石家庄实验中学2018级周测数学试卷(测试时间:2019.9.21)
- 格式:doc
- 大小:374.00 KB
- 文档页数:2
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5【答案】B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B.2.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.3.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12 C.9 D.6【答案】A【解析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sin ACBAB=,∴935AB=,解得AB=1.故选A4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21.126故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m【答案】D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高【答案】C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.7.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.8.方程(m –2)x 2+3mx+1=0是关于x 的一元二次方程,则( )A .m≠±2B .m=2C .m=–2D .m≠2 【答案】D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D9.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120° 【答案】C【解析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即532在Rt△AOD中,OA=5,53 2∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.10.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2【答案】A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.二、填空题(本题包括8个小题)11.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.【答案】【解析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.如图,已知一次函数y=ax+b和反比例函数kyx的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________【答案】﹣2<x<0或x>1【解析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.14.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).【答案】>【解析】分析:首先求得抛物线y=﹣x 2+2x 的对称轴是x=1,利用二次函数的性质,点M 、N 在对称轴的右侧,y 随着x 的增大而减小,得出答案即可.详解:抛物线y=﹣x 2+2x 的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y 1>y 2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.15.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.【答案】32 k=-【解析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=212k+∴k=−32;故答案为k=−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答16.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.【答案】1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.17.比较大小:(填入“>”或“<”号)【答案】>【解析】试题解析:∵∴4考点:实数的大小比较.【详解】请在此输入详解!18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.【答案】1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB+=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.三、解答题(本题包括8个小题)19.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30%100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.21.两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.【答案】(1)k=2;(2)点D经过的路径长为6.【解析】(1)根据题意求得点B的坐标,再代入kyx=求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC 于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=2,∴AB=OA=OC=OD=2,∴点B坐标为(2,2),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t (t+2)=2,解得t=31-或t=﹣3﹣1(舍去),∴D′(3﹣1,3 +1),∴DD′=22(311)(311)6-+++-=, 即点D 经过的路径长为6.【点睛】 本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.22.如图,已知一次函数y=32x ﹣3与反比例函数k y x=的图象相交于点A (4,n ),与x 轴相交于点B . 填空:n 的值为 ,k 的值为 ; 以AB 为边作菱形ABCD ,使点C 在x轴正半轴上,点D 在第一象限,求点D 的坐标; 考察反比函数k y x =的图象,当2y ≥-时,请直接写出自变量x 的取值范围.