立体几何综合
- 格式:doc
- 大小:3.86 MB
- 文档页数:37
立体几何大题综合1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行2.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面3.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)4.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).5.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).6.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).一、解答题(2023·广东梅州·统考三模)如图所示,在几何体PABCD 中,AD ⊥平面PAB ,点C 在平面PAB 的投影在线段PB 上BC <PC ,BP =6,AB =AP =23,DC =2,CD ∥平面PAB .(1)证明:平面PCD ⊥平面PAD .(2)若二面角B -CD -P 的余弦值为-714,求线段AD 的长.(2023·浙江·校联考模拟预测)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,侧面PAD是边长为2的正三角形,平面PAD⊥平面ABCD,AB⊥PD.(1)求证:平行四边形ABCD为矩形;(2)若E为侧棱PD的中点,且平面ACE与平面ABP所成角的余弦值为64,求点B到平面ACE的距离.(2023·福建福州·福建省福州第一中学校考二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.(2023·江苏扬州·统考模拟预测)如图,平行六面体ABCD-A1B1C1D1的体积为6,截面ACC1 A1的面积为6.(1)求点B到平面ACC1A1的距离;(2)若AB=AD=2,∠BAD=60°,AA1=6,求直线BD1与平面CC1D1D所成角的正弦值.(2023·浙江温州·乐清市知临中学校考二模)在三棱锥O-ABC中,AB=BC=OB=2,∠ABC=120°,平面BCO⊥平面ABC,且OB⊥AB.(1)证明:OB⊥AC;(2)若F是直线OC上的一个动点,求直线AF与平面ABC所成的角的正切值最大值.(2023·福建宁德·校考模拟预测)图1是由直角梯形ABCD和以CD为直径的半圆组成的平面图形,AD∥BC,AD⊥AB,AD=AB=12BC=1.E是半圆上的一个动点,当△CDE周长最大时,将半圆沿着CD折起,使平面PCD⊥平面ABCD,此时的点E到达点P的位置,如图2.(1)求证:BD⊥PD;(2)求平面PAB和平面PCD夹角的余弦值.(2023·福建福州·福州四中校考模拟预测)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC =2,且BC=CC1=1,点D在线段BC1(含端点)上运动,设λ=BDBC1.(1)当AB⎳平面A1CD时,求实数λ的值;(2)当平面A1CD⊥平面A1C1D时,求平面A1CD与平面ABB1A1的夹角的正弦值.(2023·福建三明·统考三模)如图,平面五边形ABCDE由等边三角形ADE与直角梯形ABCD 组成,其中AD∥BC,AD⊥DC,AD=2BC=2,CD=3,将△ADE沿AD折起,使点E到达点M 的位置,且BM=a.(1)当a=6时,证明AD⊥BM并求四棱锥M-ABCD的体积;(2)已知点P为棱CM上靠近点C的三等分点,当a=3时,求平面PBD与平面ABCD夹角的余弦值.(2023·河北·统考模拟预测)在圆柱O 1O 2中,等腰梯形ABCD 为底面圆O 1的内接四边形,且AD =DC =BC =1,矩形ABFE 是该圆柱的轴截面,CG 为圆柱的一条母线,CG =1.(1)求证:平面O 1CG ∥平面ADE ;(2)设DP =λDE ,λ∈0,1 ,试确定λ的值,使得直线AP 与平面ABG 所成角的正弦值为10535.(2023·河北衡水·衡水市第二中学校考三模)如图,在四棱锥P -ABCD 中,AB ∥CD ,CP ⊥CD ,CD =2AB =2,AP =AC =AD .(1)证明:平面PBC ⊥平面PCD ;(2)已知CP =2BC =2,DQ =λDP ,λ∈0,1 .若平面ABP 与平面ACQ 夹角的余弦值为36,求λ的值.(2023·河北·校联考三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.(2023·河北沧州·校考模拟预测)如图,在斜三棱柱ABC-A1B1C1中,AA1=AB,AB1⊥A1C,AB1的中点为O,BC的中点为D.(1)证明:OD∥平面ACC1A1;(2)若∠ACB=90°,AB1=B1C,AC=2BC=4,求平面ACC1A1与平面ABC所成角的大小.(2023·山东济南·校考模拟预测)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF =60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.(2023·山东·山东师范大学附中校考模拟预测)矩形ABCD所在平面与等腰梯形ACEF所在平面互相垂直,EF⎳AC,EF=12AC,直线AF与平面ABCD所成角为60°,EF=AB=2.(1)求平面BDE与平面ABCD夹角的余弦值;(2)线段AF上任意一点到平面BDE的距离是否为定值?如果是,则求出定值,否则说明理由.(2023·山东菏泽·山东省鄄城县第一中学校考三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.。
【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。
专题18 立体几何综合【母题来源】2021年高考乙卷【母题题文】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(1(2)14【试题解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得a =,故2BC a =; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-, 由111120220m AM y mAP z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =, 设平面PBM 的法向量为()222,,n x yz =,2BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n ⋅<>===⨯⋅, 所以,270sin ,1cos ,14m n m n <>=-<>= 因此,二面角A PM B --的正弦值为14. 【点睛】 思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.【命题意图】高考对本部分内容的考查以能力为主,重点考查线面关系、面面关系、线面角及二面角的求解,考查数形结合的思想,空间想象能力及运算求解能力等.【命题方向】高考对该部分内容的考查主要有两种形式:一是利用立体几何的知识证明线面关系、面面关系;二是考查学生利用空间向量解决立体几何的能力,考查空间向量的坐标运算,以及平面的法向量等,难度属于中等偏上,解题时应熟练掌握空间向量的坐标表示和坐标运算,把空间立体几何问题转化为空间向量问题.【得分要点】1.直线与平面、平面与平面的平行与垂直的向量判定方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则(1)线面平行:l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0;(2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2;(3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3;(4)面面垂直:α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.利用向量求异面直线所成的角把角的求解转化为向量运算,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=||||AC BDAC BD ⋅⋅.注意:两条异面直线所成的角α不一定是两直线的方向向量的夹角β,即cos α=|cos β|.3.利用向量求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 3,b 3,c 3),直线l 与平面α的夹角为π20θθ⎛⎫≤≤ ⎪⎝⎭,则||sin |cos ,|||||θ⋅==〈〉a a a μμμ. 4.利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),平面α,β的夹角为θ(0≤θ≤π),则|||cos ||cos ,|||||θ⋅==〈〉v v v μμμ. 5.用向量解决探索性问题的方法(1)确定点在线段上的位置时,通常利用向量共线来求.(2)确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标.(3)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.(2021·重庆高三其他模拟)已知正方体1111ABCD A BC D -中,,E F 分别为棱11,DD B B 的中点.(1)求证;1,,,A E C F 四点共面;(2)求二面角11A EB C --的余弦值.2.(2021·普宁市普师高级中学高三其他模拟)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,90BAD ∠=,2AD BC =,M 为PD 的中点.(1)证明://CM 平面PAB ;(2)若PBD △是等边三角形,求二面角A PB M --的余弦值.3.