河北省石家庄市第二中学2020-2021高二(竞赛班)上学期期中数学 (含答案)
- 格式:docx
- 大小:434.22 KB
- 文档页数:7
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020-2021学年度第二学期期中检测试卷三年级 数学(满分:100分 时间:60分钟)一、填空。
(第8、9题每题2分,其余每空 1分,共16分)1.看图填空。
A 在十字路口的( )角,C 在十字路口的( )角;B 在A 的( )面,( )在C 的西北方向。
2. 465是3的( )倍;6的( )倍是126。
3. 最大的三位数与最小的两位数的积是( )。
4. 已知32×5=160,那么32×50=( )。
5. 在□÷8=54……△中,被除数最大是( )。
6. □38÷4,如果商是三位数,那么□里可以填的数字有( )个。
7. 要使□2×32的积是三位数,□里最大填( );如果积是四位数,那么□里最小填( )。
8. 要使3□4÷3的商的中间有0,且没有余数,□里应填( )。
9. 用“3”“3”“4”“5”和“×”组成一个两位数乘两位数算式,这个算式的积最大是( )。
二、判断。
(每题1分,共5分)1. 明明每天上学向东北方向走,放学后向西南方向走。
( )2. 34×50的积的末尾只有1个0。
( )3. 除数一定比商大。
( )4. 两位数除以一位数,商一定是两位数。
( )5. 2□×2□的积一定是三位数。
( )三、选择。
(每题2分,共12分) 1.下面各算式中,商中间有0的是( )。
①924 ÷ 3 ②824 ÷ 3 ③724 ÷ 3 2. 学校的国旗向南飘,此时刮的是( )风。
①东 ②南 ③西 ④北 3.1000 ÷ 4的商的末尾有( )个0。
①3 ②2 ③1 4.下面的竖式正确的是( )。
① ② ③题5.下面各组数中,除以5没有余数的一组是( )。
① 205 510 501 ② 200 205 458 ③ 315 710 9356.对于没有余数的除法,被除数一商×除数=( )。
2020—2021学年度第二学期六年级数学第一单元《负数》检测试卷姓名:__________ 班级:__________分数:__________一、填空题(共6题;共22分)1.六年级女生一分钟仰卧起坐19个为及格,以19个为基础,四名女生的成绩记录如下,5、-1、0、3,这四名同学共做了()个仰卧起坐。
2.在-5,0,-1,4,2.5中,最大数是(),最小数是(),正数和负数的分界是()。
3.2020年3月3日的天气预报显示沈阳的气温为-6℃~3℃。
这一天,沈阳的最低气温是()℃,温差是()℃。
4.在-3、+ 9、0、-12、-0.6、+ 2.3中,正数有()个,负数有()个。
5.六年级一男生坚持每天进行一分钟跳绳锻炼。
下面是他对自己一周的跳绳个数进行的统计。
他将150个记为0,超出150个的部分用正数表示,不足150个的部分用负数表示。
具体情况记录如下:《国家学生体质健康标准》规定:六年级男生一分钟跳绳个数在147个以上(含147个)记为优秀。
该同学这一周有()次一分钟跳绳成绩为优秀。
6.如果把50层记作0层,那么第46层应记作()层,最高层118层应记作()层。
二、判断题(共5题;共10分)7.所有正数都比负数大。
()8.0和-6之间有5个负数。
()9.甲、乙两个冷库,甲冷库的温度是-12℃,乙冷库的温度是-11℃,甲冷库的温度高一些。
()10.温度0摄氏度就是没有温度。
()11.小明妈妈的存折上,“支出或存入”一栏中,显示“2800”表示存入2800元,显示“-2500”表示支出2500元。
()三、选择题(共8题;共40分)12.一种食品包装袋上标着:净重(275±5克),表示这种食品每袋最多不超过()克。
A.270B.280C.290D.30013.质检员抽查4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数。
从轻重的角度看,最接近标准的产品是()。
2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
2022-2023学年八年级上学期期中考前必刷卷03数学(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2022·浙江丽水·八年级期末)在以下中国银行、建设银行、工商银行、农业银行图标中,不是..轴对称图形的是( )A .B .C .D .2.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是( ) A .7cm 、5cm 、12cm B .6cm 、7cm 、14cm C .9cm 、5cm 、11cmD .4cm 、10cm 、6cm3.(2022·河南·漯河市第二实验中学八年级期末)如图所示,图中的两个三角形全等,则∠α等于( )A .50︒B .55︒C .60︒D .65︒4.(2022·江苏·宜兴市和桥镇第二中学七年级期中)如图,在ABC 中,A m ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠和1ACD ∠的平分线交于点2A ,得22015A A BC ∠∠和2015A CD ∠的平分线交于点2016A ,则2016A ∠为多少度?( )A .20132m B .20142m C .20152m D .20162m5.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)如图,A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=( )A .180︒B .360︒C .540︒D .720︒6.(2022·山东威海·七年级期末)已知点P 是直线l 外一点,要求过点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .7.(2022·山东聊城·八年级期末)已知如图,在∠ABC 中,∠ACB 是钝角,依下列步骤进行尺规作图: (1)以C 为圆心,CA 为半径画弧;(2)以B 为圆心,BA 为半径画弧,交前弧于点D ; (3)连接BD ,交AC 延长线于点E明明同学依据作图,写出了下面四个结论,其中正确的是( )A .∠ABC =∠CBEB .BE =DEC .AC ∠BDD .S △ABC =12AC •BE8.(2020·天津市红桥区教师发展中心八年级期中)如图,△ABC 中,点D 是BC 边上一点,DE ∠AB 于点E ,DF ∠BC ,且BD =FC ,BE =DC ,∠AFD =155°,则∠EDF 的度数是( )A .50°B .55°C .60°D .65°9.(2022·河南郑州·七年级期末)乐乐所在的七年级某班学生到野外活动,为测量一池塘两端A ,B 的距离,乐乐、明明、聪聪三位同学分别设计出如下几种方案:乐乐:如图①,先在平地取一个可直接到达A ,B 的点C ,再连接AC ,BC ,并分别延长AC 至D ,BC 至E ,使DC AC =,EC BC =,最后测出DE 的长即为A ,B 的距离.明明:如图②,先过点B 作AB 的垂线BF ,再在BF 上取C ,D 两点,使BC CD =,接着过点D 作BD 的垂线DE ,交AC 的延长线于点E ,则测出DE 的长即为A ,B 的距离.聪聪:如图③,过点B 作BD AB ⊥,再由点D 观测,在AB 的延长线上取一点C ,使∠=∠BDC BDA ,这时只要测出BC 的长即为A ,B 的距离. 以上三位同学所设计的方案中可行的是( )A .乐乐和明明B .乐乐和聪聪C .明明和聪聪D .三人的方案都可行10.(2022·山东烟台·七年级期末)如图,在ABC 中,CAB ∠和CBA ∠的角平分线相交于点P ,连接PA ,PB ,PC ,若PAB △,PAC △,PBC 的面积分别为1S ,2S ,3S ,则有( )A .123S S S <+B .123S S S =+C .123S S S >+D .1232S S S =+11.(2022·重庆沙坪坝·七年级期末)如图,在Rt∠ABC 中,90ABC ∠=,45C ∠=,点E 在边BC 上,将∠ABE 沿AE 翻折,点B 落在AC 边上的点D 处,连结DE 、BD ,若5BD =.下列结论:①AE 垂直平分BD ;②112.5CEA ∠=︒;③点E 是BC 的中点;④∠CDB 的周长比∠CDE 的周长大5.其中正确的个数是( )A .1B .2C .3D .412.(2022·云南红河·八年级期末)如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .813.(2021·福建省泉州实验中学八年级期中)如图,在等边三角形ABC 中,点D ,E 分别是BC ,AB 上的点,且BE =CD ,AD 与CE 相交于点F ,连接BF ,延长FE 至G ,使FG =F A ,若∠ABF 的面积为m ,AF :EF =5:3,则∠AEG 的面积是( )A .25mB .13mC .38mD .35m14.(2022·重庆·四川外国语大学附属外国语学校七年级期末)如图,Rt ABC 中,90BAC ∠=︒,AD BC ⊥于点D .过点A 作AF //BC 且AF AD =,点E 是AC 上一点且AE AB =,连接EF ,DE ,连接FD 交BE 于点G .下列结论中正确的有( )个.①FAE DAB ∠=∠;②BD EF =;③FD 平分AFE ∠;④ABDE ADEF S S =四边形四边形;⑤BD GE =A .2B .3C .4D .5第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2022·河南平顶山·七年级期末)如图,已知∠1=∠2,AC =AE ,不添加任何辅助线,再添加一个合适的条件:______,使∠ABC ∠∠ADE .(只写出一种即可)16.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC ∆中,90C ∠=︒,BE 平分ABC ∠,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.17.(2022·湖北·云梦县实验外国语学校八年级期中)如图,12l l ∥,点D 是BC 的中点,若∠ABC 的面积是10cm 2,则∠BDE 的面积是_______cm 2.18.(2020·浙江·乐清市知临寄宿学校八年级期中)如图所示,∠B 0C = 10°,点A 在OB 上,且OA = 1,按下列要求画图:以点A 为圆心、1为半径向右画弧交OC 于点1A 得到第1条线段1AA ;再以点1A 为圆心、1为半径向右画弧交OB 于点2A ,得到第2条线段12A A ;再以点2A 为圆心、1为半径向右画弧交OC 于点3A ,得到第3条线段23A A …这样画下去,直到得到第n 条线段,之后就不能再画出符合要求的线段了,则n = _________ .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·河南·安阳市第五中学八年级期中)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C =72°,求∠AEC 和∠DAE 的度数.20.(2022·四川眉山·七年级期末)点C 为BD 上一点,△ABC ∠△CDE ,AB =1,DE =2,∠B =110°.(1)求BD 的长; (2)求∠ACE 的度数.21.(2022·上海市曹杨第二中学附属学校七年级期末)如图,ABC 中,AB AC =,且D 、E 、F 分别是AB 、BC 、AC 边上的点,BE CF =,DEF B ∠=∠,点G 是DF 的中点,猜想EG 和DF 的位置关系,并说明理由.22.(2021·贵州毕节·八年级期末)如图所示,在ABC 中,8AB =,4AC =,点G 为BC 的中点,DG BC ⊥交BAC ∠的平分线AD 于点D ,DE AB ⊥于点E ,DF AC ⊥交AC 的延长线于点F .(1)求证:BE CF =; (2)求AE 的长.23.(2020·福建龙岩·八年级期末)如图,射线OK 的端点O 是线段AB 的中点,请根据下列要求作答:(1)尺规作图:在射线OK 上作点C D ,,连接AC BD ,,使=AC BD >12AB ;(2)利用(1)中你所作的图,求证:ACO BDO ∠=∠.24.(2020·浙江·乐清市知临寄宿学校八年级期中)如图1,∠ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1厘米/秒.当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (秒).(1)当运动时间为t 秒时,BQ 的长为 厘米,BP 的长为 厘米.(用含t 的式子表示) (2)当t 为何值时,∠PBQ 是直角三角形;(3)如图2,连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请直接写出它的度数.25.(2022·江苏·扬州市江都区第三中学七年级期中)如图1的图形我们把它称为“8字形”,显然有A B C D ∠+∠=∠+∠;阅读下面的内容,并解决后面的问题:(1)如图2,AP 、CP 分别平分BAD ∠、BCD ∠,若36ABC ∠=︒,16ADC ∠=︒,求P ∠的度数;(2)①在图3中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,并说明理由.②在图4中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.③在图5中,AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.(3)在(2)的条件下,若40GHCS=,CE =15,请直接写出BF 的长.26.(2022·陕西·西安铁一中分校七年级期末)如图①,在Rt ABC △中,90ACB ∠=︒,AC=BC ,l 是过点C 的任意一条直线,过A 作AD ∠l 于D ,过B 作BE ∠l 于E .(1)求证:△ADC ∠△CEB ;(2)如图②延长BE 至F ,连接CF ,以CF 为直角边作等腰Rt FCG ,90FCG ∠=︒,连接AG 交l 于H .试探究BF 与CH 的数量关系.并说明理由;2022-2023学年八年级上学期期中考前必刷卷03(人教版2022)数学·全解全析1 2 3 4 5 6 7 8 9 10 11 12 13 14B C B D B B A D D A C B A D1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A、C、D均能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.选项B不能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】解:根据题意,如图:︒-︒-︒=︒,根据三角形内角和定理,第一个三角形中边长为b的对角为:180606555∠图中的两个三角形是全等三角形,∠第一个三角形中边长为b 的对角等于第二个三角形中的∠α, ∠∠α=55︒. 故选B .【点睛】本题考查了全等三角形的性质以及三角形内角和定理,解题的关键是掌握全等三角形的对应角相等. 4.D【分析】先根据角平分线的定义以及三角形外角的性质证明112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,由此得出规律11122n n n A A A -==∠∠∠,从而得到答案.【详解】解:∠ABC ∠和ACD ∠的平分线交于点1A ,∠1122ACD ACD ABC A BC ==∠∠,∠∠, ∠111A ABC ACD A A BC ACD +=+=∠∠∠,∠∠∠, ∠1122A A BC ACD +=∠∠∠,111222A A BC ACD ∠+∠=∠, ∠112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,,∠11122n n n A A A -==∠∠∠,∠201620162016122m A A ==∠∠,故选D .