【答案】 (1)3,1;133);(3) x 6≤-或x 0> 【解析】(1)把点A (4,n )代入一次函数y=32x-3,得到n 的值为3;再把点A (4,3)代入反比例函数k y x=,得到k 的值为1; (2)根据坐标轴上点的坐标特征可得点B 的坐标为(2,3),过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,根据勾股定理得到13AAS 可得△ABE ≌△DCF ,根据菱形的性质和全等三角形的性质可得点D 的坐标;(3)根据反比函数的性质即可得到当y≥-2时,自变量x 的取值范围.【详解】解:(1)把点A (4,n )代入一次函数y=32x-3,可得n=32×4-3=3; 把点A (4,3)代入反比例函数k y x =,可得3=4k , 解得k=1.(2)∵一次函数y=32x-3与x 轴相交于点B , ∴32x-3=3, 解得x=2,∴点B 的坐标为(2,3),如图,过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,∵A (4,3),B (2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2, 在Rt △ABE 中,22223123AE BE ++==∵四边形ABCD 是菱形,∴13AB ∥CD ,∴∠ABE=∠DCF ,∵AE ⊥x 轴,DF ⊥x 轴,∴∠AEB=∠DFC=93°,在△ABE 与△DCF 中,AEB DFC ABE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (ASA ),∴CF=BE=2,DF=AE=3,∴1313∴点D 的坐标为(133).(3)当y=-2时,-2=12x,解得x=-2. 故当y≥-2时,自变量x 的取值范围是x≤-2或x >3.23.“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.【答案】(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°.【解析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;⨯即可求出对应的扇(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,形圆心角的度数.÷=(人).试题解析:()15025%200()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.⨯=200⨯=学生学习兴趣为“中”对应扇形的圆心角为:30%360108.24.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米?【答案】(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,.124610CD x x∴=-=≈.1361017BD∴=-+=(米).答:他应再向前跑17米.25.观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.【答案】(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.26.如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.【答案】见解析【解析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,EAO FCOOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.如图,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为( )A .33πB .32πC .πD .32π 【答案】A【解析】试题分析:连接OB ,OC ,∵AB 为圆O 的切线,∴∠ABO=90°,在Rt △ABO 中,OA=3∠A=30°,∴3,∠AOB=60°,∵BC ∥OA ,∴∠OBC=∠AOB=60°,又OB=OC ,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC长为6033ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.3.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B【解析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,的值随值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.4.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.2C.32D.33【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN =22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6.下列各式中的变形,错误的是(()A.B.C.D.【答案】D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.7.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.8.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.9.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤【答案】D【解析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.10.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A.55°B.60°C.65°D.70°【答案】C【解析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.二、填空题(本题包括8个小题)11.81_______.【答案】38181.8181 3故答案为3此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.12.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___.【答案】x 2+7x-4【解析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得 22(53)(221),A x x x x =-+-++-2253221,x x x x =-+-++-27 4.x x =+-他所捂的多项式为27 4.x x +-故答案为27 4.x x +-【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;13.