(2021·上海复旦附中高三其他模拟)如图,在三棱锥A BCD -中,ABC 是正三角形,ADC 是等腰直角三角形,90ADC ∠=,2AB BD ==.(1)求证:AC BD ⊥;(2)若点E 为BD 的中点,求BD 与平面ACE 所成角的大小.4.(2021·山东高三其他模拟)在正六棱柱111111ABCDEF A BC D E F -中,122AA AB ==.(1)求BC 到平面11ADC B 的距离;(2)求二面角11B AD E --的余弦值.5.(2021·沈阳市·辽宁实验中学高三二模)已知四棱锥P ABCD -的底面是菱形,对角线AC 、BD 交于点O ,4OP OA ==,3OB =,OP ⊥底面ABCD ,设点M 满足()01PM MC λλ=<<.(1)若三棱锥P MBD -体积是169,求λ的值;(2)若直线PA 与平面MBD ,求λ的值.6.(2021·山西高三三模(理))如图,正三棱柱111ABC A B C -中,4AB =,1AA =M ,N 分别是棱11AC ,AC 的中点,E 在侧棱1AA 上,且12AE EA =.(1)求证:平面MEB ⊥平面BEN ;(2)求平面BEN 与平面BCM 所成的锐二面角的余弦值.7.(2021·辽宁铁岭市·高三二模)如图,四棱锥P ABCD -中,90ABC BCD ∠=∠=︒,22AB PB BC CD ====,PAD △是正三角形.(1)求证:平面PAD ⊥底面ABCD .(2)点E 在棱PB 上,且直线CE 与底面ABCD 所成角为30°,求二面角E AC D --的余弦值.8.(2021·北京高考真题)已知正方体1111ABCD A BC D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --111A M A B 的值.9.(2021·上海市崇明中学高三其他模拟)如图,在四棱锥P ABCD -中,PC ⊥底面,ABCD ABCD 是直角梯形,,//AD DC AB DC ⊥,222AB AD CD ===,点E 是PB 的中点.(1)证明:直线BC ⊥平面PAC ;(2)者直线PB 与平面PACP ACE -的体积.10.(2021·四川成都市·树德中学高三其他模拟(理))如图所示,在三棱柱111ABC A B C -中,AB BC =,点1A 在平面ABC 的射影为线段AC 的中点,侧面11AAC C 是菱形,过点1B ,B ,D 的平面α与棱11AC 交于点E .(1)证明四边形1BB ED 为矩形;(2)若AB 与平面11AAC C 1CB 与平面11ABB A 所成角的正弦值.11.(2021·新安县第一高级中学高三其他模拟(理))已知正三角形ABC 的边长为6,点E 、D 分别是边AB 、AC 上的点,且满足12AE CD EB DA ==(如图1),将ADE 沿DE 折起到1A DE 的位置(如图2),且使1A E 与底面BCDE 成60角,连接1A B ,1AC .(1)求证:平面1A BE ⊥平面BCDE ;(2)求二面角1A CD E --的余弦值.12.(2021·福建高三三模)如图,在平面四边形ABCD 中,BC CD =且BC CD ⊥,分别将ABD △、CBD 沿直线BD 翻转为EBD △、FBD (E ,F 不重合),连结AE ,EF ,EF BD ⊥.(1)求证:EB ED =;(2)若5AB =,BC =E 在平面ABCD 内的正投影G 为ABD △的重心,求二面角A BE D --的余弦值.13.(2021·四川雅安市·雅安中学高二期中(理))如图,在四棱锥P ABCD -中,底面为边长为2的菱形,60,ABC PAB ∠=为正三角形,且平面PAB ⊥平面ABCD ,E 为线段AB 中点,M 在线段PD 上.(1)当M 是线段PD 中点时,求证://PB 平面ACM ;(2)当12PM MD =时,求二面角M EC D --的正弦值.14.(2021·河南郑州市·高二期末(文))开普勒说:“我珍视类比胜过任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密,”波利亚也曾说过:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”在选修1—2第二章《推理与证明》的学习中,我们知道,平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体等.如图,如果四面体D EFP -中棱DE ,DF ,DP 两两垂直,那么称四面体D EFP -为直角四面体.请类比直角三角形ABC (h 表示斜边上的高)中的性质给出直角四面体D EFP -中的两个性质,并给出证明.15.(2021·黑龙江大庆市·大庆实验中学高三其他模拟(理))已知正四棱柱1111ABCD A BC D -中,2AB =,14AA =.(1)求证:1BD AC ⊥;(2)求二面角11A AC D --的余弦值;(3)在线段1CC 上是否存在点P ,使得平面11ACD 平面PBD ,若存在,求出1CP PC 的值;若不存在,请说明理由.。
立体几何大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.3.(2022秋·广东肇庆·高二校考期中)如图在棱长为1的正方体1111ABCD A B C D -中,E 为11A B 的中点,F 为AB 的中点,H 为1DD 的中点,K 为1BB 的中点.(1)求直线1A H 到直线KC 的距离;(2)求直线FC 到平面1AEC 的距离.4.(2022秋·广东江门·高二校考期中)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.6.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形ABCD 中,,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.7.(2022秋·广东江门·高二台山市第一中学校考期中)如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ==ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.9.(2022秋·广东江门·高二江门市第二中学校考期中)如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.10.(2022秋·广东阳江·高二校联考期中)图1是直角梯形ABCD ,//AB DC ,90,2,3,2D AB DC AD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.11.(2022秋·广东深圳·高二深圳外国语学校校考期中)如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,E 为侧棱PC的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C的值;若不存在,请说明理由.13.(2022秋·广东茂名·高二统考期中)在直四棱柱1111ABCD A B C D -中,四边形ABCD 为平行四边形,M为1AA 的中点,1BC BD ==,1AB AA ==(1)求证:DM ⊥平面1BDC ;(2)求平面1MBC 与平面1D B C 夹角的余弦值.14.(2022秋·广东揭阳·高二惠来县第一中学校考期中)已知四棱锥P ABCD -中,底面ABCD 是矩形,且2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PM PA的值;若不存在,说明理由.15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.16.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.17.(2022秋·广东珠海·高二珠海市第二中学校考期中)如图1,在MBC 中,24BM BC BM BC ==⊥,,,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --求出PG PC 的值;若不存在,请说明理由.18.(2022秋·广东广州·高二广州市第八十九中学校考期中)如图,已知梯形ABCD ,AB //CD ,,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.19.(2022秋·广东东莞·高二校考期中)如图,在长方体ABCD-A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动.(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.21.(2022秋·广东广州·高二统考期中)如图,在四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,PA =,G 为CD 的中点,E ,F 是棱PD 上两点(F 在E 的上方),且2EF =.(1)若BF //平面AEG ,求DE ;(2)当点F 到平面AEC 的距离取得最大值时,求直线AG 与平面AEC 所成角的正弦值.22.(2022秋·广东广州·高二校联考期中)在多面体ABCDEF 中,平面ABCD 为正方形,2AB =,3AE =,DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=> ,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.23.(2022秋·广东佛山·高二佛山市顺德区容山中学校考期中)如图,圆柱的轴截面ABCD 为正方形,点E 在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.24.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图,四棱锥P ABCD -的底面为菱形,,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PG CG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.25.