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,图形类的规律探索,熟知三角形外角的性质是解题的关键. 5.B【分析】先根据三角形的外角性质可得1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345∠+∠+∠+∠+∠正好是五边形的外角和为360︒. 【详解】解:如图:∠1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345360∠+∠+∠+∠+∠=︒,∠360A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=︒. 故选:B .【点睛】本题考查了三角形的外角性质以及多边形的外角和,解题的关键是得出1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=.6.B【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可. 【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,∠AP =BP ,AQ =BQ ,∠点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线上, ∠ 直线PQ 垂直平分线线段AB ,即直线l 垂直平分线线段PQ , 本选项不符合题意;B 、B 选项无法判定直线PQ 垂直直线l ,本选项符合题意;C 、如图,连接AP 、AQ 、BP 、BQ ,∠AP = AQ ,BP =BQ ,∠点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上, ∠ 直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ , 本选项不符合题意;D、如图,连接AC、BC、DP、PQ,∠AC=BC,AD=BD,∠点C在线段AB的垂直平分线上,点D在线段AB的垂直平分线上,∠ 直线CD垂直平分线线段AB,∠390∠=︒由作图痕迹可知:12∠=∠,∠CD PQ,∠4390∠=∠=︒∠PQ∠AB,本选项不符合题意;故选:B.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键.7.A【分析】根据作图得到AC=CD,AB=BD,证明∠ABC∠∠DBC,从而得到结论.【详解】解:由作图可知:AC=CD,AB=BD,∠BC=BC,∠∠ABC∠∠DBC(SSS),∠∠ABC=∠CBE,无法证明其余三个选项的结论,故选A.【点睛】本题考查作图-基本作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 8.D【分析】证明Rt △FDC ∠Rt △DEB (HL ),由全等三角形的性质得出∠DFC =∠EDB =25°,即可得出答案.【详解】解:∠∠AFD =155°, ∠∠DFC =25°, ∠DF ∠BC ,DE ∠AB , ∠∠FDC =∠DEB =90°,在Rt △FDC 和Rt △DEB 中,CF BD CD BE =⎧⎨=⎩,∠Rt △FDC ∠Rt △DEB (HL ), ∠∠DFC =∠EDB =25°,∠∠EDF =180°−∠BDE −∠FDC =180°−25°−90°=65°. 故选:D .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理和性质定理是解题的关键. 9.D【分析】在三个图中分别证明三角形全等,再根据全等三角形的性质即可得证. 【详解】解:在∠ABC 和∠DEC 中,DC ACDCE ACB EC BC =⎧⎪∠=∠⎨⎪=⎩, ∠∠ABC ∠∠DEC (SAS ), ∠AB =DE ,故乐乐的方案可行; ∠AB ∠BF , ∠∠ABC =90°, ∠DE ∠BF , ∠∠EDC =90°, 在∠ABC 和∠EDC 中,ABC EDC BC CDACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EDC (ASA ), ∠AB =ED ,故明明的方案可行; ∠BD ∠AB , ∠∠ABD =∠CBD , 在∠ABD 和∠CBD 中,ABD CBD BD BDBDC BDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABD ∠∠CBD (ASA ), ∠AB =BC ,故聪聪的方案可行, 综上可知,三人方案都可行, 故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键. 10.A【分析】过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,先根据角平分线的性质得到PD PE PF ==,再利用三角形面积公式得到123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,,然后根据三角形三边的关系对各选项进行判断.【详解】解:过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,如图,CAB ∠和CBA ∠的角平分线相交于点P ,PD PF PD PE ∴==,,PD PE PF ∴==,123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,, AB AC BC <+,123S S S ∴<+.故选:A .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.11.C【分析】根据翻折后图形大小不变,三角形的外角和,三角形周长,即可判断出正确.【详解】∠ADE 是ABE △翻折而得的∠AB AD =,BAE DAE ∠=∠∠AE 垂直平分BD故①正确;∠Rt ABC 中,90ABC ∠=︒,45C ∠=︒∠45BAC ∠=︒ ∠122.52CAE BAE BAC ∠=∠=∠=︒ ∠BAE ABC CEA ∠+∠=∠∠22.590112.5CEA ∠=︒+︒=︒故②正确;∠ADE 是ABE △翻折而得的∠BE DE =,90ADE ∠=︒∠90EDC ∠=︒∠45C ∠=︒∠45CED ∠=︒∠DE DC =∠DC DE BE ==,但BE CE ≠∠E 不是BC 的中点故③错误;∠55CDB C DC BC BD DC BE EC DC DE EC =++=+++=+++CDE C DC DE EC =++∠5CDB CDE C C -=故④正确.故正确的结论的是:①②④.故选:C .【点睛】本题考查翻折的性质和三角形的知识,解题的关键是掌握翻折的性质,三角形外角和定理,三角形周长等.12.B【分析】先连接CE ,再根据EB =EC ,将FE +EB 转化为FE +CE ,最后根据两点之间线段最短,求得CF 的长,即为FE +EB 的最小值.【详解】解:如图,连接CE ,∠等边∠ABC 中,AD 是BC 边上的中线,∠AD 是BC 边上的高线,即AD 垂直平分BC ,∠EB =EC ,∠BE +EF =CE +EF ,∠当C 、F 、E 三点共线时,EF +EC =EF +BE =CF ,∠等边∠ABC 中,F 是AB 边的中点,∠AD =CF =6,即EF +BE 的最小值为6.故选:B【点睛】本题主要考查了等边三角形的性质,轴对称性质等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.13.A【分析】先根据SAS 定理证出ACD CBE ≅,从而可得60AFG =︒∠,根据等边三角形的判定可得AFG 是等边三角形,再根据SAS 定理证出ACF ABG ≅,从而可得60BGC BAC AFG ∠=∠=︒=∠,根据平行线的判定可得AF BG ∥,从而可得AFG ABF S S m ==,然后根据:5:3AF EF =可得:2:5EG FG =,最后根据三角形的面积公式即可得.【详解】解:∠ABC 是等边三角形,∠,60BC AC AB ACB CBA BAC ==∠=∠=∠=︒,在ACD △和CBE △中,BC AC ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∠()SAS ACD CBE ≅,∠CAD BCE ∠=∠,∠60BCE ACE ACB ∠+∠=∠=︒,∠60AFG CAD ACE BCE ACE ∠=∠+∠=∠+∠=︒,∠FG FA =,∠AFG 是等边三角形,,60AF AG FAG ∴=∠=︒,BAC BAD FAG BAD ∴∠-∠=∠-∠,即CAF BAG ∠=∠,在ACF 和ABG 中,AC AB CAF BAG AF AG =⎧⎪∠=∠⎨⎪=⎩,()SAS ACF ABG ∴≅,ACF ABG ∴∠=∠,又AEC BEG ∠=∠,60BGC BAC ∴∠=∠=︒,BGC AFG ∴∠=∠,AF BG ∴∥,AFG ABF S S m ∴==(同底等高),∠:5:3AF EF =,FG FA =,∠:5:3FG EF =,∠:2:5EG FG =,∠:2:5AEG AFG SS =, ∠2255AEG AFG S S m ==, 即AEG △的面积为25m , 故选:A .【点睛】本题考查了等边三角形的判定与性质、三角形全等的判定与性质等知识点,正确找出两组全等三角形是解题关键.14.D【分析】由“SAS ”可证∠ABD ∠∠AEF ,利用全等三角形的性质判断可求解.【详解】解:∠AD ∠BC ,AF ∠BC ,∠AF ∠AD ,∠∠F AD =∠BAC =90°,∠∠F AE =∠BAD ,故①正确;在∠ABD 和∠AEF 中,AB BE BAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠AEF (SAS ),∠BD =EF ,∠ADB =∠AFE =90°,故②正确;∠AF =AD ,∠DAF =90°,∠∠AFD =45°=∠EFD ,∠FD 平分∠AFE ,故③正确;∠∠ABD ∠∠AEF ,∠S △ABD =S △AEF ,∠S 四边形ABDE =S 四边形ADEF ,故④正确;如图,过点E 作EN ∠EF ,交DF 于N ,∠∠FEN =90°,∠∠EFN =∠ENF =45°,∠EF =EN =BD ,∠END =∠BDF =135°,在∠BGD 和∠EGN 中,BDG ENG BGD EGN BD NE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠BDG ∠∠ENG (AAS ),∠BG =GE ,故⑤正确,故选:D .【点睛】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当辅助线构造全等三角形是解题的关键.15.∠B =∠D (或∠C =∠E 或AB =AD )【分析】根据等式的性质可得∠BAC =∠DAE ,然后利用全等三角形的判定方法,即可解答.【详解】解:∠∠1=∠2,∠∠1+∠DAC =∠2+∠DAC ,∠∠BAC =∠DAE ,∠AE =AC ,∠再添加AB =AD ,利用“SAS”可以证明∠ABC ∠∠ADE ;添加∠B =∠D ,利用“AAS” 可以证明∠ABC ∠∠ADE ;添加∠C =∠E ,利用“ASA” 可以证明∠ABC ∠∠ADE .故答案为:∠B =∠D (或∠C =∠E 或AB =AD ).【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法,是解题的关键. 16.6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =∠=∠=∠,再根据三角形的内角和定理可得30CBE ∠=︒,设AE BE x ==,则9CE x =-,在Rt BCE 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE 平分ABC ∠,ABE CBE ∴∠=∠, ED 垂直平分AB ,AE BE ∴=,ABE A ∴∠=∠,ABE CBE A ∴∠=∠=∠,又90C ∠=︒,90ABE CBE A ∴∠+∠+∠=︒,解得30CBE ∠=︒,设AE BE x ==,则9CE AC AE x =-=-,在Rt BCE 中,90C ∠=︒,30CBE ∠=︒,2BE CE ∴=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.17.5【分析】利用平行线之间的距离相等可得∠ABC 和∠BDE 的高相等,再根据点D 是BC 中点可得∠ABC 的面积是∠BDE 面积的2倍,从而可得结果.【详解】解:∠12l l ∥,∠∠ABC 和∠BDE 的高相等,∠点D 为BC 中点,10ABC S =△cm 2,∠S △ABC=2S △BDE =10cm 2,∠S △BDE =5cm 2,故答案为:5.【点睛】本题主要考查了平行线的性质,利用平行线之间的距离处处相等得出∠ABC 和∠BDE 的高相等是解题的关键.18.8【分析】根据等腰三角形的性质和三角形外角的性质依次可得1A AB ∠的度数,21A AC ∠的度数,32A A B ∠的度数,43A A C ∠的度数,依此得到规律,再根据三角形外角需要小于90°即可求解.【详解】解:由题意可知:1121,AO A A A A A A ==,…;则111212AOA OA A A AA A A A ∠=∠∠=∠,,…; ∠∠BOC =10°,∠12 20A AB BOC ∠=∠=︒,同理可得21324354 30 40 50 60A AC A A B A A C A A B ∠=︒∠=︒∠=︒∠=︒,,,, 65768770 8090A A C A A B A A C ∠=︒∠=︒∠=︒,,,∠第9个三角形将有两个底角等于90°,不符合三角形的内角和定理,∠最多能画8条线段;故答案为:8.【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等:三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和;准确地找到规律是解决本题的关键.19.∠AEC =75°,∠DAE =15°.【分析】根据三角形内角和定理求出∠BAC ,根据角平分线的定义得到∠BAE =∠CAE =12∠BAC =33°,根据三角形的外角性质求出∠AEC ,根据直角三角形的性质求出∠DAE .【详解】解:∠∠BAC +∠B +∠C =180°,∠B =42°,∠C =72°,∠∠BAC =66°,∠AE 平分∠BAC ,∠∠BAE =∠CAE =12∠BAC =33°, ∠∠AEC =∠B +∠BAE =75°,∠AD ∠BC ,∠∠ADE =90°,∠∠DAE =90°-∠AEC =15°.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线,掌握三角形内角和等于180°是解题的关键.20.(1)BD 的长为3;(2)∠ACE 的度数为110°.【分析】(1)利用全等三角形的性质得到CD =AB =1,BC =DE =2,据此即可求得BD 的长;(2)利用全等三角形的性质得到∠ECD =∠A ,再利用三角形的外角性质即可求解.(1)解:∠△ABC ∠△CDE ,AB =1,DE =2,∠CD =AB =1,BC =DE =2,∠BD =BC +CD =2+1=3;(2)解:∠△ABC ∠△CDE ,∠∠ECD =∠A ,∠∠ACD =∠ACE +∠ECD =∠A +∠B ,∠∠ACE =∠B =110°.【点睛】本题考查了全等三角形的性质.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.21.EG 垂直平分DF ,理由见解析【分析】根据题意,证明BDE ∠CEF △可得ED EF =,根据等腰三角形三线合一,结合G 是DF 的中点,即可得证.