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.【答案】34. 【解析】解:根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P (所作三角形是等腰三角形)=34; 故答案为34. 【点睛】 本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的14.如图,数轴上点A表示的数为a,化简:a244a a+-+=_____.【答案】1.【解析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<1,则a+2a4a4-+=a+22a-()=a+(1﹣a)=1.故答案为1.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.15.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,OE3=OA5,则EFGHABCDSS四边形四边形=_____.【答案】925【解析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴EFAB=OEOA=35,则EFGHABCDSS四边形四边形=2()OEOA=23()5=925.故答案为925.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.16.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是。
河北实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列计算正确的是()A.=0.5B.C.=1D.-=-【答案】C【考点】立方根及开立方【解析】【解答】A选项表示0.0125的立方根,因为0.53=0.125,所以,A选项错误;B选项表示的立方根,因为,所以,B选项错误;C选项表示的立方根,因为,,所以,C选项正确;D选项表示的立方根的相反数,因为,所以,D选项错误。
故答案为:C【分析】分别求出0.5,,,的3次方的值,再与A、B、C、D四个选项中的被开方数进行比较,相等的即为正确的选项。
2、(2分)不等式的解集,在数轴上表示正确的是()A.B.C.D.【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:由得:1+2x≥5x≥2,因此在数轴上可表示为:故答案为:C.【分析】先解一元一次不等式(两边同乘以5去分母,移项,合并同类项,系数化为1),求出不等式的解集,再把不等式的解集表示在数轴上即可(x≥2在2的右边包括2,应用实心的圆点表示)。
3、(2分)若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-1【答案】C【考点】平方根【解析】【解答】解:当2m-4=3m-1时,则m=-3;当2m-4≠3m-1时,则2m-4+3m-1=0,∴m=1。
故答案为:C.【分析】分2m-4与3m-1相等、不相等两种情况,根据平方根的性质即可解答。
4、(2分)若26m>2x>23m,m为正整数,则x的值是()A.4mB.3mC.3D.2m【答案】A【考点】不等式及其性质【解析】【解答】解:根据合并同类项法则和不等式的性质,然后根据6m>x>3m,由m为正整数,可知A 符合题意.故答案为:A.【分析】根据不等式的性质和有理数大小的比较可得6m>x>3m,再结合选项可得答案.5、(2分)已知关于x、y的方程组的解满足3x+2y=19,则m的值为()A. 1B.C. 5D. 7【答案】A【考点】解二元一次方程组【解析】【解答】解:,①+②得x=7m,①﹣②得y=﹣m,依题意得3×7m+2×(﹣m)=19,∴m=1.故答案为:A.【分析】观察方程组,可知:x的系数相等,y的系数互为相反数,因此将两方程相加求出x、将两方程相减求出y,再将x、y代入方程3x+2y=19,建立关于m的方程求解即可。
河北省石家庄市实验中学2018-2019学年第二学期中考三模考试理科综合试题本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题。
本试卷总分120分,考试时间120分钟。
卷I(选择题,共47分)一、选择题(本大题共22个小题,共47分。
1~19小题为单选题,每小题只有一个选项符合题意,每小题2分:20-22小题为多选题,每小题有两个或两个以上选项符合题意,每小题3分,全选对得3分,选对但不全得2分,有错选或不选不得分。
)1.垃圾分类从你我他开始。
用过的金属饮料罐属于( )A.可回收物 B.有害垃圾 C.厨余垃圾 D.其它垃圾2. 下列做法正确的是()A.用霉变的花生做食品B.用甲醛溶液浸泡鱼虾防腐C.食用加碘盐可补充人体缺乏的碘元素D.食品中加入过量的亚硝酸钠3.下列关于实验操作或实验现象的描述错误..的是()A.实验剩余的药品不能放回原瓶 B.铁丝在氧气中剧烈燃烧,火星四射C.将pH试纸放入待测液中,测定溶液的pHD.将带火星的木条放在集气瓶口,检验氧气是否集满4. 下列化学用语与所表达的意义对应错误的是()5. 肼是一种无色油状液体。
点燃时,迅速燃烧,放出大量的热,因此常用做火箭燃料。
肼发生燃烧反应的微观示意图如右图:下列说法不正确...的是()A.肼的分子式为N2H4B.生成的H2O与N2的质量比为9:14C.参加反应的O2与生成的N2的分子数之比为1:1D.64 g肼完全燃烧,至少需要消耗64 g氧气6. 以下应用守恒思想解决相关问题,推理正确的是()A.14g碳与32g氧气反应,根据质量守恒定律推出生成的二氧化碳的质量为46gB.聚乙烯燃烧生成二氧化碳和水,根据质量守恒定律推出聚乙烯由碳、氢、氧元素组成氢原子氧原子氮原子C.50ml36%盐酸用50ml水稀释,根据溶质守恒推出稀盐酸的溶质质量分数为18% D.将冷碟子压在燃着的蜡烛火焰上,看到有黑色固体生成,证明蜡烛中含有碳元素A.向一定质量的AgNO3和Cu(NO3)2的混合溶液中不断加入铁粉B.将浓硫酸露置在空气中C. 在恒温条件下,将饱和的NaCl溶液蒸发适量水D.向一定质量的饱和石灰水中加入生石灰8. 分析推理是化学学习中常用的思维方法。