(2022秋·广东江门·高二校考期中)如图甲,在矩形ABCD 中,2AB AD E ==为线段DC 的中点,ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.26.(2022秋·广东惠州·高二统考期中)如图,在四棱锥P ABMN -中,PNM △是边长为2的正三角形,AN NP ⊥,AN BM ∥,3AN =,1BM =,AB =C ,D 分别是线段AB ,NP 的中点.(1)求证:平面ANMB ⊥平面NMP ;(2)求直线CD 与平面ABP 所成角的正弦值.27.(2022秋·广东广州·高二校联考期中)如图,在四棱锥P ABCD -中,平面PAD ⊥平面,2,4,ABCD PA AD BD AB ====,BD 是ADC ∠的平分线,且BD BC ⊥.(1)若点E 为棱PC 的中点,证明:BE 平面PAD ;(2)已知二面角P AB D --的大小为60 ,求平面PBD 和平面PCD 的夹角的余弦值.28.(2022秋·广东珠海·高二珠海市斗门区第一中学校考期中)如图,等腰直角△ACD 的斜边AC 为直角△ABC 的直角边,E 是AC 的中点,F 在BC 上.将三角形ACD 沿AC 翻折,分别连接DE ,DF ,EF ,使得平面DEF ⊥平面ABC .已知2AC =,30B ∠=︒,(1)证明:EF ∥平面ABD ;(2)若DF =A BC D --的余弦值.29.(2022秋·广东阳江·高二统考期中)如图,在四面体ABCD 中,ABC 是正三角形,ACD 是直角三角形,ABD CBD ∠=∠,AB =BD .(1)求证:平面ACD ⊥平面ABC ;(2)若DE mDB = ,二面角D AE C --的余弦值为17,求m .30.(2022春·广东广州·高二执信中学校考期中)已知△ABC 是边长为6的等边三角形,点M ,N 分别是边AB ,AC 的三等分点,且13AM AB =,13CN CA =,沿MN 将△AMN 折起到A MN '△的位置,使90A MB '∠=︒.(1)求证:A M '⊥平面MBCN ;(2)在线段BC 上是否存在点D ,使平面A ND '与平面A MB '所成锐二面角的余弦值为13若存在,设()0BD BC λλ=> ,求λ的值;若不存在,说明理由.立体几何大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.(2)以AD 方向为x 轴正方向,妨设正方体边长为1,则()0,0,0A 面1AD E 的法向量为(),,n x y z = ,则设直线1D C 与平面1AD E 所成角为2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.则()()()0,0,0,1,0,0,0,1,0,C O B B (,1,0),(0,,0)E m F m ,(1,A F '=- 则(1)(1)11A F C E m m ''⋅=-+-⨯+ ∴A F C E ''⊥ ,故A F C E ''⊥.(2)由(1)知1BB '=,而B BEF V '-故当S 取到最大值时,三棱锥111111的中点,F 为AB的中点,H为1DD的中点,K为1BB的中点.(1)求直线1A H到直线KC的距离;(2)求直线FC到平面1AEC的距离.【详解】(1)长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.【详解】(1)以D 为原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),(0,0,2),(2,0,0),(2,2,0),(0,2,0),(1,1,1),G P A B C F 明显面PCD 的一个法向量为()1,0,0n =r ,又()0,1,1GF = ,()()1,0,00,1,10n GF ∴⋅=⋅= ,GF n ∴⊥ ,又GF ⊄面PCD ,//GF ∴面PCD ;(2)(1,0,2),(2,2,2)PG PB =-=- ,设平面PGB 的一个法向量为(,,)m a b c = ,00m PB m PG ⎧⋅=⎪∴⎨⋅=⎪⎩ ,即222020a b c a c +-=⎧⎨-=⎩,令1c =,则2,1a b ==-所以平面PGB 的一个法向量为(2,1,1)m =- ,又()2,0,0CB = ,所以点C 到平面PGB 的距离4263||411CB m d m ⋅===++ 5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.【详解】(1)∵AB ⊥平面PAD ,PE ⊂平面PAD ,∴PE AB ⊥,又∵PAD 是等腰直角三角形,E 是斜边AD 的中点,∴PE AD ⊥,又∵AD ⊂平面ABCD ,AB ⊂平面ABCD ,AB AD A ⋂=,∴PE ⊥平面ABCD又∵BD ⊂平面ABCD ,∴PE BD ⊥;因为22PA AB ==,则()000E ,,,(0,1,1)B ,()010A ,,则(0,1,1)EB = ,(1,0,0)EP = ,PA 设平面PBE 的一个法向量为(n = 00EB n y z EP n x ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取1y =,则z 设点A 到平面PBE 的距离为h ,则∴点A 到平面PBE 的距离为226.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.【详解】(1)如图,作,FG EA AG EF ,连接EG ,AF ,BG ,∵EF CD ∥且EF AG ∥,AG CD ∴ ,即点G 在平面ABCD 内,所以四边形CDAG 为平行四边形,四边形AEFG 为平行四边形.又90ADC ∠=︒,BG AG ∴⊥,因为⊥AE 平面ABCD ,BG ⊂平面ABCD ,所以AE BG ⊥,又因为AG AE A = ,,AG AE ⊂平面AEFG ,∴BG ⊥平面AEFG ,因为AF ⊂平面AEFG ,BG AF ∴⊥.AE AG ⊥ ,所以平行四边形AEFG 为矩形,又因为AE EF =,所以矩形AEFG 为正方形,所以AF EG ⊥,又因为BG EG G = ,,BG EG ⊂平面BGE ,所以AF ⊥平面BGE ,因为BE ⊂平面BGE ,所以AF BE ⊥.(2)由(1)知AG ,AD ,AE 为三条两两互相垂直的直线,所以以A 为原点,AG 为x 轴,AD 为y 轴,AE 为z 轴建立空间直角坐标系A xyz -,如图,则(0,0,0),(1,0,0),(0,0,1),(0,2,0)A G E D ,设()001,,0,[1,2]M y y ∈,∴(0,2,1)ED =- ,()01,2,0DM y =- ,设平面EMD 的法向量为(,,)n x y z = ,则00n ED n DM ⎧⋅=⎪⎨⋅=⎪⎩,即()02020y z x y y -=⎧⎨+-=⎩,令1y =,得02,2z x y ==-,所以平面EMD 的法向量为()02,1,2n y =- ,又⊥AE 平面ABCD ,即⊥AE 平面AMD ,ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)侧棱2PA PD ==,底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.【详解】(1)PA PD = ,O 为AD 的中点,PO AD ∴⊥,侧面PAD ⊥底面ABCD ,侧面PAD ⋂底面ABCD AD =,PO ⊂平面PAD ,PO ∴⊥平面ABCD ;(2) 底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,OC AD ∴⊥,又PO ⊥平面ABCD ,∴以O 为原点,OC 所在直线为x 轴,OD 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,易得平面PAD 的法向量(1,0,0m =设平面PCD 的法向量(,,n x y z = 设二面角C PD A --夹角为θ,则1cos 3m n m n θ⋅==⋅ ,则sin θ2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.(2)由题意,可构建如下图示的空间直角坐标系,令2x =,故(2,1,1)m =- ,又(1,0,0)n = 是面PAD 的一个法向量,所以26cos ,3||||6m n m n m n ⋅<>=== 故平面PMC 与平面PAD 的夹角的余弦值10.(2022秋·广东阳江·高二校联考期中)图90,2,3,2D AB DCAD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.(2)如图②,以D 为坐标原点,DA ,DE 的方向分别为空间直角坐标系.D xyz -则(0,0,0),(3,0,0),(3,2,0),(0,1,0)D A BE ,F 33(,,0)22,133(,,3)22C ,31(,,3)BC =-- ()3,0,0DA = ,DC = 正方形,E 为侧棱PC 的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.【详解】(1)因为底面ABCD 为矩形,所以//AB CD .又AB ⊄平面PCD ,且CD ⊂平面PCD ,所以//AB 平面PCD .又AB ⊂平面ABE ,且平面ABE ⋂平面PCD EF =,所以//AB EF .又因为//AB CD ,所以//CD EF因为E 为PC 的中点,所以F 为PD 的中点.(2)如图所示,以A 为原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则(2,0,0),(2,2,0),(0,0,2),(1,1,1)B C P E ,设(,,)n x y z = 是平面ABE 的法向量,则0,0n AE n AB ⋅=⋅= ,即200x x y z =⎧⎨++=⎩令1y =,则平面ABE 的一个法向量为(0,1,1)n =- 又因为(0,0,2)AP = ,所以点P 到平面ABE 的距离为222|||00+01+21|2||011AP n n ⋅⨯⨯⨯==++ (-),即点P 到平面ABE 的距离为2.