【详解】EG 垂直平分DF ,理由如下:AB AC =,B C ∴∠=∠,DEC B BDE DEF FEC ∠=∠+∠=∠+∠,DEF B ∠=∠,BDE CEF ∴∠=∠,在BDE 和CEF △中,B C BDE CEF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,BDE ∴∠()CEF AAS ,ED EF ∴=, 又点G 是DF 的中点,EG ∴垂直平分DF .【点睛】本题考查了等腰三角形的性质,全等三角形的性质与判定,证明BDE ∠CEF △是解题的关键.22.(1)证明见解析(2)6【分析】(1)如图所示,连接BD ,CD ,先利用SAS 证明∠BGD ∠∠CGD 得到BD =CD ,再由角平分线的性质得到DE =DF ,即可利用HL 证明Rt ∠DEB ∠Rt ∠DFC 则BE =CF ;(2)证明Rt ∠ADE ∠Rt ∠ADF (HL ),得到AF =AE ,由(1)得BE =CF ,则AE =AF =AC +CF ,据此求出BE 的长,即可求出AE 的长.(1)解:如图所示,连接BD ,CD ,∠G 是BC 的中点,DG ∠BC ,∠BG =CG ,∠BGD =∠CGD =90°,又∠DG =DG ,∠∠BGD ∠∠CGD (SAS ),∠BD =CD ,∠AD 平分∠BAC ,DE ∠AB ,DF ∠AC ,∠DE =DF ,∠DEB =∠DFC =90°,又∠DB =DC ,∠Rt ∠DEB ∠Rt ∠DFC (HL ),∠BE =CF ;(2)解:在Rt ∠ADE 和Rt ∠ADF 中,AD AD DE DF =⎧⎨=⎩, ∠Rt ∠ADE ∠Rt ∠ADF (HL ),∠AF =AE ,由(1)得BE =CF ,∠AE =AF =AC +CF ,∠AB =AE +BE =AC +CF +BE =AC +2BE ,∠AB =8,AC =4,∠BE =2,∠AE =AB -BE =6.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的性质,熟知全等三角形的性质与判定条件是解题的关键.23.(1)见解析;(2)见解析【分析】(1)根据尺规作图的步骤作图即可;(2)延长CO 至点E 使得OE OC =,连接BE ,先证明AOC BOE ∆≅∆,再证明∠DBE 是等腰三角形即可.【详解】(1)如图1,AC BD 、即为所求.(2)如图2,延长CO 至点E 使得OE OC =,连接BE∠O AB 点为线段的中点,=OA OB ∴,AOC BOE ∆∆在和中,∠=OC OE AOC EOB OA OB =⎧⎪∠∠⎨⎪=⎩,AOC BOE ∴∆≅∆,,AC BE ACO OEB ∴=∠=∠,AC BD =又,BE BD ∴=,BDO OEB ∴∠=∠,ACO BDO ∴∠=∠.【点睛】本题考查了尺规作图和全等三角形,解题的关键是做辅助线把所证的角或线段放到两个全等的三角形中.24.(1)t ,(6﹣t );(2)2或4;(3)∠CMQ不会变化,始终是60°,理由见解析【分析】(1)根据点P、Q的速度都为1厘米/秒.得到BQ=t厘米,AP=t厘米,则BP=AB-AP=(6-t)厘米;(2)分当∠PQB=90°时和当∠BPQ=90°时,两种情况讨论求解即可;(3)只需要证明△ABQ∠△CAP得到∠BAQ=∠ACP,则∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM =∠BAC=60°,即∠CMQ不会变化.(1)解:∠点P、Q的速度都为1厘米/秒.∠BQ=t厘米,AP=t厘米,∠BP=AB-AP=(6-t)厘米,故答案为:t,(6﹣t);(2)解:由题意得:AP=BQ=t厘米,BP=AB-AP=(6-t)厘米,①如图1,当∠PQB=90°时,∠△ABC是等边三角形,∠∠B=60°,∠∠BPQ=30°,∠PB=2BQ,得6﹣t=2t,解得,t=2,②如图2,当∠BPQ=90°时,∠∠B=60°,∠∠BQP=30°,∠BQ=2BP,得t=2(6﹣t),解得,t=4,∠当第2秒或第4秒时,△PBQ 为直角三角形;(3)解:∠CMQ 不变,理由如下:∠△ABC 是等边三角形,∠AB =AC ,∠ABC =∠CAB =60°,在△ABQ 与△CAP 中,60AB CA B CAP AP BQ t =⎧⎪∠=∠=︒⎨⎪==⎩,∠△ABQ ∠△CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°,∠∠CMQ 不会变化.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的性质与判定等等,熟知等边三角形的性质是解题的关键.24.(1)26P ∠=︒ (2)①12P B D ∠=∠+∠(),理由见解析; ②1180()2P B D ∠=︒-∠+∠; ③190+()2P B D ∠=︒∠+∠【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P +∠3=∠1+∠ABC ,∠P +∠2=∠4+∠ADC ,相加得到2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,继而得到2∠P =∠ABC +∠ADC ,代入数据得∠P 的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P AD +∠P =∠PCD +∠D ,∠P AB +∠P =∠4+∠B ,分别用∠2,∠3表示出∠P AD 和∠PCD ,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP +∠P +∠4+∠B =360°,∠2+∠P +∠PCD +∠D =360°,分别用∠2,∠3表示出∠BAP 和∠PCD ,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD +∠B =∠BCD +∠D ,∠2+∠P =∠PCD +∠D ,分别用∠2,∠3表示出∠BAD 、∠BCD 和∠PCD ,再整理即可得解;(1)解:∠AP 、CP 分别平分∠BAD 、∠BCD,∠∠1=∠2,∠3=∠4,∠∠2+∠3=∠1+∠4,由(1)的结论得:∠P +∠3=∠1+∠ABC ①,∠P +∠2=∠4+∠ADC ②,①+②,得2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC,∠2∠P =∠ABC +∠ADC,∠∠P =12(∠ABC +∠ADC )=12(36°+16°)=26°.(2)12P B D ∠=∠+∠(),理由如下: ①∠AP 平分∠BAD 的外角∠F AD ,CP 平分∠BCD 的外角∠BCE ,∠∠1=∠2,∠3=∠4.由(1)的结论得:∠P AD +∠P =∠PCD +∠D ③,∠P AB +∠P =∠4+∠B ④,∠∠P AB =∠1,∠1=∠2,∠∠P AB =∠2,∠∠P AD=∠P AB+∠BAD=∠2+180°-2∠2=180°-∠2,∠∠2+∠P =∠3+∠B ⑤,③+⑤得∠2+∠P +∠P AD +∠P =∠3+∠B +∠PCD +∠D ,∠∠2+∠P+180°-∠2+∠P=∠3+∠B+180°-∠3+∠D 即2∠P+180°=∠B+∠D+180°,∠12P B D∠=∠+∠().②11802P B D∠=︒-∠+∠(),理由如下:如图4,∠AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,∠BAD=180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD+∠B=∠BCD+∠D,∠(180°﹣2∠1)+∠B=(180°﹣2∠3)+∠D,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°﹣∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°﹣∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2﹣∠2+∠3﹣∠3=360°∠2∠P+∠B+∠D=360°,∠11802P B D∠=︒-∠+∠();③1902P B D∠=︒+∠+∠(),理由如下:如图5,∠AP平分∠BAD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°﹣2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°﹣∠3)+∠D⑨,⑨×2﹣⑧得:2∠P ﹣∠B =180°+∠D, ∠1902P B D ∠=︒+∠+∠().【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.26.(1)证明见解析(2)2BF CH =,理由见解析(3)323【分析】(1)先根据垂直的定义可得90ADC CEB ∠=∠=︒,从而可得90DAC DCA ∠+∠=︒,再根据90ACB ∠=︒可得DAC ECB ∠=∠,然后根据AAS 定理即可得证;(2)作AM CG ∥交直线l 于点M ,连接GM ,先根据ASA 定理证出ACM CBF ≅△△,根据全等三角形的性质可得,CM BF AM CF ==,从而可得AM GC =,再根据ASA 定理证出AMH GCH ≅△△,根据全等三角形的性质可得MH CH =,由此即可得出结论; (3)先根据ADC CEB ≅可得15AD CE ==,再根据AMH GCH ≅△△可得40G AMH HC S S ==△,利用三角形的面积公式可得163MH =,然后根据MH CH =,2BF CH =即可得出答案.(1)证明:,AD DE BE DE ⊥⊥,90ADC CEB ∴∠=∠=︒,90DAC DCA ∴∠+∠=︒,90ACB ∠=︒,90ECB DCA ∴∠+∠=︒,DAC ECB ∴∠=∠,在ADC 和CEB △中,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADC CEB ∴≅△△.(2)解:2BF CH =,理由如下:如图,作AM CG ∥交直线l 于点M ,连接GM ,180MAC ACG ∴∠+∠=︒,3603609090180ACG BCF ACB FCG ∠+∠=︒-∠-∠=︒-︒-︒=︒,MAC BCF ∠=∠∴,90ACM BCE ∠+∠=︒,90BCE CBF ∠+∠=︒,ACM CBF =∠∴∠,在ACM △和CBF 中,MAC FCB AC CB ACM CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ACM CBF ∴≅△△,,CM BF AM CF ∴==,Rt FCG 是等腰直角三角形,CF GC ∴=,AM GC ∴=,又AM CG ∥,MAH CGH ∴∠=∠,AMH GCH ∠=∠,在AMH 和GCH △中,MAH CGH AM GC AMH GCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AMH GCH ≅△△,MH CH ∴=,2BF CM CH ∴==.(3)解:如图,作AM CG ∥交直线l 于点M ,连接GM ,ADC CEB ≅△△,15CE =,15AD CE ∴==,AMH GCH ≅△△,40GHC S =, 40G AMH HC S S ∴==△,0124AD MH ∴⋅=,即420115MH =⨯, 解得163MH =, 又MH CH =,2BF CH =,3223BF MH ∴==. 【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的定义,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期六年级数学(上)期中测试卷及答案(满分:100分 时间: 60分钟)一、填空。
(每个分数1分,其余每空1分,共26分)1.35时=( )分 215m 2=( )dm 22.9∶( )=16( )=21÷( )=3∶4=( )(填小数)3.小明家的位置可以用(0,0)表示,小明从家出发先向正北方向走8格,再向正东方向走9格,现在的位置可以用(9,8)表示。
然后他再向正北方向走5格,接着向正东方向走3格到达少年宫,少年宫的位置是( , )。
4.0.5的倒数是( );215的倒数是( );最小质数和最小合数的积的倒数是( )。
5.在○里填上“>”“<”或“=”。
79×89○79712÷13○712 38÷6○38 25○34×8156.一堆沙土有1516t ,用去了25,用去( )t ,还剩总吨数的( )。
7.六(2)班女生人数是男生人数的25,女生人数与全班人数的比是( ),男生人数比女生人数多( )( )。
8.A ∶B =4∶3,已知B 比A 少15,A 是( ),B 是( )。
9.比较和,它们周长的最简整数比是( ),面积的最简整数比是( )。
10.一个三角形三个内角的度数比是5∶3∶2,最小的内角是( ),这个三角形是( )三角形。
11.在图中,平行四边形的面积是20cm 2,图中甲、乙、丙三个三角形的面积比是( ),阴影部分的面积是( )cm 2。
二、判断。
(共5分)1.一根3m 长的钢管,切下13m后,还剩2m 。
( )2.小明和哥哥去年的年龄比是5∶8,今年的年龄比不变。
( )3.男生与女生的人数比是5∶6,女生人数比男生人数多16。
( )4.图中空白部分与阴影部分的面积比是2∶3。
( )5.体操队的人数增加14后,再减少14,现在的人数和原来的人数相等。