石家庄市实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题 D.命题p∨(¬q)是假命题2.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A.1372 B.2024 C.3136 D.44953.已知集合A={﹣1,0,1,2},集合B={0,2,4},则A∪B等于()A.{﹣1,0,1,2,4} B.{﹣1,0,2,4}C.{0,2,4} D.{0,1,2,4}4.等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.B2=AC B.A+C=2B C.B(B﹣A)=A(C﹣A)D.B(B﹣A)=C(C﹣A)5.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)6.过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()A.3条B.2条C.1条D.0条7.若a<b<0,则下列不等式不成立是()A.>B.>C.|a|>|b| D.a2>b28.已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.259.已知集合,则A0或B0或3C1或D1或310.若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .211.复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i12.不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}二、填空题13.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .14.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= . 15.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .16.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .17.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.18.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .三、解答题19.已知函数f (x )=a ﹣,(1)若a=1,求f (0)的值;(2)探究f (x )的单调性,并证明你的结论;(3)若函数f (x )为奇函数,判断|f (ax )|与f (2)的大小.20.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.21.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .22.在平面直角坐标系XOY中,圆C:(x﹣a)2+y2=a2,圆心为C,圆C与直线l1:y=﹣x的一个交点的横坐标为2.(1)求圆C的标准方程;(2)直线l2与l1垂直,且与圆C交于不同两点A、B,若S△ABC=2,求直线l2的方程.23.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.24.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.石家庄市实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.2.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.3.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.4.【答案】C【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.5. 【答案】B【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题, 可推出¬p 为假命题,q 为假命题, 故为真命题的是p ∨q , 故选:B .【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真.6. 【答案】C【解析】解:假设存在过点P (﹣2,2)的直线l ,使它与两坐标轴围成的三角形的面积为8,设直线l 的方程为:,则.即2a ﹣2b=ab直线l 与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.7.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.8.【答案】C【解析】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.9.【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
河北省石家庄市实验中学2018-2019学年第二学期中考一模考试理科综合试题本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题。
本试卷总分120分,考试时间120分钟。
卷I(选择题,共47分)一、选择题(本大题共22个小题,共47分。
1~19小题为单选题,每小题只有一个选项符合题意,每小题2分:20-22小题为多选题,每小题有两个或两个以上选项符合题意,每小题3分,全选对得3分,选对但不全得2分,有错选或不选不得分。
)1、稀盐酸和稀硫酸具有相似的化学性质,其本质原因是()A、都与指示剂作用B、都能解离出酸根离子C、都能解离出氢离子D、都与碱反应2、下列物质露置于空气中,质量会减小的是()A.浓硫酸 B.浓盐酸 C.氢氧化钠 D.氯化钠3、物质的俗名与化学式相对应正确的是()A.生石灰:CaCO3 B.烧碱:Na2CO3 C.熟石灰:Ca(OH)2 D.烧碱:KOH4、下列物质属于复合肥的是()A.K2CO3 B.Ca(H2PO4)2 C.NH4HCO3 D.KNO35、用稀硫酸除铁锈的原理是()A.FeO+H2SO4=H2O+FeSO4 .B.Fe2O3+2H2SO4=2H2O+2FeSO4C.Fe2O3+3H2SO4=3H2+Fe2(SO4)3 D.Fe2O3+3H2SO4=3H2O+Fe2(SO4)36、做完实验后的玻璃试管中常附着难清洗的物质。
下列清洗方法错误的是()A.内壁有CaCO3的试管用稀盐酸清洗 B.内壁有碘的试管用酒精清洗C.内壁有铜粉的试管用稀硫酸清洗D.内壁有植物油的试管用洗洁精清洗7、推理是化学学习中常见的思维方法。