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C 的值;若不存在,请说明理由.【详解】(1)如图1,连接BD ,由题意,△ADB 是正三角形,设M 是AB 的中点,则DM ⊥AB ,所以DM ⊥DC ,又DD 1⊥平面ABCD ,所以DM ⊥平面DD 1C 1C.以D 为原点,建立如图所示的空间直角坐标系,则D (0,0,0),D 1(0,0,3),C (0,2,0),B (3,1,0),则BC =(-3,1,0),1BD =(-3,-1,3).显然,平面D 1CD 的一个法向量是()1,0,0m = ,设平面BD 1C 的法向量为n = (x ,y ,z ),则1=30,330,n BC x y n BD x y z ⎧⋅-+=⎪⎨⋅=--+=⎪⎩ 令x =3,得n = (3,3,2),设二面角B -D 1C -D 的平面角为θ,由几何体的特征可知θ为锐角,则cos ||||m n m n θ⋅=⋅=33941++⨯=34.故二面角B -D 1C -D 的平面角的余弦值为34.(2)设11D P D C=λ,即有11λD P D C =,其中01λ≤≤由(1)知D 1(0,0,3),C (0,2,0),则()10,2,3D C =- ,所以P (0,2,33)λλ-+,又D (0,0,0),B (3,1,0),1111为1AA的中点,1BC BD==,1AB AA==(1)求证:DM⊥平面1BDC;(2)求平面1MBC与平面1D B C夹角的余弦值.则()0,0,0D,21,0,2M⎛⎫⎪⎪⎝⎭,2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【详解】(1)解:因为PAD 是正三角形,O 为AD 的中点,所以PO AD ⊥,因为CD ⊥平面PAD ,PO ⊂平面PAD ,PO CD ∴⊥,,,AD CD D AD CD Q Ç=Ì平面ABCD ,PO ∴⊥平面ABCD ,因为AD BC ∥且AD BC =,O 、G 分别为AD 、BC 的中点,所以AO BG ∥且AO BG =,所以四边形ABGO 为平行四边形,15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.则()0,0,0O ,()23,0,0A ,()10,2,4D -,()1123,2,0B C =-∴- ,AB P 为1AD 的中点,则(P()3,3,2BP =∴- ,(BC =- 则33202320n BP x y z n BC x y ⎧⋅=-+=⎪⎨⋅=--=⎪⎩4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.【详解】(1) 平面ABC ⊥平面BCDE ,平面ABC ⋂平面BCDE BC =,CD BC ⊥,BE ⊂平面BCDE ,CD \^平面ABC ,则以C 为原点,,,CA CB CD正方向为,,x y z 轴,可建立如图所示的空间直角坐标系,则()0,0,0C ,()22,0,0A()22,0,23AD ∴=- ,DE设平面ADE 的法向量为n =则2223220AD n x z DE n y ⎧⋅=-+=⎪⎨⋅==⎪⎩DB n ⋅ ,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --的余弦值为10若存在,求出PG PC 的值;若不存在,请说明理由.由题意得(0,1,0),(0,0,2),(2,0,0),(2,2,0),D P B C 所以(1,0,1)DE = ,(2,0,2),PB PD =-=设平面PBD 的法向量(,,)n x y z =,则22020PB n x z PD n y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,解得(1,2,1)n = 设直线DE 与平面PBD 所成角为θ,n DE ⋅,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.令(03)FM λλ=≤≤,则(3,0,0),(0,1,0),(,0,3),(3,0,A B M E λ1111AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.延长DM交AB于点G,可证点G是线段再过点G作GF//AB1与线段BB1交于点20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体11111 AB=,点E在棱AB上移动.2(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.【详解】(1)以D 为坐标原点,分别以1DA DC DD 、、所在直线为x y z 、、轴,建立如图的坐标系,则()()()()()110,0,0,1,0,1,0,0,1,1,0,00,2,0D A D A C ,,所以()11,0,1DA = ,设()1,,0E t ,所以()11,,1D E t =- ,所以11110DA D E ⋅=-= ,故11DA D E ⊥ 所以11D E A D ⊥;(2)设平面1ACD 的法向量为(),,n x y z =r,则()()11,0,1,1,2,0AD AC =-=-,由10,0n AD n AC ⋅=⋅=,得020x z x y -+=⎧⎨-+=⎩,令1x =得11,,12n ⎛⎫= ⎪⎝⎭;(3)当E 为AB 的中点时,()1,1,0E ,则()11,1,1D E =-,由点到平面的距离公式,得()12221111111231112n D E d n ⨯+⨯+⨯-⋅===⎛⎫++ ⎪⎝⎭,边长为2的正方形,PA=,G为CD的中点,E,F是棱PD上两点(F在E的上方),且2EF=.(1)若BF//平面AEG,求DE;(2)当点F到平面AEC的距离取得最大值时,求直线AG与平面AEC所成角的正弦值.则()0,0,0A ,()2,2,0C ,()1,2,0G ,因为2EF =,所以EFC 的面积为定值,又点A 到平面EFC 的距离为定值,所以三棱锥A -EFC 的体积为定值,即三棱锥所以要使点F 到平面AEC的距离最大,则AEC △即E 到AC 的距离最小时,点F 到平面AEC 的距离最大,设()0,2,3E t t -,则()0,2,3AE t t =- ,AC22AE AC⎛⎫⋅ DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=>,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.【详解】(1)∵2AB AD ==,3AE =,5DE =,∴222AD DE AE +=,即AD DE ⊥,又∵在正方形ABCD 中,AD DC ⊥,且DE DC D ⋂=,DE ⊂平面EDC ,DC ⊂平面EDC ,∴AD ⊥平面EDC ,又AD ⊂平面ABCD ,∴平面ABCD ⊥平面EDC ;(2)由(1)知,EDC ∠是二面角E AD C --的平面角,作OE CD ⊥于点O ,则cos 1OD DE EDC =⋅∠=,2OE =,且平面ABCD ⊥平面EDC ,平面ABCD ⋂平面EDC CD =,OE ⊂平面EDC ,∴OE ⊥平面ABCD ,取AB 中点M ,连接OM ,则OM CD ⊥,如图,建立空间直角坐标系,则()2,1,0A -,()2,1,0B ,()0,1,0D -,()0,1,0C ,()0,0,2E ,()2,2,0DB = ,()2,2,0EF λλ=,()0,1,2EC =- ,设平面CEF 的一个法向量为(),,m x y z=,则20220m EC y z m EF x y λλ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11,1,2m ⎛⎫=-- ⎪⎝⎭ ,()22,21,2BF λλ=--,()0,2,0AB = ,设平面ABF 的一个法向量为(),,n a b c =,在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.【详解】(1)由题知AB ⊥面,BEC EC ⊂面BEC ,则AB EC ⊥,由BC 为底面圆的直径,则EC BE ⊥,由BE AB B =I ,,BE AB ⊂面ABE ,则(220,,,1,33BM CA ⎛⎫=-=-+ ⎪ ⎪⎝⎭设()(,,2,CN CA λλλλλ==-∈设面BMN 的法向量为(,,n x y z =r 13λ-⎛⎫,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PGCG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.则()()(0,0,0,3,1,0,3,1,0A BC-()31,,1,0,1,122AE AF ⎛⎫=-= ⎪ ⎪⎝⎭ (0,0,AG AP PG AP PC λ=+=+=设平面AEF 的法向量(,,m a b =ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.【详解】(1)证明:连接BE ,取线段AE 的中点O ,连接,DO OC ,在Rt ADE V 中,DA DE ==,1DO AE DO ∴⊥=,在OEC △中,11,2OE AE ==()()()1,0,1,1,1,0,2,0,0,D C A B -平面ADE 的法向量()10,1,0n =,在平面直角坐标系xOy 中,直线设H 的坐标为(),2,0t t -,()(。