2020-2021学年河北省石家庄二中竞赛班高二上学期期中数学试卷一、选择题(本大题共12小题,共36.0分)1.对于简单随机抽样,每个个体每次被抽到的机会()A. 相等B. 不相等C. 无法确定D. 与抽取的次数有关2.命题“∀x∈R,x2+x≥2”的否定是()A. ∃x0∈R,x2+x≤2B. ∃x0∈R,x2+x<2C. ∀x∈R,x2+x≤2D. ∀x∈R,x2+x<23.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数的个数是().A. 120B. 180C. 228D. 3004.从某高中随机选取5名高一男生,其身高和体重的数据如表所示:身高x(cm)160165170175180身高y(kg)6366707274根据上表可得回归直线方程ŷ=0.56x+â,据此模型预报身高为172cm的高一男生的体重为()A. 70.09B. 70.12C. 70.55D. 71.055.从一箱产品中随机地抽取一件,设事件,事件,事件,且已知P(A)=0.7,P(B)=0.2,P(C)=0.1则事件“抽到的不是一等品”的概率为()A. 0.7B. 0.2C. 0.1D. 0.36.已知p:|x+1|≤4,q:x2<5x−6,则p是q成立的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分又不必要条件7.假设要考查某企业生产的袋装牛奶的质量是否达标,现从500袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将500袋牛奶按000,001,…,499进行编号,如果从随机数表第8行第26列的数开始,按三位数连续向右读取,最先检验的5袋牛奶的号码是(下面摘取了某随机数表第7行至第9行)()84421 75331 57245 50688 77047 44767 2176335025 83921 20676 63016 47859 16955 5671998105 07185 12867 35807 44395 23879 33211A. 455 068 047 447 176B. 169 105 071 286 443C. 050 358 074 439 332D. 447 176 335 025 2128.若过椭圆x216+y24=1内一点P(3,1)的弦被该点平分,则该弦所在的直线方程为()A. 3x+4y−13=0B. 3x−4y−5=0C. 4x+3y−15=0D. 4x−3y−9=09.①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学考试中,某班有10人的成绩在100分以上,32人的成绩在90~100分,12人的成绩低于90分,现从中抽取9人了解有关情况;③运动会的工作人员为参加4×100m接力赛的6支队伍安排跑道.针对这三件事,恰当的抽样方法分别为()A. 分层抽样,分层抽样,简单随机抽样B. 系统抽样,系统抽样,简单随机抽样C. 分层抽样,简单随机抽样,简单随机抽样D. 系统抽样,分层抽样,简单随机抽样10.若(x+1)5=a5(x−1)5+⋯+a1(x−1)+a0,则a0的值为()A. 0B. 16C. 32D. 6411.在平面直角坐标系xOy中,已知△ABC顶点A(−4,0)和C(4,0),顶点B在椭圆x225+y29=1上,则sinA+sinCsin(A+C)=()A. 43B. 53C. 45D. 5412.在抛物线y2=x上有两动点A,B,且|AB|=4,则线段AB的中点M到y轴的距离的最小值为()A. 34B. 54C. 74D. 94二、填空题(本大题共4小题,共12.0分)13.一组数据分别为:12,16,20,23,20,15,28,23,则这组数据的中位数是________.14.科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______ .(用数字作答) 15.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为_____.16.已知椭圆C1:x2a2+y2b2=1(a>b>0)与双曲线C2:x2m2−y2n2=1(m>0,n>0),且满足a2−b2=m2+n2,设点P是C1与C2在第一象限的公共点,C1与C2的离心率分别为e1,e2,F1,F2分别是椭圆的左右焦点,若,则e1·e2的最小值为________.三、解答题(本大题共6小题,共72.0分)17.已知命题p:函数y=log0.5(x 2+2x+a)的值域为R,命题q:函数y=−(5−2a) x是R上的减函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.18.下表数据为某地区某基地某种农产品的年产量x(单位:吨)及对应销售价格y(单位:万元/吨).x123y543(1)若y与x有较强的线性相关关系,请用最小二乘法求出y关与x的线性回归方程ŷ=b̂x+â;(2)若每吨该农产品的成本为1万元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润z最大?最大利润是多少?参考公式:b̂=ni=1i−x)(y i−y)∑(n x−x)2=n i=1i i)−nxy∑x2n−nx2â=y−b̂x.19. 从某小组的2名女生和3名男生中任选2人去参加一项公益活动.(1)求所选2人中恰有一名男生的概率; (1)求所选2人中至少有一名女生的概率.20. 已知抛物线C:y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程; (2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.21. 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm 之间的概率;(Ⅲ)从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率.22. 如图,已知点S(−2,0)和圆O :x 2+y 2=4,ST 是圆O 的直径,从左到右M 和N 依次是ST 的四等分点,P(异于S ,T)是圆O 上的动点,PD ⊥ST ,交ST 于D ,PE ⃗⃗⃗⃗⃗ =λED ⃗⃗⃗⃗⃗ ,直线PS 与TE 交于C ,|CM|+|CN|为定值.(1)求点C 的轨迹曲线Γ的方程及λ的值;(2)设n 是过原点的直线,直线l 与n 垂直相交于Q 点,l 与轨迹Γ相交于A ,B 两点,且|OQ ⃗⃗⃗⃗⃗⃗ |=1.是否存在直线l ,使AQ ⃗⃗⃗⃗⃗ ⋅QB⃗⃗⃗⃗⃗⃗ =1成立?若存在,求出直线l 的方程;若不存在,请说明理由.-------- 答案与解析 --------1.答案:A解析:本题主要考查简单随机抽样的定义和特点,属于对基本概念的考查,属于基础题.根据简单随机抽样的定义、特征可得,每个个体被抽到的机会都是相等的,由此得到答案.解:根据简单随机抽样的定义可得,每个个体被抽到的机会都是相等的,故选:A.2.答案:B解析:解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,x2+x≥2”的否定是:∃x0∈R,x2+x<2.故选:B.直接利用全称命题的否定是特称命题写出结果即可.本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.答案:D解析:本题考查了排列、组合的综合应用及两个计数原理的综合应用,属于中档题.由题意,要得到能被5整除的数字,注意0和5的排列,分三种情况进行讨论,四位数中包含5和0的情况,这种情况再分为个位数为0和个位数不为0进行讨论,四位数中包含5,不含0的情况,四位数中包含0,不含5的情况,根据类讨论得到结果.解:先满足该四位数能被5整除,①四位数中包含5和0的情况:C31·C41·(A33+C21·A22)=120,②四位数中包含5,不含0的情况:C31·C42·A33=108,③四位数中包含0,不含5的情况:C 32·C 41·A 33=72,∴四位数总数为120+108+72=300. 故选D .4.答案:B解析:解:由题意可得:x −=160+165+170+175+1805=170,y −=63+66+70+72+745=69,回归方程经过样本中心点,则:69=0.56×170+a ̂, 解得:a ̂=−26.2,则回归方程为:y ̂=0.56x −26.2,预报身高为172cm 的高一男生的体重为y =0.56×172−26.2=70.12(cm). 故选:B .由题意首先求得样本中心点,然后利用回归方程过样本中心点求得a ̂的值,最后利用回归方程的预测作用预报身高为172cm 的高一男生的体重即可.本题考查了线性回归方程的实际应用,线性回归方程的性质等,重点考查学生的计算能力和对基础概念的理解,属于基础题.5.答案:D解析:本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,根据所给的抽到一等品的概率做出抽不到一等品的概率.本题考查对立事件的概率,本题解题的关键是看清楚题目中所给的两个干扰元素,不要用抽到二等品的概率和抽到三等品的概率相加. 解:由题意知本题是一个对立事件的概率, ∵抽到的不是一等品的对立事件是抽到一等品, 事件A ={抽到一等品},P(A)=0.7, ∴抽到不是一等品的概率是1−0.7=0.3. 故选D .6.答案:A解析:p:|x +1|≤4,∴−5≤x ≤3,q:x 2<5x −6,∴2<x <3,则p 是q 成立的必要不充分条件7.答案:B解析:本题考查利用随机数表抽样,属于基础题.由题目给出的随机数表,按照读取随机数表方法得答案. 解:找到第8行第26列的数开始向右读,分别为169,555,671,998,105,071,851,286,735,807,443,..., 把编号大于499的舍去,则符合条件的前五个数是169 105 071 286 443. 故选B .8.答案:A解析:解:设弦的两端点为A(x 1,y 1),B(x 2,y 2),P 为AB 中点得{x 1+x 2=6y 1+y 2=2,∵A ,B 在椭圆上有{x 1216+y 124=1x 2216+y 224=1,两式相减得x 12−x 2216+y 12−y 224=0,可得3(x 1−x 2)8+y 1−y 22=0,可得y 2−y 1x 2−x 1=−34,则k =−34,且过点P(3,1),有y −1=−34(x −3), 整理得3x +4y −13=0. 故选:A .设出A ,B 坐标,利用点在椭圆上,通过平方差公式,结合中点坐标,求出直线的斜率,然后求解直线方程.本题考查直线与椭圆的位置关系的综合应用,直线方程的求法,设而不求思想方法的应用.9.答案:D解析:本题考查的知识点是系统抽样、简单随机抽样法、和分层抽样法,熟练掌握各种抽样方法各自的适用范围是解答的关键,属于基础题.调查①的总体数目较多,而且差异不大,符合系统抽样的适用范围;抽查②的总体数目较多,而且差异很大,符合分层抽样的适用范围;抽查③的总体个数不多,而且差异不大,符合简单随机抽样的适用范围.解:①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查,此项调查的总体数目较多,而且差异不大,符合系统抽样的适用范围.②一次数学考试中,某班有10人在100分以上,32人在90~100分,12人低于90分,现从中抽取9人了解有关情况,此项抽查的总体数目较多,而且差异很大,符合分层抽样的适用范围.③运动会工作人员为参加4×100m接力赛的6支队伍安排跑道,此项抽查的总体个数不多,而且差异不大,符合简单随机抽样的适用范围.故选D.10.答案:C解析:解:(x+1)5=[(x−1)+2]5=a5(x−1)5+⋯+a1(x−1)+a0,则a0=C55⋅25=32,故选:C.把(x+1)5=[(x−1)+2]5按照二项式定理展开,可得a0的值.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11.答案:D解析:本题考查椭圆的简单性质,考查了正弦定理及椭圆定义的应用,是中档题.由题意画出图形,求出椭圆的长半轴长及半焦距,再由正弦定理把转化为三角形边的关系得答案.解:由椭圆x225+y29=1,得椭圆的半焦距为4,则A(−4,0)和C(4,0)为椭圆x225+y29=1的两个焦点,∵B在椭圆x225+y29=1上,记△ABC中A,B,C的对边分别为a,b,c,∴a+c=10,b=8,,故选D.12.答案:C解析:解:由题意,抛物线y2=x的焦点坐标为(14,0),准线方程为x=−14.根据抛物线的定义,∵|AB|=4,∴A、B到准线的距离和最小为4(当且仅当A,B,F三点共线时取最小)∴弦AB的中点到准线的距离最小为2,∴弦AB的中点到y轴的最小距离2−14=74.故选C.确定抛物线的准线方程,利用抛物线的定义及弦长,可得弦AB的中点到准线的最小距离,进而可求弦AB的中点到y轴的最小距离.本题考查抛物线的定义,考查学生的计算能力,正确运用抛物线的定义是关键.13.答案:20解析:本题考查了中位数的定义与应用问题,是基础题目.把这组数据按从小到大的顺序排列,求出中间两个数的平均值即可.解:把该组数据按从小到大的顺序排列,如下;12,15,16,20,20,23,23,28,排在中间的两个数是20,20,=20.所以这组数据的中位数为20+202故答案为20.14.答案:48解析:解:采用捆绑及内部调整法,把三对师生看成三个整体,每对师生都有2种排列顺序,故不同的排法种数为A33×2×2×2=6×8=48.故答案为:48.把三对师生看成三个整体,每对师生都有2种排列顺序,故不同的排法种数为A33×2×2×2,运算求得结果.本题考查排列与组合及两个基本原理,排列数公式的应用,得到不同的排法种数为A33×2×2×2,是解题的关键.15.答案:0.98解析:本题考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题.利用加权平均数公式直接求解.解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:×(10×0.97+20×0.98+10×0.99)=0.98.x−=110+20+10故答案为0.98.16.答案:√32解析:本题考查椭圆和双曲线的定义和离心率公式,考查勾股定理和化简整理的运算能力,属于中档题.解:因为a2−b2=m2+n2,所以椭圆C1与双曲线C2有相同的焦点F l、F2,设|PF1|=r1,|PF2|=r2,则r1+r2=2a,r1−r2=2m,所以r1=a+m,r2=a−m,在△PF 1F 2中,,即(2c)2=(a +m)2+(a −m)2−(a +m)(a −m)=a 2+3m 2,4=a 2+3m 2c 2=1e 12+3e 22,4=1e 12+3e 22≥2√1e 12·3e 22⇒e 1e 2≥√32, 当且仅当e 12=12,e 22=32时取到等号, 故答案为√32. 17.答案:解:当命题p 为真命题时,x 2+ 2x + a > 0不恒成立,所以△= 4 − 4a ≥0,∴a ≤1.当命题q 为真命题时,5 − 2a > 1, 则a < 2.∵p ∨q 为真命题,p ∧q 为假命题,∴p 真q 假,或p 假q 真.若p 真q 假,则{a ≤1a ≥2, a ∈ϕ. 若p 假q 真,则{a >1a <2,即1 <a < 2. 综上可知,实数a 的取值范围(1,2).解析:求出命题成立的条件条件,结合复合命题真假之间的关系进行求解即可.18.答案:解:(1)由表格得,x =1+2+33=2,y =5+4+33=4, b ̂=1×5+2×4+3×3−3×2×412+22+32−3×22=−1,a ̂=4−(−1)×2=6, 故所求的线性回归方程为y ̂=−x +6. (2)由题意得,年利润z =x(−x +6)−x =−x 2+5x =−(x −52)2+254,所以,预测当年产量为2.5吨时,年利润最大,最大利润为6.25万元.解析:(1)求出样本中心,通过求解b ̂=(n i=1x i −x)(y i −y)∑(n x −x)2=(ni=1x i y i )−nxy ∑x 2n −nx 2,a ̂=y −b ̂x ,然后求解直线方程.(2)利用回归直线方程求解即可.本题考查回归直线方程的求法,回归直线方程的应用,考查计算能力.19.答案:(1);(2)解析:试题分析:先将2名女生和3名男生分别用字母表示,将随机抽取2人所包含的基本事件一一例举,(1)再将抽取的2人中恰有一男一女所包含的事件一一例举,根据古典概型概率公式可求其概率。