下列推理正确的是()A.碱性溶液能使酚酞试液变红,滴入酚酞试液后变红的溶液一定呈碱性B.锌和铜均是金属,锌与稀硫酸反应生成氢气,则铜也能与稀硫酸反应生成氢气C.酸能使石蕊试液变红,C02也能使紫色的石蕊试液变红,所以C02是酸D.溶液中有晶体析出,其溶质质量减小,所以溶质的质量分数一定减小8、下列应用与中和反应原理无关的是()A.用浓硫酸干燥湿润的氧气 B.用熟石灰改良酸性土壤C 服用含氢氧化铝的药物治疗胃酸过多症 D.用氢氧化钠溶液洗涤石油产品中残留的硫酸9、下列各组物质的反应,需要加入酸碱指示剂才能判断反应是否发生的是()A、Fe和CuSO4溶液B、Zn和稀H2SO4C、NaOH溶液和稀盐酸D、澄清石灰水和CO210、下列各组物质中,能相互反应且反应前后溶液总质量保持不变的是()A.铝和硫酸铜溶液B.硫酸和烧碱溶液C.氧化铁固体和盐酸D.碳酸钾溶液和硝酸钠溶液11()12、“分类”可以使人们有序地研究物质,以下分类正确的是()A.合金:生铁、锰钢、青铜 B.碱:纯碱、烧碱、消石灰C.盐:氯化银、氯化钠、二氧化锰 D.混合物:空气、石油、冰水共存物13、为了除去粗盐中的Ca2+、Mg2+、SO42-及泥沙,可将粗盐溶于水,然后进行下列五项操作。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.【答案】B【解析】根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.2.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.3.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.4.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟【答案】C【解析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx=,将y=35代入700yx =,解得20x;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7【答案】B【解析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.6.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差【答案】B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
河北省石家庄2018届高三教学质量检测(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则下列结论正确的是( )A. B.C. D.【答案】B【解析】,故选.2. 已知复数满足,若的虚部为,则复数在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】,虚部为,即,故对应点在第一象限.3. 在等比数列中,2,,则( )A. 28B. 32C. 64D. 14【答案】B【解析】,故选.4. 设且,则“”是“”的( )A. 必要不充分条件B. 充要条件C. 既不充分也不必要条件D. 充分不必要条件【答案】C【解析】或;而时,有可能为.所以两者没有包含关系,故选.5. 我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的值为( )(参考数据:,,)A. 24B. 36C. 48D. 12【答案】C【解析】,判断否,,判断否,,判断否,,判断是,输出,故选.6. 若两个非零向量,满足,则向量与的夹角为( )A. B. C. D.【答案】D【解析】根据向量运算的几何性质可知,以为邻边的平行四边形对角线相等,所以该四边形为矩形,两个向量相互垂直,且且对角线与的夹角为,与的夹角为,故选.7. 在的展开式中,含项的系数为( )A. B. C. D.【答案】B【解析】依题意有,故系数为,选.8. 如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A. B. C. 8 D.【答案】A【解析】由三视图可知,该几何体为下图所示的四棱锥,故体积为.9. 某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差①A班数学兴趣小组的平均成绩高于B班的平均成绩②B班数学兴趣小组的平均成绩高于A班的平均成绩③A班数学兴趣小组成绩的标准差大于B班成绩的标准差④B班数学兴趣小组成绩的标准差大于A班成绩的标准差其中正确结论的编号为( )A. ①④B. ②③C. ②④D. ①③【答案】A【解析】班平均值,标准差.班平均值,标准差,故班平均值高,标准差小,故选.10. 已知函数的部分图象如图所示,已知点,,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴方程为( )A. B. C. D.【答案】D【解析】,,,所以,右移的到,将选项代入验证可知选项正确.11. 倾斜角为的直线经过椭圆右焦点,与椭圆交于、两点,且,则该椭圆的离心率为( )A. B. C. D.【答案】A【解析】设直线的参数方程为,代入椭圆方程并化简得,所以,由于,即,代入上述韦达定理,化简得,即.故选.【点睛】本小题主要考查直线和椭圆的位置关系,考查直线方程的设法,考查直线参数方程参数的几何意义.由于本题直线过焦点,而且知道它的倾斜角为,在这里可以考虑设直线方程的点斜式,也可以考虑设直线的参数方程,考虑到,即,所以采用直线参数方程,利用参数的几何意义,可以快速建立方程,求出结果.12. 已知函数是定义在区间上的可导函数,满足且(为函数的导函数),若且,则下列不等式一定成立的是( )A. B.C. D.【答案】C【解析】构造函数,,所以是上的减函数.令,则,由已知,可得,下面证明,即证明,令,则,即在上递减,,即,所以,若,则.故选.【点睛】本小题主要考查导数知识的综合运用,考查函数的单调性,考查大小比较,关键在于构造函数法.问题的关键点在于利用好,这是一个含有原函数和它的导函数的式子,故考虑用构造函数法构造函数,构造函数后,就可以用上已知条件来判断单调性了.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 用1,2,3,4,5组成无重复数字的五位数,若用,,,,分别表示五位数的万位、千位、百位、十位、个位,则出现特征的五位数的概率为_____________.【答案】【解析】基本事件的总数为.中间最大,只能放,即,其它位置的方法数为种,故概率为.14. 设变量满足约束条件,则的最大值为_____________.【答案】3【解析】画出可行域如下图所示,由图可知,目标函数在点处取得最大值为.15. 已知数列的前项和,如果存在正整数,使得成立,则实数的取值范围是_____________.【答案】【解析】当时,,当时,,所以,当时,当为大于的偶数时,为递减数列;当为大于的奇数时为负数,且为递增数列,即的长度不断减小,要使得成立,则需,故填.【点睛】本小题主要考查数列已知求的方法,考查数列的单调性和一元二次不等式的解法.由于题目给定的表达式,故可利用公式求得数列的通项公式为.这个数列奇数项为负数,偶数项为正数,并且分别趋向于零,所以最外面的两个数即是的取值范围.16. 