课题:立体几何综合一、读与查读:线面、面面平行垂直判定与性质查:定理的符号表示2. 小题回顾(1).若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为 .【答案】【解析】如图,设底面圆的半径为r ,高为h ,母线长为l ,则r=1,S 底=πr 2=π.S 侧=πrl=2S 底=2π,所以l=2.又因为h==,所以V=S 底·h=×π×=.(2).如图,设三棱锥P -ABC 的顶点P 在平面ABC 上的射影是H ,给出下列四个命题:①若P A ⊥BC ,PB ⊥AC ,则H 是△ABC 的垂心; ②若P A ,PB ,PC 两两互相垂直,则H 是△ABC 的垂心;③若∠ABC=90°,H 是AC 的中点,则P A=PB=PC ; ④若P A=PB=PC ,则H 是△ABC 的外心. 则其中正确的命题是 .(填序号)3π22-l r 3131333π3二、导与学1.面面平行的判定例1.如图,在四棱锥E -ABCD 中,△ABD 为正三角形,EB=ED ,且AB ⊥BC ,M ,N 分别为线段AE ,AB 的中点,求证:平面DMN ∥平面BEC.(例3)【思维引导】分别证MN ∥平面BCE 和DN ∥平面BCE ,再利用面面平行的判定定理进行证明.【解答】因为N 是AB 的中点,△ABD 为正三角形,所以DN ⊥AB. 因为BC ⊥AB ,所以DN ∥BC.因为BC 平面BCE ,DN 平面BCE , 所以BC ∥平面BCE.又因为M 为AE 的中点,所以MN ∥BE. 因为MN 平面BCE ,BE 平面BCE , 所以MN ∥平面BCE.因为MN ∩DN=N ,MN ,DN 平面MND , 所以平面MND ∥平面BCE.【精要点评】在利用面面平行的判定定理进行证明时,不能直接根据DN ∥BC 和MN ∥BE 得出平面DMN ∥平面BEC.变式训练1:)如图,在三棱柱ABC -A 1B 1C 1中,B 1C ⊥AB ,侧面BCC 1B 1为菱形. (1)求证:平面ABC 1⊥平面BCC 1B 1;(2)如果点D ,E 分别为A 1C 1,BB 1的中点,求证:DE ∥平面ABC 1.⊂⊄⊄⊂⊂(第11题)(1) 因为三棱柱ABC -A 1B 1C 1的侧面BCC 1B 1为菱形,所以B 1C ⊥BC 1.又B 1C ⊥AB ,且AB ,BC 1为平面ABC 1内的两条相交直线,所以B 1C ⊥平面ABC 1. 因为B 1C 平面BCC 1B 1, 所以平面ABC 1⊥平面BCC 1B 1.(2) 方法一:如图(1),取AA 1的中点F ,连接DF ,FE.(第11题(1))因为D 为A 1C 1的中点,所以DF ∥AC 1,EF ∥AB. 因为DF 平面ABC 1,AC 1平面ABC 1, 所以DF ∥平面ABC 1. 同理,EF ∥平面ABC 1.因为DF ,EF 为平面DEF 内的两条相交直线,所以平面DEF ∥平面ABC 1. 又因为DE 平面DEF , 所以DE ∥平面ABC 1.方法二:如图(2),连接DC ,EC 分别交AC 1,BC 1于点N ,M.(第11题(2))⊂⊄⊂⊂在平行四边形AA 1C 1C 中,△DNC 1∽△CNA ,所以=. 又D 为A 1C 1的中点,AC=A 1C 1,所以=. 同理,=,所以=,所以DE ∥MN. 又MN 平面ABC 1,DE 平面ABC 1, 所以DE ∥平面ABC 1.方法三:如图(3),连接A 1E 并延长交AB 的延长线于点K ,连接C 1K.(第11题(3))在平面AA 1B 1B 中,E 为BB 1的中点, 所以BE=B 1E.又AB ∥A 1B 1,所以∠BKE=∠B 1A 1E ,∠EBK=∠EB 1A 1, 所以△BKE ≌△B 1A 1E , 所以A 1E=EK.又D 为A 1C 1的中点,所以DE ∥C 1K. 又C 1K 平面ABC 1,DE 平面ABC 1, 所以DE ∥平面ABC 1.DN NC 1C DAC DN NC 12EM MC 12DN NC EMMC ⊂⊄⊂⊄2.直线与平面垂直的判定例2.如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC=CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E.(1)求证:DE ∥平面AA 1C 1C ; (2)求证:BC 1⊥AB 1.(第4题)【解答】(1)由题意知,E 为B 1C 的中点,又D 为AB 1的中点,所以DE ∥AC. 又因为DE 平面AA 1C 1C ,AC 平面AA 1C 1C ,所以DE ∥平面AA 1C 1C. (2)因为棱柱ABC -A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC.因为AC 平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1平面BCC 1B 1,BC 平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1.又BC 1平面BCC 1B 1,所以BC 1⊥AC. 因为BC=CC 1,所以矩形BCC 1B 1是正方形, 所以BC 1⊥B 1C.因为AC ,B 1C 平面B 1AC ,AC ∩B 1C=C , 所以BC 1⊥平面B 1AC.又AB 1平面B 1AC ,所以BC 1⊥AB 1.⊄⊂⊂⊂⊂⊂⊂⊂变式训练2:如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD=2AB ,平面P AD ⊥平面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点.(1)求证:P A ⊥平面ABCD ; (2)求证:平面BEF ⊥平面PCD.(例1)【思维引导】(1)直接利用两个平面垂直的性质定理是关键;(2)线面垂直是证明面面垂直的前提,证明线面垂直是关键,特别要注意表述的规范性.【解答】(1)因为平面P AD ⊥平面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥平面ABCD.(2)因为AB ∥CD ,CD=2AB ,E 为CD 的中点, 所以ABED ,所以四边形ABED 为平行四边形.又因为AB ⊥AD ,所以BE ⊥CD ,AD ⊥CD. 由(1)知P A ⊥平面ABCD ,所以P A ⊥CD. 又P A ∩AD=A ,所以CD ⊥平面P AD. 又PD 平面P AD ,所以CD ⊥PD. 因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF ,所以CD ⊥EF . 又BE ∩EF=E ,所以CD ⊥平面BEF . 又因为CD 平面PCD , 所以平面BEF ⊥平面PCD.【精要点评】(1)判定两个平面垂直的方法: ①利用定义:证明二面角是直二面角; ②利用判定定理:a α,a ⊥βα⊥β.(2)在证明两平面垂直时,一般先从现有直线中寻找平面的垂线,若图中不存在这样的垂线,则可通过作辅助线来解决.(3)证明线面垂直是证明面面垂直的前提与本质.⊂⊂⊂⇒三、教融会贯通 能力提升如图,在三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为正方形,四边形BB 1C 1C 为菱形,平面AA 1B 1B ⊥平面BB 1C 1C.(1)求证:BC ∥平面AB 1C 1; (2)求证:B 1C ⊥AC 1;(3)设点E ,F ,H ,G 分别是B 1C ,AA 1,A 1B 1,B 1C 1的中点,试判断E ,F ,H ,G 四点是否共面,并说明理由.【思维引导】【规范解答】(1)在菱形BB 1C 1C 中,BC ∥B 1C 1.因为BC 平面AB 1C 1,B 1C 1平面AB 1C 1,所以BC∥平面AB 1C 1.………………………………………………………………………4分(2)如图,连接BC 1.在正方形ABB 1A 1中,AB ⊥BB 1.⊄⊂因为平面AA 1B 1B ⊥平面BB 1C 1C ,…………………………………………………………7分平面AA 1B 1B ∩平面BB 1C 1C=BB 1,AB 平面ABB 1A 1, 所以AB ⊥平面BB 1C 1C.因为B 1C 平面BB 1C 1C ,所以AB ⊥B 1C.又在菱形BB 1C 1C 中,BC 1⊥B 1C.因为BC 1平面ABC 1,AB 平面ABC 1,BC 1∩AB=B , 所以B 1C ⊥平面ABC 1.又因为AC 1平面ABC 1,所以B 1C ⊥AC 1.…………………………9分 (3)E ,F ,H ,G 四点不共面.理由如下:……………………………10分 因为E ,G 分别是B 1C ,B 1C 1的中点,所以GE ∥CC 1. 又因为CC 1平面AA 1C 1C ,GE 平面AA 1C 1C , 所以GE ∥平面AA 1C 1C.同理可证,GH ∥平面AA 1C 1C.………………………………………11分 因为GE 平面EHG ,GH 平面EHG ,GE ∩GH=G , 所以平面EHG ∥平面AA 1C 1C.因为F ∈平面AA 1C 1C ,所以F 平面EHG ,即E ,F ,H ,G 四点不共面.……………14分【精要点评】熟练掌握空间直线与直线、直线与平面、平面与平面的判定定理及性质定理是解决此类问题的基础,且需要同学们学会在“线∥线”、“线∥面”、“面∥面”、“线⊥线”、“线⊥面”、“面⊥面”之间灵活转化.⊂⊂⊂⊂⊂⊂⊄⊂⊂∉四、测1. 知识与方法2. 题组训练(1).如图,矩形ABCD 所在平面与直角三角形ABE 所在平面互相垂直,AE ⊥BE ,点M ,N 分别是AE ,CD 的中点. (1)求证:MN ∥平面BCE ; (2)求证:平面BCE ⊥平面ADE.(1) 取BE 的中点F ,连接CF ,MF . 因为M 是AE 的中点,所以MF ∥AB ,MF=AB.因为N 是矩形ABCD 边CD 的中点,所以NC ∥AB ,NC=AB , 所以MF ∥NC ,MF=NC , 所以四边形MNCF 是平行四边形, 所以MN ∥CF .又MN 平面BCE ,CF 平面BCE , 所以MN ∥平面BCE.(2) 因为平面ABCD ⊥平面ABE ,BC ⊥AB ,平面ABCD ∩平面ABE=AB ,BC 平面ABCD ,所以BC ⊥平面ABE. 因为AE 平面ABE ,所以BC ⊥AE. 又AE ⊥BE ,BC ∩BE=B , 所以AE ⊥平面BCE. 又因为AE 平面ADE ,1212⊄⊂⊂⊂⊂所以平面BCE ⊥平面ADE.(2). 如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,PB=PD ,P A ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连接OM. (1)求证:OM ∥平面P AD ; (2)求证:OM ⊥平面PCD.(1) 如图,连接AC.因为四边形ABCD 是平行四边形, 所以O 为AC 的中点.在△P AC 中,因为O ,M 分别是AC ,PC 的中点,所以OM ∥P A. 因为OM 平面P AD ,P A 平面P AD , 所以OM ∥平面P AD. (2) 如图,连接PO.因为O 是BD 的中点,PB=PD , 所以PO ⊥BD.又因为平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD=BD ,PO 平面PBD ,所以PO ⊥平面ABCD.因为CD 平面ABCD ,所以PO ⊥CD.⊄⊂⊂⊂又因为CD ⊥PC ,PC ∩PO=P ,PC 平面P AC ,PO 平面P AC ,所以CD ⊥平面P AC.因为OM 平面P AC ,所以CD ⊥OM.因为P A ⊥PC ,OM ∥P A ,所以OM ⊥PC.又因为CD 平面PCD ,PC 平面PCD ,CD ∩PC=C ,所以OM ⊥平面PCD.⊂⊂⊂⊂⊂。