2020-2021学年天津市部分区八年级第一学期期中数学试卷一、选择题1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.193.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或305.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.68.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.1512.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=,∠B=,∠C=.14.(3分)一个多边形的内角和等于它的外角和,则它是边形.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为cm.16.(3分)如图,已知BC=CD,只需补充一个条件,则有△ABC≌△ADC.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC的度数为.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为cm.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.参考答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中1.(3分)在美术字中,有的是轴对称图形.下面4个汉字可以看成是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题;故选:C.2.(3分)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.19解:设第三边为a,根据三角形的三边关系,得:12﹣7<a<12+7,即5<a<19,∵a为整数,∴a的最大值为18.故选:C.3.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:C.4.(3分)等腰三角形的两边长分别为6和12,则这个三角形的周长为()A.18B.24C.30D.24或30解:(1)当三边是6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;(2)当三边是6,12,12时,符合三角形的三边关系,此时周长是30;所以这个三角形的周长是30.故选:C.5.(3分)点P(﹣2,1)关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)解:根据两点关于y轴对称的点的坐关系:横坐标互为相反数,纵坐标不变.∴点P(﹣2,1)关于y轴对称的点的坐标为(2,1).故选:B.6.(3分)已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm解:在含有30°角的直角三角形中,斜边长为8cm,∴这个三角形的最短边长为×8=4(cm).故选:B.7.(3分)已知△ABC≌△DEF,且△DEF的面积为18,BC=6,则BC边上的高等于()A.13B.3C.4D.6解:设△ABC的面积为S,边BC上的高为h,∵△ABC≌△DEF,BC=6,△DEF的面积为18,∴两三角形的面积相等即S=18,又S=•BC•h=18,∴h=6,故选:D.8.(3分)如图,已知AB=BC,AD=CD,若∠A=80°,∠ABD=35°,则∠BDC的度数是()A.35°B.55°C.65°D.75°解:在△CBD和△ABD中,,∴△CBD≌△ABD(SSS),∴∠C=∠A=80°,∠CBD=∠ABD=35°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣80°﹣35°=65°,故选:C.9.(3分)如图,已知BA⊥AC,BE为△ABC的角平分线,作ED⊥BC于D,则下列结论①AE=DE;②∠BEA=∠BED;③AB=BD;④∠CED=∠BED,其中一定成立的有()A.1个B.2个C.3个D.4个解:∵BE为△ABC的角平分线,∴∠ABE=∠DBE,∵BA⊥AC,ED⊥BC,∴∠A=∠BDE=90°,在△ABE和△DBE中,,∴△ABE≌△DBE(AAS),∴AE=DE,∠BEA=∠BED,AB=BD,故①②③成立,∵ED⊥BC,∴∠CED+∠C=90°,∠BED+∠DBE=90°,当∠C=∠DBE时,∠CED=∠BED,故④不一定成立,一定成立的有3个,故选:C.10.(3分)如图,已知△ABC是等边三角形,且AD=BE=CF,则△DEF是()A.等边三角形B.不等边三角形C.等腰三角形但不是等边三角形D.直角三角形解:∵△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°,∵AD=BE=CF,∴BD=CE=AF,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF为等边三角形,故选:A.11.(3分)如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON 的对称点是点H,连接GH分别交OM,ON于点A,B.若GH的长是12cm,则△PAB 的周长为()A.12B.13C.14D.15解:∵点P关于OM的对称点是点G,点P关于ON的对称点是点H,∴PA=AG,PB=BH,∵GH=AG+AB+BH=PA+AB+PB=12cm,∴△PAB的周长为12cm.故选:A.12.(3分)如图所示,∠E=∠F=90°,AE=AF,AB=AC,下列结论①∠FAN=∠EAM;②EM=FN;③CD=DN;④△ACN≌△ABM.其中下列结论中正确的个数是()A.1个B.2个C.3个D.4个解:在Rt△AEB与Rt△AFC中,,∴Rt△AEB≌Rt△AFC(HL),∴∠FAM=∠EAN,∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN.故①正确;又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN(ASA),∴EM=FN.故②正确;由△AEB≌△AFC知:∠B=∠C,又∵∠CAB=∠BAC,AC=AB,∴△ACN≌△ABM(ASA);故④正确.由于条件不足,无法证得③CD=DN;故正确的结论有:①②④;故选:C.二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填在题中横线上. 13.(3分)在△ABC中,已知∠B=3∠A,∠C=5∠A,则∠A=20°,∠B=60°,∠C=100°.解:设∠A=x,则∠B=3x,∠C=5x,根据题意得x+3x+5x=180°,解得x=20°,则3x=60°,5x=100°,所以∠A=20°,∠B=60°,∠C=100°.故答案为:20°,60°,100°.14.(3分)一个多边形的内角和等于它的外角和,则它是四边形.解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故答案为:四.15.(3分)在△ABC中,已知∠A=∠B=60°,且△ABC的周长为24cm,则AB的长为8cm.解:在△ABC中,∵∠A=∠B=60°,∴△ABC是等边三角形,∵△ABC的周长为24cm,∴AB=×24=8(cm),故答案为:8.16.(3分)如图,已知BC=CD,只需补充一个条件AB=AD,则有△ABC≌△ADC.解:∵BC=DC,AC=AC,∴若补充条件AB=AD,则△ABC≌△ADC(SSS),若补充条件∠ACB=∠ACD,则△ABC≌△ADC(SAS),故答案为:AB=AD.17.(3分)如图,在△ABC中,已知AB=AC,D为BC的中点,若∠B=50°,则∠DAC 的度数为40°.解:∵AB=AC,D是BC中点,∴AD是∠BAC的角平分线,∵∠B=50°,∴∠BAC=80°,∴∠DAC=40°.故答案为:40°.18.(3分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为4cm.解:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△ABM≌△DBN(SAS),∴BM=BN=4cm.故答案为:4.三、解答题:本大题共8小题,其中19题6分,20~24题每题8分,25~26题每题10分,共66分.写出文字说明、演算步骤或证明过程.19.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.作出△ABC关于y对称的△A1B1C1,并写出点△A1B1C1的坐标.解:如图所示,由图可知,A1(﹣2,4),B1(﹣1,1),C1(﹣3,2).20.(8分)若一个多边形的内角和是1260°,求这个多边形的边数.解:设这个多边形的边数为n,由题意可得:(n﹣2)×180°=1260°,解得n=9,答:这个多边形的边数为9.21.(8分)如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE =4,△ABD的面积是6,求BC的长.解:∵AD为△ABC的中线,∴S△ABC=2S△ABD=2×6=12,∴×AE•BC=12,即4•BC=12,∴BC=6.22.(8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.【解答】证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED(AAS).23.(8分)如图,在△ABC中,已知AB=AC=BD,∠BAD=70°,求△ABC中各角的度数.解:∵AB=AD,∴∠ADB=∠BAD=70°,∴∠B=180°﹣70°﹣70°=40°,∵AB=AC,∴∠B=∠C=40°,∴∠BAC=180°﹣40°﹣40°=100°.24.(8分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.求△ABC的周长.解:∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长为13cm.∴AB+BD+AD=13cm,∵AE=3cm,∴AC=6cm,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=19cm.25.(10分)如图所示,在△ABC中,∠B=60°,AB=AC,点D、E分别在BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:△ABC是等边三角形;(2)求证:AD=CE;(3)求∠DFC的度数.【解答】证明:(1)∵∠B=60°,AB=AC,∴△ABC是等边三角形;(2)∵△ABC是等边三角形,∴∠B=∠CAE=∠ACB=60°,AC=AB,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE.(3)∵△ABD≌△CAE,∴∠BAD=∠ACE,∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠CAE=60°.26.(10分)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F.(1)求证:△ABD≌△ACE;(2)直接写出BE,CE,AF之间的数量关系.【解答】证明:(1)∵△ACB和△DAE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠ADE=∠AED=45°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),(2)BE=CE+2AF,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ADB=∠AEC,∵点A,D,E在同一直线上,∴∠ADB=180°﹣45°=135°,∴∠AEC=135°,∴∠BEC=∠AEC﹣∠AED=135°﹣45°=90°;∵∠DAE=90°,AD=AE,AF⊥DE,∴AF=DF=EF,∴DE=DF+EF=2AF,∴BE=BD+DE=CE+2AF.。
2020~2021学年上期高二年级期中联考试题理科数学考拭时间:120分钟注意事项:本试卷分试题卷和答题卡两部分.考生应首先阅读试题卷上的文字信息,然后在答题卡上作答(答题注意事项见答题卡).在试题卷上作答无效. 一、选择题1. 命题“若2020x >,则0x >”的否命题是( ) A. 若2020x >,则0x ≤ B. 若0x ≤,则2020x ≤ C. 若2020x ≤,则0x ≤D. 若0x >,则2020x >2. 已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b =120B =,则A 等于( )A. 30或150B. 60或120C. 30D. 603. 已知1c >,则不等式2110x c x c ⎛⎫-++> ⎪⎝⎭的解集为( ) A. 1x x c c ⎧⎫<<⎨⎬⎩⎭B. 1{x x c>或}x c > C. 1{x x c<或}x c > D. 1x c x c ⎧⎫<<⎨⎬⎩⎭4. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC 的形状是( ) A. 等腰且非等边三角形 B. 直角三角形 C. 等边三角形D. 等腰直角三角形5. 已知等比数列{}n a 的前n 项和为n S ,如表给出n S 的部分数据:那么数列{}n a 的第四项4a 等于( ) A.8116B.278C. 8116-或8116D.278或278-6. 设变量x ,y 满足约束条件342y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则2x y-最大值为( )A. -1B. 2C. -6D. 47. 已知a ,b 均为实数,则下列说法一定成立....的是( ) A. 若a b >,c d >,则ab cd > B. 若11a b>,则a b < C. 若a b >,则22a b > D. 若||a b <,则0a b +>8. 若a ,b 为实数,则“1b a”是“1ab <”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件9. 如图1是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中11223781OA A A A A A A ===⋯==,如果把图2中的直角三角形继续作下去,记12,,,,n OA OA OA 的长度构成数列{}n a ,则此数列的通项公式为( )A. n a n =,*n N ∈B. n a =*n N ∈Cn a *n N ∈ D. 2n a n =,*n N ∈10. 给出下列结论: ①ABC 中,sin sin A B a b >⇔>;的②常数列既是等差数列又是等比数列;③数列{}n a 的通项公式为21n a n kn =-+,若{}n a 为递增数列,则(,2]k ∈-∞;④ABC 的内角A ,B ,C 满足sin :sin :sin 3:5:7A B C =,则ABC 为锐角三角形.其中正确结论的个数为( ) A. 0B. 1C. 2D. 311. 已知ABC ∆的三边a ,b ,c 成等比数列,a ,b ,c 所对的角依次为A ,B ,C ,则sin cos B B +的取值范围是( )A. 1,1⎛+ ⎝⎦B. 1,12⎡⎢⎣⎦C.D. 12⎡⎢⎣12. 首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <. A. 1个B. 2个C. 3个D. 4个二、填空题13. 在数列32511,,,,,,4382n n+⋅⋅⋅⋅⋅⋅中,712是它的第_______项.14. 若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_____,15. 中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为_________(米/秒)的16. 若实数a ,b ∈(0,1)且14ab =,则1211a b+--的最小值为______.三、解答题17. 已知p :27100x x -+<,q :22430x mx m -+<,其中0m > (1)若4m =且p q ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围.18. 在公比大于0的等比数列{}n a 中,已知354a a a =,且2a ,43a ,3a 成等差数列. (1)求{}n a 的通项公式; (2)已知12n n S a a a =,试问当n 为何值时,n S 取得最大值,并求n S 的最大值.19. △ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,已知2B Cbsin asinB +=. (1)求角A ; (2)若a =ABC的面积为2,求△ABC 的周长. 20. 已知函数f (x )的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为2,解关于x 的不等式x 2-x -a 2-a <0. 21. 十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员()0x x >户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高4%x ,而从事水果加.