在内切圆圆心为的中,,,,在平面内,过点作动直线,现将沿动直线翻折,使翻折后的点在平面上的射影落在直线上,点在直线上的射影为,则的最小值为_____________.【答案】【解析】画出图象如下图所示.由于,所以平面,所以三点共线.以分别为轴建立平面直角坐标系,则,设直线的方程为,则直线的方程为.令求得,而.联立解得.由点到直线的距离公式可计算得,所以.即最小值为.【点睛】本小题主要考查空间点线面的位置关系,考查线面垂直的证明,考查三点共线的证明,考查利用坐标法解决有关线段长度比值的问题,是一个综合性很强的题目.首先考虑折叠问题,折叠后根据线线垂直关系推出三点共线,将问题转化为平面问题来解决,设好坐标系后写出直线的方程即直线的方程,根据点到直线距离公式写出比值并求出最值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角的对边长分别为,且.(1)求角的大小;(2)设为边上的高,,求的范围.【答案】(1);(2).【解析】【试题分析】(1)利用切化弦化简题目所给方程,可求得,由此求得角的大小.(2)利用三角形的面积公式求得,利用余弦定理和基本不等式可求得的取值范围,进而求得的取值范围.【试题解析】(1)在△ABC中(2)18. 随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:(1)根据数据可知与具有线性相关关系,请建立关于的回归方程(系数精确到);(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以 (单位:件)表示日销量,,则每位员工每日奖励100元;,则每位员工每日奖励150元;,则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).参考数据:,,其中,分别为第个月的促销费用和产品销量,.参考公式:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计分别为,.若随机变量服从正态分布,则,.【答案】(1);(2)元.【解析】【试题分析】(1)利用回归直线方程计算公式计算出回归直线方程.(2)根据正态分布概率可计算得销售量在,,上的概率,用奖金乘以对应的概率然后相加,再乘以,可求得总奖金额.【试题解析】(1)由题可知,将数据代入得所以关于的回归方程(2)由题6月份日销量服从正态分布,则日销量在的概率为,日销量在的概率为,日销量的概率为,所以每位员工当月的奖励金额总数为元.19. 如图,三棱柱中,侧面为的菱形,.(1)证明:平面平面.(2)若,直线与平面所成的角为,求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【试题分析】(1)连接交于,连接,根据菱形的几何性质与等腰三角形的几何性质可知,,由此证得平面,故平面平面.(2) 以为坐标原点,的方向为轴正方向建立空间直角坐标系,通过计算直线的方向向量与平面的法向量,来求得直线与平面所成角的正弦值.【试题解析】(1)连接交于,连接侧面为菱形,,为的中点,又,平面平面平面平面.(2)由,,,平面,平面从而,,两两互相垂直,以为坐标原点,的方向为轴正方向,建立如图所示空间直角坐标系直线与平面所成的角为,设,则,又,△是边长为2的等边三角形,设是平面的法向量,则即令则设直线与平面所成的角为则直线与平面所成角的正弦值为.20. 已知圆的圆心在抛物线上,圆过原点且与抛物线的准线相切. (1)求该抛物线的方程;(2)过抛物线焦点的直线交抛物线于两点,分别在点处作抛物线的两条切线交于点,求三角形面积的最小值及此时直线的方程.【答案】(1);(2)答案见解析.【解析】【试题分析】(1)写出圆心/半径,焦点坐标和准线方程,根据原点在圆上及圆心到抛物线的距离建立方程,解方程组求得的值,由此得到抛物线方程.(2)设出直线的方程,联立直线的方程和抛物线线的方程,写出韦达定理,利用导数求出切线的方程,求出交点的坐标,利用弦长公式和点到直线距离公式写出三角形面积的表达式,并由此求得最小值.【试题解析】(1)由已知可得圆心,半径,焦点,准线因为圆C与抛物线F的准线相切,所以,且圆C过焦点F,又因为圆C过原点,所以圆心C必在线段OF的垂直平分线上,即所以,即,抛物线F的方程为(2)易得焦点,直线L的斜率必存在,设为k,即直线方程为设得,,对求导得,即直线AP的方程为,即,同理直线BP方程为设,联立AP与BP直线方程解得,即所以,点P到直线AB的距离所以三角形PAB面积,当仅当时取等号综上:三角形PAB面积最小值为4,此时直线L的方程为.【点睛】本小题主要考查抛物线方程的求法,考查直线和抛物线的位置关系. 直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.21. 已知函数.(1)讨论函数的单调性;(2)若函数存在极大值,且极大值为1,证明:.【答案】(1)答案见解析;(2)证明见解析.【解析】【试题分析】(1)当时,,故函数在上单调递增.当或时,利用导数求得函数的单调区间.(2) 由(Ⅰ)可知若函数存在极大值,则,且,解得,由此求得函数的表达式.将所要证明的不等式转化为证.构造函数,利用二阶导数求得函数的最小值大于或等于零......................【试题解析】(Ⅰ)由题意,当时,,函数在上单调递增;当时,函数单调递增,,故当时,,当时,,所以函数在上单调递减,函数在上单调递增;当时,函数单调递减,,故当时,,当时,,所以函数在上单调递增,函数在上单调递减.(Ⅱ)由(Ⅰ)可知若函数存在极大值,则,且,解得,故此时,要证,只须证,及证即可,设,.,令,所以函数单调递增,又,,故在上存在唯一零点,即.所以当,,当时,,所以函数在上单调递减,函数在上单调递增,故,所以只须证即可,由,得,所以,又,所以只要即可,当时,所以与矛盾,故,得证.(另证)当时,所以与矛盾;当时,所以与矛盾;当时,得,故成立,得,所以,即.【点睛】本题主要考查导数与单调性,考查利用导数证明不等式. 不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.22. 在直角坐标系中,曲线的参数方程为(其中为参数),曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)射线与曲线、分别交于点(且均异于原点)当时,求的最小值.【答案】(1)的极坐标方程为,的极坐标方程为;(2).【解析】【试题分析】(1)利用消去参数得到圆的直角坐标方程,在转化为极坐标方程,直接利用公式将的直角坐标方程转化为极坐标方程.(2)联立射线和圆的极坐标方程,求得,联立射线的方程和椭圆的极坐标方程求得,再用基本不等式求得最小值.【试题解析】(1)曲线的普通方程为,的极坐标方程为的极坐标方程为(2)联立与的极坐标方程得,联立与的极坐标方程得,则= ==(当且仅当时取等号).所以的最小值为23. 已知函数.(1)当时,求的解集;(2)若,当,且时,,求实数的取值范围.【答案】(1);(2).【解析】【试题分析】(1)当时,利用零点分段法去绝对值,将函数化为分段函数,进而求得不等式的解集.(2)化简,即,求得函数的最大值,解不等式组可求得的取值范围.【试题解析】当时,当时,无解;当时,的解为;当时,无解;综上所述,的解集为当时,所以可化为又的最大值必为、之一即即又所以所以取值范围为。