高一数学立体几何综合试题1.如图所示,直观图四边形是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.B.C.D.【答案】A【解析】由题可得A¢D¢=A¢B¢=1,B¢C¢=1+,所以原平面图形中AD=1,AB=2,BC=1+,根据梯形的面积计算公式可得【考点】斜二测画法.2.定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.请对上面定理加以证明,并说出定理的名称及作用.【答案】证明过程详见解析.此定理是直线与平面平行的性质定理;定理的作用是由“线与面平行”判断或证明“线、线平行”.【解析】首先将定理翻译为数学语言,要证∥,只须证明与在同一平面内,且没有公共点,这由已知中的平行关系可得.试题解析:已知:∥.求证:∥.证明:如图:因为∥所以和没有公共点又因为在内,所以和也没有公共点,因为和都在平面内,且没有公共点,所以∥.此定理是直线与平面平行的性质定理.定理的作用是由“线与面平行”判断或证明“线、线平行”.【考点】1.直线与平面的概念;2.直线与直线平行的定义.3.如图,四边形中(图1),,中点为,将图1沿直线折起,使二面角为(图2)(1)过作直线平面,且平面=,求的长度。
(2)求直线与平面所成角的正弦值。
【答案】(1)(2)【解析】因为,中点为,连接AF,EF.∵∴AF⊥BD,∵,∴DB2+DC2=BC2,∴△BCD是以BC为斜边的直角三角形,BD⊥DC,∵平面,DB=2,∴EF为△BCD的中位线,∴EF∥CD,且EF=CD,∴EF⊥BD,EF=,∴∠AFE是二面角A-BD-C的平面角,∠AFE=60°.∴△ABD为等腰直角三角形,∴AF=BD=1,∴AE=,在直角三角形DFE中,.(2)以F为原点,FB所在直线为x轴,FE所在直线为y轴,平行于EA的直线为z轴,建立空间直角坐标系,则由(1)及已知条件可知B(1,0,0),E(0,,0),A(0,,),D(-1,0,0),C(-1,1,0),则=(1,-,-) ,=(0,-1,0),=(-1,-,-),。
高二数学立体几何综合试题答案及解析1.以正方体的任意4个顶点为顶点的几何形体有①空间四边形;②每个面都是等边三角形的四面体;③最多三个面是直角三角形的四面体;④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.【答案】①②④【解析】①只要不在同一平面上的四个点连结而成的四边形都是空间四边形. ②从一个顶点出发与它的三个对角面的顶点连结所成的四棱锥符合条件.最多有四个直角四面体.由一个顶点和又该点出发的两条棱的端点及一个对角面的定点四点即可.所以③不成立. ④显然成立.故选①②④.【考点】1.空间图形的判断.2.空间中线面间的关系.2.下列关于用斜二测画法画直观图的说法中,错误的是()A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆【答案】B【解析】选项.用斜二测画法画出的直观图是在平行投影下画出的空间图形,正确;选项.斜二测画法的规则中,已知图形中平行于轴的线段,在直观图中保持原长度不变;平行于轴的线段,长度为原来的一半.平行于轴的线段的平行性和长度都不变.故几何体的直观图的长、宽、高与其几何体的长、宽、高的比例不相同;选项.水平放置的矩形的直观图是平行四边形,正确;选项.水平放置的圆的直观图是椭圆,正确.故选【考点】斜二测画法画直观图.3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.【答案】(1)证明见解析;(2)1.【解析】(1)设线段的中点为,易得四边形为平行四边形,得,又,,,所以平面平面;(2)因为平面,所以是三棱柱的高,所以三棱柱的体积,通过计算即可得出三棱柱的体积.试题解析:(1) 设线段的中点为.和是棱柱的对应棱同理,和是棱柱的对应棱且且四边形为平行四边形,,平面平面(2)平面是三棱柱的高在正方形中,.在中,,三棱柱的体积.所以,三棱柱的体积.【考点】1.面面平行的判定定理;2.棱柱的体积.4.如图所示,三棱柱A1B1C1—ABC的三视图中,正(主)视图和侧(左)视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.(1)求证:B1C∥平面AC1M;(2)求证:平面AC1M⊥平面AA1B1B.【答案】 (1)由三视图可知三棱柱A1B1C1—ABC为直三棱柱,底面是等腰直角三角形,且∠ACB=90°.连结A1C,设A1C∩AC1=O,连结MO,由题意可知,得到MO∥B1C,进一步得到B1C∥平面AC1M.(2)利用已知得到C1M⊥A1B1,根据平面A1B1C1⊥平面AA1B1B,得到C1M⊥平面AA1B1B,达到证明目的:平面AC1M⊥平面AA1B1B.【解析】思路分析:首先,由三视图可知三棱柱A1B1C1—ABC为直三棱柱,底面是等腰直角三角形。
高二数学立体几何综合试题1.以正方体的任意4个顶点为顶点的几何形体有①空间四边形;②每个面都是等边三角形的四面体;③最多三个面是直角三角形的四面体;④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.【答案】①②④【解析】①只要不在同一平面上的四个点连结而成的四边形都是空间四边形. ②从一个顶点出发与它的三个对角面的顶点连结所成的四棱锥符合条件.最多有四个直角四面体.由一个顶点和又该点出发的两条棱的端点及一个对角面的定点四点即可.所以③不成立. ④显然成立.故选①②④.【考点】1.空间图形的判断.2.空间中线面间的关系.2.用斜二测画法作一个边长为2的正方形,则其直观图的面积为()A.B. 2C.4D.【答案】D【解析】用斜二测画法作一个边长为2的正方形,则其直观图与轴平行的长度不变其长度为2,与轴平行的一边长度变为原来其长度为1,相邻两边所成角是45°,所以其面积为.故选D【考点】斜二测画法3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.【答案】(1)证明见解析;(2)1.【解析】(1)设线段的中点为,易得四边形为平行四边形,得,又,,,所以平面平面;(2)因为平面,所以是三棱柱的高,所以三棱柱的体积,通过计算即可得出三棱柱的体积.试题解析:(1) 设线段的中点为.和是棱柱的对应棱同理,和是棱柱的对应棱且且四边形为平行四边形,,平面平面(2)平面是三棱柱的高在正方形中,.在中,,三棱柱的体积.所以,三棱柱的体积.【考点】1.面面平行的判定定理;2.棱柱的体积.4.已知四棱锥的底面是直角梯形,,,侧面为正三角形,,.如图所示.(1) 证明:平面;(2) 求四棱锥的体积.【答案】(1) 证明如下 (2)【解析】证明(1) 直角梯形的,,又,,∴.∴在△和△中,有,.∴且.∴.(2)设顶点到底面的距离为.结合几何体,可知.又,,于是,,解得.所以.【考点】直线与平面垂直的判定定理;锥体的体积公式点评:在立体几何中,常考的定理是:直线与平面垂直的判定定理、直线与平面平行的判定定理。
立体几何综合训练1. 一个长方体仓库从里面量约长10米,宽5米,高6米,如果放入棱长是2米的正方体木箱,至多可以放进多少个?【解答】分别从长、宽、高三个方向进行考虑:10÷2=5(个)长这个方向可以放5个;5÷2=2(个)……1(米),宽这个方向可以放2个;6÷2=3(个),高这个方向可以放3个,5×2×3=30(个),所以至多可以放30个。
2. 如图,用棱长是1厘米的立方体拼成如图所示的立体图形,这个立体图形的表面积是多少平方厘米?上、下底面:3×5×2=30(平方厘米)左、右侧面:6×2=12(平方厘米)前、后侧面:8×2=16(平方厘米)立体图形的表面积:30+12+16=58(平方厘米)3. 如图(单位:厘米),要将一个圆锥形的零件用一个长方体硬纸板的盒子包装起来,至少需要多少平方厘米的硬纸板?(接头处忽略不计)。
5×2=10(厘米),长=宽=高10(厘米)硬纸板面积=10×10×6=600(平方厘米)立体几何综合训练4. 如图,甲圆柱体容器是空的,乙长方体容器中水深6.28厘米,将容器乙中的水全部倒入甲容器后水深8厘米,则甲容器的底面半径是多少厘米?【解答】水从乙容器倒入甲容器体积不变,找准这一点。
水的体积=10×10×6.28=628(立方厘米)S甲=V÷h=628÷8=78.5(平方厘米)因为S甲=78.5=πr²,那么r²=78.5÷3.14=25=5²,则r=5(厘米)5. 用铁皮做一个如图所示的水管(单位:厘米),需用铁皮多少平方厘米?铁皮围成的物体的体积是多少?如图,把两根一样的水管拼接成一根圆柱形水管,r=18÷2=9(厘米),h=45+55=100(厘米)S铁皮=2mrh÷2=2×3.14×9×100÷2=2826(平方厘米)V=πr²h÷2=3.14×9²×100÷2=12717(立方厘米)立体几何综合训练 6. 如图是一个棱长为6厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个棱长1厘米的正方体,做成一种零件,问它的表面积是多少?体积是多少?原表面积=6×6×6=216(平方厘米)新增表面积=1×1×4×6=24(平方厘米) 零件的表面积=216+24=240(平方厘米) 原体积=6×6×6=216(立方厘米)减少的体积=1×1×1×6=6(立方厘米) 零件的体积=216-6=210(立方厘米)答:它的表面积是240平方厘米,体积是 210立方厘米。