工的农民平均每户收入将为()33050x a a ⎛⎫-> ⎪⎝⎭万元. (1)若动员x 户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求x 的取值范围;(2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求a 的最大值.22. 已知各项均为正数的数列{}n a 的前n 项和为n S ,首项为1a ,且12,n a ,n S 成等差数列. (1)判断数列{}n a 是否为等比数列?若是,写出通项公式;若不是,请说明理由; (2)若22log n n b a =-,设nn nb c a =,求数列{}n c 的前n 项和n T ; (3)若不等式2321184n n T m m n -≤--对一切正整数n 恒成立,求实数m 的取值范围.2020~2021学年上期高二年级期中联考试题理科数学考拭时间:120分钟注意事项:本试卷分试题卷和答题卡两部分.考生应首先阅读试题卷上的文字信息,然后在答题卡上作答(答题注意事项见答题卡).在试题卷上作答无效. 一、选择题1. 命题“若2020x >,则0x >”的否命题是( ) A. 若2020x >,则0x ≤ B. 若0x ≤,则2020x ≤ C. 若2020x ≤,则0x ≤ D. 若0x >,则2020x >【答案】C 【解析】 【分析】把命题的条件和结论全否定可得到原命题的否命题 【详解】解:因为命题“若2020x >,则0x >”, 所以其否命题为“若2020x ≤,则0x ≤”,故选:C2. 已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b =120B =,则A 等于( )A. 30或150 B. 60或120C. 30D. 60【答案】C 【解析】 【分析】利用正弦定理列出 关系式,将a ,b ,sin B 的值代入求出sin A 的值,即可确定出A 的度数. 【详解】解:在ABC 中,1a =,b =120B =︒,∴由正弦定理sin sin a b A B =,得:1sin 1sin 2a B A b ===, a b <,A B ∴<,则30A =︒. 故选:C .【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于基础题.3. 已知1c >,则不等式2110x c x c ⎛⎫-++> ⎪⎝⎭的解集为( ) A. 1x x c c ⎧⎫<<⎨⎬⎩⎭B. 1{x x c>或}x c > C. 1{x x c<或}x c > D. 1x c x c ⎧⎫<<⎨⎬⎩⎭【答案】C 【解析】 【分析】因式分解,根据c 的范围,可得1c c >,根据一元二次不等式的解法,即可得答案. 【详解】不等式可变形为:1()()0x c x c -->,因为1c >,所以1c c>,所以不等式解集为1{x x c<或}x c >,故选:C4. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC 的形状是( ) A. 等腰且非等边三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形【答案】C 【解析】 【分析】先根据余弦定理可知60A =,再利用边角互化,以及条件证明b c =,从而判断ABC 的形状.【详解】根据余弦定理可知2221cos 22b c a A bc +-==,因为0180A <<, 所以60A =,根据正弦定理可知22sin sin sin B C A bc a =⇔=, 所以()222220b c a bc bc b c +=+=⇔-=,所以b c =, 则ABC 的形状是等边三角形. 故选:C5. 已知等比数列{}n a 的前n 项和为n S ,如表给出n S 的部分数据:那么数列{}n a 的第四项4a 等于( ) A.8116B.278C. 8116-或8116D.278或278-【答案】B 【解析】 【分析】根据表中数据,可得145,,S S S 的值,即可求得15,a a 的值,根据{}n a 为等比数列,代入公式,即可求得q 的值,根据题中数据,可得0q <,代入公式,即可得答案. 【详解】由题意可得111S a ==-,451355,816S S ==-,所以55455138116816a S S =-=--=-, 因为{}n a 为等比数列,所以451a a q ,即481(1)16q -=-⋅,解得32q =±, 又因为110S =-<,41308S =>,所以0q <,所以32q =-, 所以3341327(1)()28a a q ==-⋅-=,故选:B6. 设变量x ,y 满足约束条件342y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则2x y -的最大值为( )A. -1B. 2C. -6D. 4【答案】B 【解析】 【分析】作出不等式组对应的平面区域,设2z x y =-,利用目标函数2z x y =-中,z 的几何意义,通过直线平移即可得到z 的最大值.【详解】解:作出变量x ,y 满足约束条件342y x x y x ⎧⎪+⎨⎪-⎩对应的平面区域如图:设2z x y =-,得122z y x =-, 平移直线122z y x =-,当直线122z y x =-, 经过点A 时,直线的在y 轴上的截距最小,此时z 最大,由2x x y =-⎧⎨=⎩,解得(2,2)A --,此时z 的最大值为2222z =-+⨯=, 则2x y -的最大值为:2. 故选:B .【点睛】本题考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 7. 已知a ,b 均为实数,则下列说法一定成立....的是( ) A. 若a b >,c d >,则ab cd > B. 若11a b>,则a b < C. 若a b >,则22a b > D. 若||a b <,则0a b +>【答案】D 【解析】 【分析】利用特殊值代入法排除A 、B 、C ,利用不等式的基本性质||0b a ->,可得b a >±,从而得到0a b +>,从而得出结论.【详解】对于①,不妨令1a =-,2b =-,4c =,1d =,尽管满足a b >,c d >,但显然不满足ab cd >,故A 错误;对于②,不妨令1a =,1b =-,显然满足11a b>,但不满足a b <,故B 错误; 对于③,不妨令1a =-,2b =-,显然满足a b >,但不满足22a b >,故C 错误; 对于④,若||a b <,则||0b a ->,即b a >±,0a b ∴+>,故D 正确. 故选:D.【点睛】本题考查不等式的性质与不等关系,在限定条件下,比较几个式子的大小时,用特殊值代入法,能快把答案进行排除是解此类问题的常用方法. 8. 若a ,b 为实数,则“1b a”是“1ab <”的( ) A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分也不必要条件 【答案】D 【解析】 【分析】根据充分条件与必要条件的概念,直接判断,即可得出结果.【详解】若1b a 则10ab a -<,当0a >时,有1ab <;当0a <,由1ab >; 即由1b a ,不能推出1ab <;反之,由1ab <,也不能推出10ab a -<,即不能推出1b a; 综上,“1b a”是“1ab <”的既不充分也不必要条件. 故选:D.【点睛】本题主要考查既不充分也不必要条件的判定,属于基础题型.9. 如图1是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中11223781OA A A A A A A ===⋯==,如果把图2中的直角三角形继续作下去,记12,,,,n OA OA OA 的长度构成数列{}n a ,则此数列的通项公式为( )A. n a n =,*n N ∈B. n a =*n N ∈C. n a =,*n N ∈D. 2n a n =,*n N ∈【答案】C 【解析】 【分析】首先观察得到2211n n a a --=,利用等差数列求通项公式.【详解】由条件可知22211a a -=,22321a a -=, (22)11n n a a --=()2n ≥,∴数列{}2n a 是公差为1,首项为1的等差数列,2n a n ∴=,2n n a n a ∴=⇒=*n N ∈.故选:C10. 给出下列结论:①在ABC 中,sin sin A B a b >⇔>; ②常数列既是等差数列又是等比数列;③数列{}n a 的通项公式为21n a n kn =-+,若{}n a 为递增数列,则(,2]k ∈-∞;④ABC 的内角A ,B ,C 满足sin :sin :sin 3:5:7A B C =,则ABC 为锐角三角形.其中正确结论的个数为( ) A. 0 B. 1C. 2D. 3【答案】B 【解析】 【分析】对于①,在ABC 中,由正弦定理可知有sin :sin :A B a b =,由此可判断;对于②,举反例可判断即可;对于③,利用递增数列的定义可求得k 的取值范围;对于④,由正弦定理可得::3:5:7a b c =,进而可判断三角形的形状【详解】解:对于①,由正弦定理得,2sin sin a b R A B ==,所以sin ,sin 22a b A B R R==, 因为sin sin A B >,所以22a bR R>,所以a b >,反之也成立,所以①正确; 对于②,常数列0是等差数列,但不是等比数列,所以②错误; 对于③,若{}n a 为递增数列,则10n n a a +->,即221(1)(1)1(1)0n n a a n k n n kn +-=+-++--+>,化简得1210n n a a n k +-=-+>,得21k n <+恒成立, 因为n ∈+N ,所以3k <,所以③错误;对于④,由正弦定理可知,由sin :sin :sin 3:5:7A B C =,得::3:5:7a b c =,设3,5,7a m b m c m ===,则222222925491cos 022352a b c m m m C ab m m +-+-===-<⨯⨯,所以角C 为钝角,所以三角形为钝角三角形,所以④错误, 故选:B【点睛】关键点点睛:此题考查正弦定理的应用,考查数列的单调性,等比数列和等差数列的定义等知识,解题的关键是对所涉及的基本概念和知识要熟悉,属于中档题11. 已知ABC ∆的三边a ,b ,c 成等比数列,a ,b ,c 所对的角依次为A ,B ,C ,则sin cos B B +的取值范围是( )A. 1,12⎛+ ⎝⎦B. 1,122⎡+⎢⎣⎦C.D. 12⎡⎢⎣【答案】C 【解析】 【分析】先利用余弦定理和基本不等式求出0,3B π⎛⎤∈ ⎥⎝⎦,再化简sin cos B B +,再利用三角函数的取值范围. 【详解】∵a ,b ,c 成等比数列, ∴2b ac =,∴22221cos 222a cb ac ac B acac +--==,当且仅当a c =取等号,∴0,3B π⎛⎤∈ ⎥⎝⎦,所以sin cos 4B B B π⎛⎫+=+ ⎪⎝⎭,∴124B π⎛⎫<+ ⎪⎝⎭,故选C .【点睛】本题主要考查余弦定理和基本不等式,考查三角恒等变换和三角函数的性质,意在考查学生对这些知识的理解掌握水平,属于中档题.12. 首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <. A. 1个 B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使10n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项. 【详解】①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确;④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n 的二次函数,利用二次函数的性质解决最值问题.二、填空题13. 在数列32511,,,,,,4382n n+⋅⋅⋅⋅⋅⋅中,712是它的第_______项.【答案】6 【解析】 【分析】根据题意,可得数列的通项公式12n n a n +=,进而解12n n+=712可得n 的值,即可得答案. 【详解】根据题意,数列32511,,,,,4382n n +⋅⋅⋅…中,其通项公式12n n a n+=,令12n n+=712,解得6n =,即712是数列的第6项.故答案为:6【点睛】本题考查数列的表示方法,注意数列通项公式的定义,属于基础题. 14. 若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_____,【答案】[]1,3- 【解析】 【分析】原命题等价于命题“2R,(1)10x x a x ∀∈+-+≥,”是真命题【详解】由题意得若命题“2R,(1)10x x a x ∃∈+-+<”是假命题,则命题“2R,(1)10x x a x ∀∈+-+≥,”是真命题,则需()2014013a a ∆≤⇒--≤⇒-≤≤,故本题正确答案为[]1,3-.【点睛】本题主要考查全称量词与存在量词以及二次函数恒成立的问题.属于基础题.15. 中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15°看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为_________(米/秒)【解析】 【分析】画出示意图,根据题意求得角,利用正弦定理求得边,再根据直角三角形边角关系求出旗杆的高度即可求得答案.【详解】如图所示,依题意知∠AEC =45°,∠ACE =180°﹣60°﹣15°=105°,∴∠EAC =180°﹣45°﹣105°=30°,由正弦定理知sin CE EAC ∠=sin AC AEC ∠,∴AC sin45°=20(米),∴在Rt △ABC 中,AB =AC •sin ∠ACB =,∵国歌长度约为46秒,∴升旗手升旗的速度应为46=23(米/秒).故答案为:23.【点睛】关键点点睛:建立数学模型,把实际问题转化成数学问题,利用正余弦定理解三角形解决. 16. 若实数a ,b ∈(0,1)且14ab =,则1211a b+--的最小值为______.【答案】43+ 【解析】 【分析】先根据条件消掉b ,将14b a =代入原式得18141aa a +--,并用“1”代换法,最后应用基本不等式求其最小值.【详解】解:因为ab =14,所以b =14a , 因此1211a b+--=121114aa+--, =18141a a a +--, =12(41)2141a a a -++--, =122141a a ++--, =12224144a a ⎛⎫++⎪--⎝⎭, =()()2124144234144a a a a ⎛⎫⎡⎤+-+-+ ⎪⎣⎦--⎝⎭, =2442(41)12234144a a a a --⎡⎤++++⎢⎥--⎣⎦,的(223≥+=4+3, 当且仅当a“=”,所以1211a b +--的最小值为43+,故答案为:43+【点评】本题考查基本不等式的应用,属于中档题.三、解答题17. 已知p :27100x x -+<,q :22430x mx m -+<,其中0m >. (1)若4m =且p q ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围. 【答案】(1)45x <<;(2)523m ≤≤ 【解析】 【分析】(1)由p q ∧为真,可知,p q 都为真,进而求出命题,p q ,可得到答案;(2)先求出命题,p q ,由q ⌝是p ⌝的充分不必要条件,可得p 是q 的充分不必要条件,进而可列出不等式,求出实数m 的取值范围.【详解】由27100x x -+<,解得25x <<,所以p :25x <<, 又22430x mx m -+<,且0m >,解得3m x m <<,所以q :3m x m <<. (1)当4m =时,q :412x <<,因为p q ∧为真,所以,p q 都为真,所以45x <<.