2018—2019学年七年级第二学期开学测数学试题一、选择题(本大题共16个小题,1—10小题每小题3分,11-16小题每题2分,共42分)1、在,0.23456、227 、、π 这几个数中无理数的个数( )A .1 个B . 2个C . 3个D . 4个 2..数据1 460 000 000用科学记数法表示应是( )A.1.46×107B.1.46×109C.1.46×1010D.0.146×10103.下列计算正确的是( )A .3a-2a=1B .x 2y-2xy 2= -xy 2C .3a 2+5a 2=8a 4 D.3ax-2xa=ax 4在那两个整数之间A .1 和2之间B .2和3之间 C.3 和4之间 D .6和8之间 ) A .±9 B .9 C. ±3 D .36、已知x=2是方程ax-3=x+1的解,则a 的值是( ) A .2 B .3 C.1 D47、如图所示,△DEF 经过平移可以得到△ABC,那么∠C 的对应角和ED 的对应边分别是( )A.∠F,BAB.∠BOD,BA;C.∠F,ACD.∠BOD,AC8、如果一个角的补角是150°,那么这个角的余角的度数是( )A 30°B 60°C 90°D 120°9.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x ×80%=x -28 B .(1+50%)x ×80%=x +28OF ECB A DC .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2810、在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB 的大小为( )A.69°B.111°C.159°D.141°11、一个自然数的算数平方根是a ,则下一个自然数的算数平方根是( )A. a +1 B ..12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm + 13.m ,n 互为倒数,那么代数式n-(mn 2-1)的值等于( ) A .n B .1 C.-1 D .214、下列说法正确的是( )A 有公共顶点且相等的两个角是对顶角B 一条直线的垂线只有一条C 直线外一点到这条直线的垂线的长叫做这点到这条直线的距离。
石家庄实验中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 2. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2403. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 4. 由直线与曲线所围成的封闭图形的面积为( )A B1C D5. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .02a <<C .02a <<D .以上都不对6. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32- B.1- C. 2- D. 3-【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 7. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.25πC. 5πD. 225π+π【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.8. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D109. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 1010y -+=的倾斜角为( )A .150B .120C .60 D .30 11.将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .12.若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( ) A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,2017二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分 别是AC ,BD的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.14.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 15.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.16.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238三、解答题(本大共6小题,共70分。
林老师编辑整理
石家庄实验中学2018级周测数学试卷
(测试时间:2019.9.21)
1.已知集合|
0,1x A x x R x ⎧⎫
=≥∈⎨⎬-⎩⎭
,{}
2|31,B y y x x R ==+∈,则A ∩B =( ) A .∅
B .(1,+∞)
C .[1,+∞)
D .(-∞,0)∪(1,+∞)
2.命题“0
2,3,412≤--⎥⎦⎤
⎢⎣⎡∈∀a x x ”为真命题的一个充分不必要条件是 ( )
A .9≥a
B.8≤a
C.6≥a
D.11≤a
3.从一批产品(其中正品、次品都多于两件)中任取两件,观察正品件数和次品件数, 下列事件是互斥事件的是( )
①恰有一件次品和恰有两件次品;②至少有一件次品和全是次品; ③至少有一件正品和至少有一件次品;④至少有一件次品和全是正品. A. ①② B. ①④ C. ③④ D. ①③
4.给出下列四个命题: ①若x A B ∈,则x A ∈或x B ∈;②(2,)X ∀∈+∞,都有22x x >;
③“1
2
a =
”是函数“22cos 2sin 2y ax ax =-的最小正周期为π”的充要条件; ④0020R,23x x x ∃∈+>的否定是“2
,23x R x x ∀∈+≤”;
其中真命题的个数是( )
A. 1
B. 2
C. 3
D. 4
5.已知单位向量OA ,OB ,满足0OA OB ⋅=.若点C 在AOB ∠内,且60AOC ∠=︒,
(,)OC mOA nOB m n =+∈R ,则下列式子一定成立的是( )
A. 1m n +=
B. 1mn =
C. 221m n +=
D.
