答案:-2。