(2)因为q ⌝是p ⌝的充分不必要条件,所以p 是q 的充分不必要条件,因为p :25x <<,q :3m x m <<,所以2350m m m ≤⎧⎪≥⎨⎪>⎩,解得523m ≤≤.【点睛】本题考查一元二次不等式解法,考查利用复合命题的真假求参数的范围,考查充分不必要条件的应用,考查学生的计算求解能力与推理能力,属于中档题.18. 在公比大于0的等比数列{}n a 中,已知354a a a =,且2a ,43a ,3a 成等差数列. (1)求{}n a 的通项公式; (2)已知12n n S a a a =,试问当n 为何值时,n S 取得最大值,并求n S 的最大值.【答案】(1)42nn a -=;(2)当3n =或4时,n S 取得最大值,()max 64n S =.【解析】 【分析】(1)设{}n a 的公比为q ,由354a a a =,得41a =,再根据2a ,43a ,3a 成等差数列,求得公比即可. (2)根据(1)得到(7)321(4)21222n nn n n S a aa -++++-===,再利用二次函数的性质求解.【详解】(1)设{}n a 的公比为q ,由354a a a =,即244a a =得41a =或40a =(舍). 因为2a ,43a ,3a 成等差数列,所以2346a a a +=,即231116a q a q a q +=则2610q q --=, 解得12q =或13q =-(舍), 又3411a a q ==,故18a =.所以141822n n n a --⎛⎫=⨯= ⎪⎝⎭.(2)(7)321(4)21222n nn n n S a aa -++++-===,又()2717222n n y n n -==-+,该二次函数对称轴为72,又n N +∈,故当3n =或4时,二次函数取得最大值6, 故当3n =或4时,n S 取得最大值6264=,即()max 64n S =.【点睛】本题考查等差数列与等比数列的运算以及数列最值问题,还考查运算求解的能力,属于基础题.19. △ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,已知2B Cbsin asinB +=. (1)求角A ;(2)若a =ABC ,求△ABC 的周长.【答案】(1)A 3π=;(2)5.【解析】 【分析】(1)利用正弦定理化简得到sinBsin2Aπ-=sinAsinB ,化简得到答案.(2)根据面积公式得到bc =6,利用余弦定理得到b +c =5,得到周长.【详解】(1)2B C bsin asinB +=,∴由正弦定理可得sinBsin 2Aπ-=sinAsinB , ∵sinB ≠0,∴cos 2A =sinA ,即cos 2A =2sin 2A cos 2A,∵2A ∈(0,2π),cos 2A ≠0,∴sin 122A =,∴26A π=,可得A 3π=.(2)a =A 3π=,△ABC 12=bcsinA =bc ,解得bc =6, ∵由余弦定理a 2=b 2+c 2﹣2bccosA ,可得7=b 2+c 2﹣bc =(b +c )2﹣3bc =(b +c )2﹣18,∴解得b +c =5,∴△ABC 的周长为5.【点睛】本题考查了正弦定理和余弦定理,面积公式解三角形,意在考查学生的计算能力.20. 已知函数f (x )的定义域为R . (1)求a 的取值范围;(2)若函数f (x )的最小值为2,解关于x 的不等式x 2-x -a 2-a <0. 【答案】(1)[0,1];(2)13-22⎛⎫⎪⎝⎭,. 【解析】 【分析】(1)根据函数f (x )的定义域为R ,转化为ax 2+2ax +1≥0恒成立求解.(2)根据f (x )f (x )的最小值为2,解得a =12,然后将不等式x 2-x -a 2-a <0转化为x 2-x -34<0,,利用一元二次不等式的解法求解.【详解】(1)因为函数f (x )的定义域为R . 所以ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立.当a ≠0时,则有20{(2)40a a a >∆=-≤ 解得0<a ≤1,综上可知,a 的取值范围是[0,1].(2)因为f (x )因为a >0,所以当x =-1时,f (x )min =,所以a =12,所以不等式x 2-x -a 2-a <0可化为x 2-x -34<0. 解得-12<x <32, 所以不等式的解集为13-22,⎛⎫⎪⎝⎭.【点睛】本题主要考查一元二次不等式恒成立问题和一元二次不等式的解法,还考查了运算求解的能力,属于中档题.21. 十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员()0x x >户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高4%x ,而从事水果加工的农民平均每户收入将为()33050x a a ⎛⎫-> ⎪⎝⎭万元. (1)若动员x 户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求x 的取值范围;(2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求a 的最大值.【答案】(1)0175x <≤;(2)11【解析】【分析】(1)求得从事水果种植农民的总年收入,由此列不等式,解不等式求得x 的取值范围.(2)从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入列不等式,根据分离常数法求得a 的取值范围,由此求得a 的最大值.【详解】(1)动员x 户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,则()()200310.042003x x -⨯⨯+≥⨯⎡⎤⎣⎦,解得0175x <≤.(2)由于从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,则()()33200310.0450x a x x x ⎛⎫-⋅≤-⨯⨯+⎡⎤ ⎪⎣⎦⎝⎭,(0175x <≤), 化简得2000.027a x x≤++,(0a >). 由于2000.027711x x ++≥=,当且仅当2000.02100x x x =⇒=时等号成立,所以011a <≤,所以a 的最大值为11.【点睛】本小题主要考查一元二次不等式的解法,考查基本不等式,考查数学在实际生活中的应用,属于中档题. 22. 已知各项均为正数的数列{}n a 的前n 项和为n S ,首项为1a ,且12,n a ,n S 成等差数列. (1)判断数列{}n a 是否为等比数列?若是,写出通项公式;若不是,请说明理由; (2)若22log n n b a =-,设n n n b c a =,求数列{}n c 的前n 项和n T ; (3)若不等式2321184n n T m m n -≤--对一切正整数n 恒成立,求实数m 的取值范围. 【答案】(1)是,22n n a -=;(2)32n n nT -=;(3)2m ≥+或2m ≤-【解析】【分析】(1)由题分析可得12n n a a -=,即得数列{}n a 是以112a =为首项,2为公比的等比数列,再写出数列的通项得解; 的(2)求出1682n n n c -=,再利用错位相减法求出数列{}n c 的前n 项和n T ; (3)设323282n n n n n d T n --=⋅=,求出n d 的最大值即得解. 【详解】解:(1)各项均为正数的数列{}n a 的前n 项和为n S ,首项为1a ,且12,n a ,n S 成等差数列. 则122n n S a +=①, 当1n =时,11122S a +=, 解得112a =. 当2n ≥时,11122n n S a --+=②, ①-②得122n n n a a a -=-, 整理得12n n a a -=, 所以数列{}n a 是以112a =为首项,2为公比的等比数列. 所以121222n n n a --=⋅=, 故22n n a -=.(2)由于22n n a -=,所以2242n n b log a n =-=-, 由于n n n b c a =, 则24216822n n nn n c ---==, 所以1280168222n n n T -=+++①, 2311801682222n n n T +-=+++②, ①-②得:23111111684822222n n n n T +-⎛⎫=-++⋯+- ⎪⎝⎭,21111116822481212n n n -+⎛⎫- ⎪-⎝⎭=-⋅--, 42nn =, 故32n n nT -=.(3)设32328328822n n n n n n n n d T n n ---=⋅=⋅=, 则:()1113123253222n n n n n n n n d d ++++----=-=, 当1n =,2,3时,112d =,21d =,378d =, 当1n >时,15302n n +-<, 故n d 的最大值为1, 不等式2321184n n T m m n -≤--对一切正整数n 恒成立, 只需21114m m --≥即可, 故2480m m --≥,解得2m ≥+2m ≤-所以m的取值范围是2m ≥+或2m ≤-【点睛】方法点睛:数列求和常用的方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)倒序相加法;(5)分组求和法.要根据数列的通项的特征灵活选用.。
河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将5封信投入3个邮筒,不同的投法有()A .35种B .53种C .3种D .15种2.已知二项式((0)na >的展开式的第五、六项的二项式系数相等且最大,且展开式中2x 项的系数为84,则a 为A .2B .1C .15D .3103.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种4.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系:x24568y3040605070y 与x 的线性回归方程为ˆ 6.517.5y x =+,当广告支出5万元时,随机误差的效应(残差)为()A .10-B .20-C .20D .105.将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有A .240B .480C .720D .9606.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有A .150种B .180种C .200种D .280种7.形如45132这样的数称为“波浪数”,即十位上的数字,千位上的数字均比与它们各自相邻的数字大,则由1,2,3,4,5可组成数字不重复的五位“波浪数”的个数为A .20B .18C .16D .118.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有A .1344种B .1248种C .1056种D .960种二、双空题9.已知离散型随机变量X 的分布列如下:X 012Px4x5x由此可以得到期望E (X )=___________,方差D (X )=___________.三、填空题10.设随机变量()~3,1X N ,若()4P X p >=,则()24P X <<=___________.11.若2019220190122019(12)()x a a x a x a x x R -=++++∈ ,则010********()()()()a a a a a a a a ++++++++ =_______.(用数字作答)12.某学校要对如图所示的5个区域进行绿化(种花),现有4种不同颜色的花供选择,要求相邻区域不能种同一种颜色的花,则共有___________种不同的种花方法.13.用数字0,1,2,3,4,5,6组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.14.投掷3枚骰子,记事件A :3枚骰子向上的点数各不相同,事件B :3枚骰子向上的点数中至少有一个3点,则()P A B =___________.四、解答题15.从4名男生和2名女生中任选3人参加演讲比赛.(1)求所选3人既有女生又有男生的概率;(2)设随机变量ξ表示所选3人中女生的人数,求ξ的分布列和数学期望.16.考取驾照是一个非常严格的过程,有的人并不能够一次性通过,需要补考.现在有一张某驾校学员第一次考试结果汇总表,由于保管不善,只残留了如下数据(见下表):成绩性别合格不合格合计男性4510女性30合计105(1)完成此表;(2)根据此表判断:是否可以认为性别与考试是否合格有关?如果可以,请问有多大把握;如果不可以,试说明理由.参考公式:①相关性检验的临界值表:()20P k x ≥0.400.250.150.100.050.0250.100x 0.7081.3232.0722.7063.8415.0246.635②卡方值计算公式:()()()()()22n ad bc k a b c d a c b d -=++++.其中n a b c d =+++.17.有4个编号为1,2,3,4的小球,4个编号为1,2,3,4的盒子,现需把球全部放进盒子里,(最后结果用数字作答)(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(4)恰有一个小球放入自己编号的盒中,有多少种不同的放法?18.已知在()*n n N ∈的展开式中,第6项为常数项.()I 求n 的值;()II 求展开式的所有项的系数之和;()III 求展开式中所有的有理项.19.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望;(2)求乙至多击目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.20.某银行招聘,设置了A,B,C三组测试题供竞聘人员选择.现有五人参加招聘,经抽签决定甲、乙两人各自独立参加A组测试,丙独自参加B组测试,丁、戊两人各自独立参加C组测试.若甲、乙两人各自通过A组测试的概率均为23;丙通过B组测试的概率为12;而C组共设6道测试题,每个人必须且只能从中任选4题作答,至少答对3题者就竞聘成功.假设丁、戊都只能答对这6道测试题中4道题.(1)求丁、戊都竞聘成功的概率;(2)记A、B两组通过测试的总人数为ξ,求ξ的分布列和期望.参考答案:1.B【分析】本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,根据分步计数原理得到结果.【详解】:由题意知本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,∴根据分步计数原理知共有35种结果,故选:B .2.B【分析】如果n 是奇数,那么是中间两项的二次项系数最大,如果n 是偶数,那么是最中间那项的二次项系数最大,由此可确定n 的值,进而利用展开式,根据二次项的系数,即可求出a 的值.【详解】∵二项式(0)na ⎛> ⎝的展开式的第五、六项的二项式系数相等且最大,∴9n =,又∵9⎛⎝的通项为:275999362199r r r r r r r r T C a x x a C x -----+==,令27526r-=,解得3r =,又∵展开式中2x 项的系数为84,即63984a C =,解得1a =或1a =-(舍去)故选B.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,根据展开式中某项的系数求参数,属于中档题3.B【详解】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解:最左端排甲,共有55A =120种,最左端只排乙,最右端不能排甲,有1444C A =96种,根据加法原理可得,共有120+96=216种.故选B .