高考数学最新真题专题解析—立体几何综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知正方体ABCD−A1B1C1D1,则()A. 直线BC1与DA1所成的角为90∘B. 直线BC1与CA1所成的角为90∘C. 直线BC1与平面BB1D1D所成的角为45∘D. 直线BC1与平面ABCD所成的角为45∘【答案】ABD【分析】本题主要考查直线与直线所成角及直线与平面所成角,属于中档题.【解答】解:如图,因为BC1⊥B1C,B1C//DA1,所以BC1⊥DA1,故A正确;对于选项B:因为直线BC1⊥平面CDA1B1,且CA1⊂平面CDA1B1,所以直线BC1⊥CA1,故B正确;对于选项C:连接A1C1与B1D1交于点O1,则∠O1BC1即为直线BC1与平面BB1D1D所成的角,sin∠O1BC1=O1C1BC1=12,所以∠O1BC1=30∘,故C错误;对于选项D:直线BC1与平面ABCD所成的角即为∠C1BC=45∘,所以D 正确.【母题来源】2022年新高考I卷【母题题文】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求二面角A−BD−C的正弦值.【答案】解:(1)设A到平面A1BC的距离为d,因为直三棱柱ABC−A1B1C1的体积为4,即可得S△ABC·AA1=4,故V A1−ABC =13S△ABC·AA1=43,又V A1−ABC =V A−A1BC=13S△A1BC·d=13×2√2×d=43,解得d =√2,所以A 到平面A 1BC 的距离为√2;(2)连接AB 1,因为直三棱柱ABC −A 1B 1C 1中,AA 1=AB , 故AA 1B 1B 为正方形,即AB 1⊥A 1B ,又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AB 1⊂平面ABB 1A 1, 故AB 1⊥平面A 1BC ,所以AB 1⊥BC ,又因为AA 1⊥BC ,AB 1,AA 1⊂平面ABB 1A 1,且AB 1∩AB 1=A , 故BC ⊥平面ABB 1A 1,则BC ⊥AB , 所以BB 1,AB,BC 三条直线两两垂直, 故如图可以以B 为原点建立空间直角坐标系,设AA 1=AB =a ,BC =b ,则A 1B =√2a ,由条件可得{12a ×b ×a =412×√2a ×b =2√2,解得{a =2b =2, 则B(0,0,0),C(2,0,0),A(0,2,0),A 1(0,2,2),A 1C 的中点D(1,1,1), 所以BA ⃗⃗⃗⃗⃗ =(0,2,0),BD ⃗⃗⃗⃗⃗⃗ =(1,1,1),BC ⃗⃗⃗⃗⃗ =(2,0,0) 设平面ABD 的一个法向量为n 1⃗⃗⃗⃗ =(x,y,z),{n1⃗⃗⃗⃗ ⋅BA⃗⃗⃗⃗⃗ =0n1⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0⇒{2y=0x+y+z=0,取n1⃗⃗⃗⃗ =(1,0,−1),同理可求得平面BCD的一个法向量为n2⃗⃗⃗⃗ =(0,1,−1)所以|cos<n1⃗⃗⃗⃗ ,n2⃗⃗⃗⃗ >|=|n1⃗⃗⃗⃗⃗ ·n2⃗⃗⃗⃗⃗ ||n1⃗⃗⃗⃗⃗ |·|n2⃗⃗⃗⃗⃗ |=12,所以二面角A−BD−C的正弦值为√32.【母题来源】2022年新高考II卷【母题题文】如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED,AB=ED=2FB,记三棱锥E−ABC,E−ACF,F−ABC的体积分别为V1,V2,V3,则()A. V3=2V2B. V3=2V1C. V3=V1+V2D. 2V3=3V1【答案】CD【解析】【分析】本题主要考查三棱锥的体积,属于基础题.【解答】解:设AB=ED=2FB=2,则V1=13×2×2=43,V2=13×2×1=23.连结BD交AC于M,连结EM、FM,则FM=√3,EM=√6,EF=3,故S△EMF=1 2⋅√3⋅√6=3√22,V3=13S△EMF×AC=2,V3=V1+V2,2V3=3V1.【母题来源】2022年新高考II卷【母题题文】如图,PO是三棱锥P−ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)证明:OE//平面PAC;(2)若∠ABO=∠CBO=30∘,PO=3,PA=5,求二面角C−AE−B正弦值.【答案】解:(1)法一:连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,作AB中点D,连接OD、DE,则有OD⊥AB,又AB⊥AC,所以OD//AC,又因为OD⊄平面PAC,AC⊂平面PAC,所以OD//平面PAC,又D、E分别为AB、PB的中点,所以,在△BPA中,DE//PA又因为平面PAC,PA⊂平面PAC,所以DE//平面PAC,又OD、DE⊂平面ODE,OD∩DE=D,所以平面ODE//平面PAC,又OE⊂平面ODE,所以OE//平面PAC;法二:(1)连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,又AB⊥AC,在Rt△ABF,O为BF中点,延长BO,交AC于F,连接PF,所以在△PBF中,O、E分别为BF、PB的中点,所以EO//PF,因为EO⊄平面PAC,PF⊂平面PAC,所以EO//平面PAC;(2)法一:过点D作DF//OP,以DB为x轴,DO为y轴,DF为z轴.建立如图所示的空间直角坐标系.因为PO=3,PA=5,由(1)OA=OB=4,又∠ABO=∠CBO=30∘,所以OD=2,DB=2√3,),所以P(0,2,3),B(2√3,0,0),A(−2√3,0,0),E(√3,1,32设AC=a,则C(−2√3,a,0),平面AEB的法向量设为n1⃗⃗⃗⃗ =(x1,y1,z1),直线AB的方向向量可设为a⃗=(1,0,0),直线DP⊂平面AEB,直线DP的方向向量为b⃗ =(0,2,3){a ⃗ ⋅n 1⃗⃗⃗⃗ =0b ⃗ ⋅n 1⃗⃗⃗⃗ =0,所以{x 1=02y 1+3z 1=0,所以x 1=0,设y 1=3,则z 1=−2,所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x 2,y 2,z 2),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n ⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=13√3=4√313, 二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113法二:(2)过点A 作AF//OP ,以AB 为x 轴,AC 为y 轴,AF 为z 轴 建立所示的空间直角坐标系.因为PO =3,PA =5,由(1)OA =OB =4,又∠ABO =∠CBO =30°,所以,AB =4√3,所以P(2√3,2,3),B(4√3,0,0), A(0,0,0),E(3√3,1,32),设AC =a ,则C(0,a,0),平面AEB 的法向量设为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AB ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{4√3x 1=03√3x 1+y 1+32z 1=0,所以x 1=0设z 1=−2,则y 1=3, 所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x,y,z),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n 2⃗⃗⃗⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=√1213√3=4√313二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113. 【命题意图】考察棱柱、棱锥棱台、圆柱、圆锥、圆台及其简单组合体的结构特征,能画出简单空间图形并能识别立体图形的模型,考察几何体中的点线面关系,考察线线、线面、面面之间的平行和垂直关系,考察异面直线所成的角,直线和平面所成的角,二面角的平面角等的求解,考察数形结合思想,空间想象力及逻辑推导能力。
立体几何综合应用一、填空题1.若等边ABC ∆的边长为,平面内一点M 满足1263CM CB CA =+,则M A M B ∙= _________2.在空间直角坐标系中,已知点A (1,0,2),B(1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________。
【解析】设(0,,0)M y 由222141(3)1y y ++=+--+可得1y =-故(0,1,0)M - 【答案】(0,-1,0)二、解答题3.(本小题满分12分)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12AD (I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; (III )求二面角A-CD-E 的余弦值。
如图所示,建立空间直角坐标系,点A 为坐标原点。