m n =
6.已知0ω>,函数()sin 4f x x πω⎛
⎫
=+
⎪⎝
⎭
在,2ππ⎛⎫
⎪⎝⎭
上单调递减,则ω的取值范围是( ) A .15,24⎡⎤⎢⎥⎣⎦ B .13,24⎡⎤
⎢⎥⎣⎦ C .10,2⎛
⎤ ⎥⎝
⎦
D .(]0,2
7. 已知方程042422=--++y x y x ,则22y x +的最大值是( ) A .14
-.14
+.9 D .14 8.已知x 、y 取值如下表:
画散点图分析可知:y 与x 线性相关,且求得回归方程为ˆ1y
x =+,则m 的值为( ) A. 1.425
B. 1.675
C. 1.7
D. 1.4
9.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误..的一个是( ) A. 甲的极差是29 B. 甲的中位数是24 C. 甲罚球命中率比乙高 D. 乙的众数是21
10.已知椭圆)0(1:22
22>>=+b a b
y a x E 的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若
AB 的中点坐标为(1,-1),则椭圆E 的方程为( )
A .
1364522=+y x B .1273622=+y x C .118272
2=+y x D .
19
182
2=+y x 11.空气质量指数AQI 是一种反映和评价空气质量的方法,AQI 指数与空气质量对应如下表:
如图是某城市2018年12月全月的指AQI 数变化统计图.
林老师编辑整理
根据统计图判断,下列结论正确的是( )
A. 整体上看,这个月的空气质量越来越差
B. 整体上看,前半月的空气质量好于后半月的空气质量
C. 从AQI 数据看,前半月的方差大于后半月的方差
D. 从AQI 数据看,前半月的平均值小于后半月的平均值
12.正数a ,b 满足19
1a b +=,若不等式2
418a b x x m +≥-++-对任意实数x 恒成立,则实数
m 的取值范围是( ) A.[3,+∞)
B. (-∞,3]
C. (-∞,6]
D. [6,+∞)
13.已知椭圆E :22
221(0)x y a b a b
+=>>的右焦点为F ,短轴的一个端点为M ,直线l :
340x y -=交椭圆E 于A ,B 两点,若||||6AF BF +=,点M 与直线l 的距离不小于8
5
,则椭
圆E 的离心率的取值范围是( )
A
. B
. C
. D
. 14.我们把顶角为36°的等腰三角形称为黄金三角形.....。
其作法如下:①作一个正方形ABCD ;②以AD 的中点E 为圆心,以EC 长为半径作圆,交AD 延长线于F ;③以D 为圆心,以DF 长为半径作⊙D ;④以A 为圆心,以AD 长为半径作⊙A 交⊙D 于G ,则△ADG 为黄金三角形。
根据上述作法,可以求出cos36°= A .415-B .415+ C .435+ D .4
3
5-
15.命题“x ∀∈R ,2
1
4x x -+≥”的否定是______.
16.不透明的盒子中有大小、形状和质地都相同的5只球,其中2只白球,3只红球,现从中随机取出2只球,则取出的这2只球颜色相同的概率是_________.
17.将函数
()243f x sin x π⎛⎫=+ ⎪
⎝⎭的图象向右平移6π个单位,再将所有点的横坐标伸长到原来的2倍,得到函数y =g (x )的图象,则下列关于函数y =g (x )的说法正确的序号是____.
(1)当02x π⎡⎤
∈⎢⎥⎣⎦
,
时,函数有最小值 (2)图象关于直线12
x π
=-对称;
(3)图象关于点012,π⎛⎫
-
⎪⎝⎭
对称; (4)在63ππ⎡⎤-⎢⎥⎣⎦,上是增函数.
18.在四面体ABCD 中,4,3,5AB BC CD AC ====且AB CD ⊥,当四面体ABCD 的体积最大时,其外接球的表面积为______
19.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数
()()2sin cos sin f x x A x A =-+,且当512
x π
=
时,f (x )取最大值.(1)若关于x 的方程()f x t =,0,2x π⎛⎫
∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =
,且sin sin B C +=,
求△ABC 的面积.
20.已知数列{b n }的前n 项和为S n ,
2
n n S b +=,等差数列{a n }满足
123
b a =,
157
b a +=
(1)求数列{a n },{b n }的通项公式;(2)证明:122313n n a b a b a b ++++<.
21.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整
数)分成六组[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率;并补全这个频率分布直方图 (2)求本次考试的平均分
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中
任取2人,求至多有一人在分数段[120,130)内的概率;。