设,1=AB 依题意得(),,,001B (),,,011C (),,,020D (),,,110E (),,,100F .21121M ⎪⎭⎫⎝⎛,, (I )(),,,解:101BF -= (),,,110DE -=.2122100=∙++==于是所以异面直线BF 与DE 所成的角的大小为060.(II )证明:,,,由⎪⎭⎫ ⎝⎛=21121(),,,101-= ()0020=∙=,可得,,,.AMD CE A AD AM .AD CE AM CE .0AD CE 平面,故又,因此,⊥=⊥⊥=∙.CDE AMD CDE CE 平面,所以平面平面而⊥⊂(III )⎪⎩⎪⎨⎧=∙=∙=.0D 0)(CDE E u u z y x u ,,则,,的法向量为解:设平面 .111(1.00),,,可得令,于是==⎩⎨⎧=+-=+-u x z y z x又由题设,平面ACD 的一个法向量为).100(,,=v .3313100cos =∙++=∙=v u v u v u ,所以, 4.(本题满分15分)如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.证明:(I )如图,连结OP ,以O 为坐标原点,分别以OB 、OC 、OP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz -,则()0,0,0,(0,8,0),(8,0,0),(0,8,0),O A B C -(0,0,6),(0,4,3),P E -()4,0,3F ,由题意得,()0,4,0,G 因(8,0,0),(0,4,3)OB OE ==- ,因此平面BOE 的法向量为(0,3,4)n =,(4,4,3FG =--得0n FG ⋅= ,又直线FG 不在平面BOE 内,因此有//FG 平面BOE6.(本小题满分12分)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 。
(I )若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正值弦; (II )用反证法证明:直线ME 与 BN 是两条异面直线。
设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x,y,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N(0,1,0),可得MN =(-1,1,2). 又D A =(0,0,2)为平面DCEF 的法向量, 可得cos(MN ,D A 36-·所以MN 与平面DCEF 所成角的正弦值为cos 36=· ……6分(Ⅱ)假设直线ME 与BN 共面, ……8分 则A B ⊂平面MBEN ,且平面MBEN 与平面DCEF 交于EN 由已知,两正方形不共面,故AB ⊄平面DCEF 。
又AB//CD ,所以AB//平面DCEF 。
面EN 为平面MBEN 与平面DCEF 的交线, 所以AB//EN 。
又AB//CD//EF ,所以EN//EF ,这与E N ∩EF=E 矛盾,故假设不成立。
所以ME 与BN 不共面,它们是异面直线. ……12分 7.(13分)如图,四边形ABCD 是边长为1的正方形,MD ABCD ⊥平面,NB ABCD ⊥平面,且MD=NB=1,E 为BC 的中点(1) 求异面直线NE 与AM 所成角的余弦值(2) 在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由17.解析:(1)在如图,以D 为坐标原点,建立空间直角坐标D xyz -依题意,得1(0,0,0)(1,0,0)(0,0,1),(0,1,0),(1,1,0),(1,1,1),(,1,0)2D A M C B NE 。
1(,0,1),(1,0,1)2NE AM ∴=--=-cos ,||||NE AM NE AM NE AM <>==⨯,所以异面直线NE 与AM所成角的余弦值为10(2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN .(0,1,1)AN =,可设(0,,),AS AN λλλ==又11(,1,0),(,1,)22EA ES EA AS λλ=-∴=+=-.由ES ⊥平面AMN ,得0,0,ES AM ES AN ⎧=⎪⎨=⎪⎩即10,2(1)0.λλλ⎧-+=⎪⎨⎪-+=⎩ 故12λ=,此时11(0,,),||22AS AS == .经检验,当AS =时,ES ⊥平面AMN . 故线段AN 上存在点S ,使得ES ⊥平面AMN,此时2AS =. 8.(本小题满分12分)如图,直三棱柱111ABC A B C -中,,AB AC D ⊥、E 分别为1AA 、1B C 的中点,DE ⊥平面1BCC(I )证明:AB AC =(II )设二面角A BD C --为60°,求1B C 与平面BCD 所成的角的大小。
分析一:求1B C 与平面BCD 所成的线面角,只需求点1B 到面BDC 的距离即可。
19.(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)如题(19)图,在四棱锥S ABCD -中,AD BC 且AD CD ⊥;平面CSD ⊥平面ABCD ,,22CS DS CS AD ⊥==;E 为BS的中点,CE AS .求:(Ⅰ)点A 到平面BCS 的距离;(Ⅱ)二面角E CD A --的大小.(Ⅰ)如答(19)图2,以S(O)为坐标原点,射线OD,OC 分别为x 轴,y 轴正向,建立空间坐标系,设(,,)A A A A x y z ,因平面,,COD ABCD AD CD AD COD ⊥⊥⊥平面故平面即点A 在xoz 平面上,因此01A A y z AD ===uuu v,又22213,AA x AS x A +===uu v ,)因AD//BC ,故BC ⊥平面CSD ,即BCS 与平面 yOx 重合,从而点A 到平面BCS的距离为A x =. (Ⅱ)易知C(0,2,0),D(,0,0). 因E 为BS 的中点. ΔBCS 为直角三角形 ,知2BS CE ==uu v uuv设B(0,2, B Z ),B Z >0,则A Z =2,故B (0,2,2),所以E (0,1,1) .在CD 上取点G ,设G (11,,0x y ),使GE ⊥CD .由112,0),(,1,1),0CD GE x y CD GE =-=--+⋅=u u u v u u u v u u u v u u u v故112(1)0y --= ①又点G 在直线CD 上,即//CG CD uu u v uu u v ,由CG uu u v =(11,2,0x y -)122y -=- ②联立①、②,解得G=4(,0)33, 故GE uu u v=2(,,1)33--.又由AD ⊥CD ,所以二面角E -CD -A 的平面角为向量GE uu u v 与向量DA uu u v 所成的角,记此角为θ .因为GE uu u v(0,0,1),1,1DA DA GE DA ==⋅=uu u v uu u v uu u v uu u v,所以cos 2GE DA GE DAθ⋅==⋅uu u v uu u v uu u v uu u v 故所求的二面角的大小为6π. 作AG BD ⊥于G ,连GC ,则GC BD ⊥,AGC ∠为二面角A BD C --的平面角,60AGC ∠=︒.不妨设AC =则2,4AG G C ==.在RT ABD∆中,由AD AB BD AG ⋅=⋅,易得AD =.设点1B 到面B D C 的距离为h ,1B C 与平面BCD 所成的角为α。
利用11133B BC BCD S DE S h ∆∆⋅=⋅,可求得h=,又可求得1BC = 11s i n 30.2h B C αα==∴=︒ 即1B C 与平面BCD 所成的角为30.︒分析二:作出1B C 与平面BCD 所成的角再行求解。
如图可证得BC AFED ⊥面,所以面AFED BDC ⊥面。
由分析一易知:四边形AFED 为正方形,连AE DF 、,并设交点为O ,则E O B D C ⊥面,OC ∴为EC 在面B D C 内的射影。
ECO ∴∠即为所求。
以下略。
分析三:利用空间向量的方法求出面BDC 的法向量n,则1B C 与平面BCD 所成的角即为1BC与法向量n 的夹角的余角。
具体解法详见高考试题参考答案。
总之在目前,立体几何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。
命题人在这里一定会兼顾双方的利益。
9.(本小题共14分)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上. (Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当PD =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.【解法2】如图,以D 为原点建立空间直角坐标系D xyz -, 设,,AB a PD h ==则()()()()(),0,0,,,0,0,,0,0,0,0,0,0,A a B a a C a D P h ,(Ⅰ)∵()()(),,0,0,0,,,,0AC a a DP h DB a a =-==,∴0,0AC DP AC DB ⋅=⋅=,∴AC ⊥DP ,AC ⊥DB ,∴AC ⊥平面PDB , ∴平面AEC PDB ⊥平面.(Ⅱ)当PD =且E 为PB的中点时,()11,,22P E a a ⎛⎫⎪ ⎪⎝⎭, 设AC∩BD=O ,连接OE ,由(Ⅰ)知AC ⊥平面PDB 于O , ∴∠AEO 为AE 与平面PDB 所的角,∵11,,,0,0,2222EA a a a EO a ⎛⎫⎛⎫=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴cos EA EO AEO EA EO⋅∠==⋅ , ∴45AOE ︒∠=,即AE 与平面PDB 所成的角的大小为45︒.10.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分) 如题(18)图,在五面体ABCDEF 中,AB//DC ,∠BAD=2π,CD=AD=2.,四边形ABFE 为平行四边形,FA ⊥平面ABCD ,FC=3,(Ⅰ)直线AB 到平面EFCD 的距离: (Ⅱ)二面角F-AD-E 的平面角的正切值,18.(本小题满分12分)如图4,在正三棱柱111ABC A B C -中,AB =D 是11A B 的中点,点E 在11AC 上,且DE AE ⊥。