【分析】随机误差的效应(残差)为观测值减去预测值【详解】当广告支出5万元时,观测值为60,预测值为ˆ 6.5517.550y=⨯+=,则随机误差的效应(残差)为605010-=.故选:D.5.B【详解】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有24+43=20⨯⨯,所以不同坐法有4420480A =,选B.6.A【详解】人数分配上有两种方式即122,,与113,,若是113,,,则有311352132260C C C A A ⨯=种若是122,,,则有122354232290C C C A A ⨯=种则不同的分派方法共有150种故选A点睛:本题主要考查的知识点是排列,组合及简单计数问题.由题意知本题是一个分类问题,根据题意可知人数分配上两种方式即122,,与113,,,分别计算出两种情况下的情况数目,相加即可得到答案.7.C【分析】根据“波浪数”的定义,可得“波浪数”中,十位数字,千位数字必有5、另一数是3或4,分别计算出每种的个数,相加即可.【详解】此“波浪数”中,十位数字,千位数字必有5、另一数是3或4;是4时“波浪数”有232312A A =;另一数3时4、5必须相邻即45132;45231;13254;23154四种.则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为16,故选C .【点睛】本题主要考查了排列组合的应用,要对该问题准确分类,做到不充分,不遗漏,正确求解结果,属于中档题.【详解】首先确定中间行的数字只能为1,4或2,3,共有1222C A 4=种排法.然后确定其余4个数字的排法数.用总数46A 360=去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有24A 12=种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有43121248⨯=种不同的排法,选B .9. 1.40.44【详解】根据分布列的性质可知:45101x x x x ++==,解得110x =.()042514 1.4E x x x x x =⨯++⨯==.()()()()2220 1.41 1.442 1.45 1.960.64 1.80.44D x x x x x x x =-⨯+-⨯+-⨯=++=.10.12p-【分析】由正态曲线的对称性直接求得.【详解】因为随机变量()~3,1X N ,()4P X p >=,所以由正态曲线的对称性可得:()2P X p <=,所以()()()2112442p P X P X P X <<=->=--<.故答案为:12p -.11.2017【分析】由题意,根据二项式的展开式,令0x =和1x =可得00120191,1a a a a =+++=- ,进而得01020201900122019()()()2018()a a a a a a a a a a a ++++++=+++++ ,即可求解,得到答案.【详解】由题意,可知201922018201901220182019(12)x a a x a x a x a x -=+++++ ,令0x =,可得01a =,令1x =,可得012320191a a a a a +++++=- ,所以01020302019001232019()()()()2018()a a a a a a a a a a a a a a ++++++++=++++++ 2018112017=⨯-=,故答案为2017.【点睛】本题主要考查了二项式定理的应用问题,其中解答中利用二项展开式,合理化简、赋值是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.72【分析】根据题意,分4步进行分析:依次分析区域1、2、3、4和5的着色方法数目,由分步计数原理计算可得答案.【详解】根据题意,分4步进行分析:①对于区域1,有4种颜色可选,即有4种着色方法,②对于区域2,与区域1相邻,有3种颜色可选,即有3种着色方法,③对于区域3,与区域1、2相邻,有2种颜色可选,即有2种着色方法,④对于区域4,若其颜色与区域2的相同,区域5有2种颜色可选,若其颜色与区域2的不同,区域4有1种颜色可选,区域5有1种颜色可选,所以区域4、5共有2+1=3种着色方法;综上,一共有4×3×2×(1+2)=72种着色方法;故答案为:7213.90【分析】一共有3个奇数,故只能是3个奇数加1个偶数,分类讨论该偶数是不是为0.【详解】一共有3个奇数,故只能是3个奇数加1个偶数.当该偶数不为0时,则有1434C A 72=种;当该偶数为0时,0不能作为首位,则有1333C A 18=种;故共有721890+=种.故答案为:90.14.6091【分析】分别求出事件B 和事件AB 所包含的基本事件的个数,再根据条件概率公式求解即可.【详解】解:投掷3枚骰子,3枚骰子向上的点数共有36216=种情况,其中3枚骰子向上的点数没有一个3点的有35125=种,则3枚骰子向上的点数中至少有一个3点有21612591-=种,即()91n B =,3枚骰子向上的点数中至少有一个3点且3枚骰子向上的点数各不相同有1235C A 60=种,即()60n AB =,所以()6091P A B =.故答案为:6091.15.(1)45(2)分布列见解析,1【分析】(1)根据对立事件的概率和为1得,之需求两人来自同一性别即可.(2)此分布为超几何分布,对应的概率为()32436C C C k kP k ξ-==.【详解】(1)3个人来自于两个不同专业的概率为3436C 41C 5-=(2)ξ可能取的值为0,1,2.()32436C C C k k P k ξ-==,0,1,2k =.∴ξ的分布列为ξ012P153515∴ξ的数学期望为1310121555E ξ=⨯+⨯+⨯=16.(1)答案见解析(2)可以,有97.5%的把握【分析】(1)直接根据题意即可完成表格;(2)计算得出2 6.109k ≈,根据独立性检验思想即可得结果.【详解】(1)成绩合格不合格合计性别男性451055女性302050合计7530105(2)假设0H :性别与考试是否合格无关,()2210545203010 6.10975305550k ⨯-⨯=≈⨯⨯⨯.若0H 成立,()25.2040.025P k ≥=,∵2 6.109 5.204k ≈≥,∴有97.5%的把握认为性别与考试是否合格有关.17.(1)24(2)256(3)144(4)8【分析】(1)4个球全放4个盒中,没有空盒则全排列即可求得.(2)有4个球,每个球有4种放法,此时随意放,盒子可以空也可以全用完.(3)恰有一个空盒,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球.(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种.【详解】(1)没有空盒子的方法:4个球全放4个盒中,没有空盒则全排列共44A 24=种;(2)可以有空盒子,有4个球,每个球有4种放法共44256=种;(3)恰有一个空盒子,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球,先将四盒中选一个作为空盒,再将四球中选出两球绑在一起,再排列共123443C C A 144=种;(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种,则共14C 28⋅=种.18.(I )10n =;(II )11024;(III )有理项分别为23454T x =,6638T =-;2945256T x -=⋅.【分析】()1在二项展开式的第六项的通项公式1055361()2n n T C x -=⋅-⋅中,令x 的幂指数等于0,求出n 的值;()2在二项展开式中,令1x =,可得展开式的所有项的系数之和;()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可求出r 的值,即可求得展开式中所有的有理项.【详解】()1在()*n n N ∈的展开式中,第6项为1055361(2n n T C x -=⋅-⋅为常数项,1003n -∴=,10n ∴=.()2在()*10)n n N ∈=的展开式中,令1x =,可得展开式的所有项的系数之和为1011(1)21024-=.()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可得2r =,5,8,故有理项分别为22231014544T C x x =⋅⋅=,50610163328T C x ⎛⎫=⋅-⋅=- ⎪⎝⎭;8822910145(2256T C x x --=⋅-⋅=⋅.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.19.(1)分布列见解析,1.5;(2)1927;(3)124.【分析】(1)ξ的可能取值为0,1,2,3,根据独立事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得ξ的数学期望;(2)根据独立事件与对立事件的概率公式求解即可;(3)根据互斥事件的概率公式以及独立事件的概率公式求解即可.【详解】(1)ξ的概率分布列为ξ0123P()E ξ=0×+1×+2×+3×=1.5或()E ξ=3×=1.5.(2)乙至多击中目标2次的概率为1-C ()3=.(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件B 2,则A =B 1+B 2,B 1、B 2为互斥事件,P (A )=P (B 1)+P (B 2)=×+×=.20.(1)925(2)分布列见解析,116【分析】对于(1),因两人竞聘成功相互独立,算出一人竞聘成功概率即可.而一人竞聘成功概率,相当于从6道题中至少抽中3道会做题的概率;对于(2),由题意可知通过的总人数可能为3,2,1,0.又甲,乙,丙竞聘成功相互独立,结合题目条件可分别算得人数为3,2,1,0的概率,即可得答案.【详解】(1)设参加C 组测试的每个人竞聘成功为A 事件,则()43144246C C C 183C 155P A ++===又两人竞聘成功相互独立,故丁、戊都竞聘成功的概率等于3395525⨯=(2)由题意可知ξ可取0,1,2,3,又3人竞聘成功相互独立,则()21210112318P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()221121512113323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22112182213323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()221433218P ξ⎛⎫==⨯= ⎪⎝⎭,故ξ的分布列为:ξ0123P 118518818418所以()15843311 0123 181********E=⨯+⨯+⨯+⨯==ξ.。
石家庄二中2020~2021学年第一学期期中考试高二竞赛班数学试卷考试时间为120分钟,总分150一、选择题1.对于简单随机抽样,每个个体每次被抽到的机会( )A .相等B .不相等C .无法确定D .与抽取的次数有关 2.命题“x ∀∈R ,20x>”的否定是( ) A .0x ∃∈R ,020x > B .0x ∃∈R ,020x ≤C .x ∀∈R ,20x< D .x ∀∈R ,20x≤3.从0,1,2,3,4,5这六个数中取两个奇数和两个偶数组成没有重复数字的四位数的个数是( ) A .300 B .216 C .180 D .1624.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程ˆˆ0.56yx a =+,样本点的中心为(170,69),据此模型预报身高为172cm 的高三男生的体重为( )A .70.09B .70.12C .70.55D .71.055.从一箱产品中随机地抽取一件,设事件A :“抽到一等品”,事件B :“抽到二等品”,事件C :“抽到三等品”,且已知()0.65P A =,()0.2P B =,()0.1P C =.则事件“抽到的产品不是一等品”的概率为( ) A .0.65 B .0.35 C .0.3 D .0.0056.已知命题p :1x >,命题q :2x x >,则q ⌝是p ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋中抽取60袋进行检验,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列开始向右读,请你写出抽取检测的第5袋牛奶的编号是( )(下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .199B .175C .507D .1288.已知椭圆C :22142x y +=,过点(1,1)M 的直线与椭圆C 相交于P ,Q 两点,若弦PQ 恰被点M 平分,则直线l 的斜率为( ) A .2- B .12-C .1-D .2 9.有下列调查方式:①学校为了解高一学生的数学学习情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有15人在100分以上,35人在90-100分,10人低于90分.现在从中抽取12人座谈了解情况;③运动会中工作人员为参加400m 比赛的6名同学公平安排跑道.就这三个调查方式,最合适的抽样方法依次为( ).A .分层抽样,系统抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样 10.若202020102018220200122020(1)(1)(1)1a xa x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202 D .2021211.已知ABC △的顶点(3,0)B -和(3,0)C ,顶点A 在椭圆221167x y +=上,则sin sin sin B CA+的值为( ) 12.已知A ,B 是抛物线28y x =上的两个动点且16AB =,则线段AB 中点M 到直线3x =-距离的最小值是( )A .7B .8C .9D .10二、填空题13.已知求得一组数据4,6,5,8,7,x ,6平均数是6,那么这组数据的中位数是______.14.某班的5名同学代表班级参加学校组织的知识竞赛,在竞赛过程中,每人依次回答问题,为更好的发挥5人的整体水平,其中A 同学只能在第一或最后一个答题,B 和C 同学则必须相邻顺序答题,则不同的答题顺序编排方法的种数为______(用数字作答)15.我国髙铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.16.已知A ,B 是椭圆22221(0)x y a b a b +=>>和双曲线22221x y a b-=的公共顶点,P 是双曲线上的动点,M是椭圆上的动点(P ,M 都异于A ,B ),且()PA PB MA MB λ+=+,其中λ∈R ,设直线AP ,BP ,AM BM 的斜率分别为1k ,2k ,3k ,4k,若12k k +=34k k +=______.三、解答题17.设命题p :函数()(21)2020f x k x =-+在R 上是减函数,命题q :函数()g x =定义域为全体实数R ,如果()p q ∧⌝是真命题,求实数k 的取值范围. 18.某商场5个分店某日的销售额和利润额资料如下表:(Ⅰ)求利润额y 关于销售额x 的回归直线方程;(Ⅱ)当销售额为4万元时,估计该零售店的利润额(单位:万元). 附:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线分成v u αβ=+的斜率和截距的最小二乘估计分别为:()()()121nii i nii uu v v uu β==--=-∑∑,v u αβ=-.19.某小组的2名女生和3名男生中任选2人去参加一项公益活. (Ⅰ)求所选2人中恰有一名男生的概率; (Ⅱ)求所选2人中至少有名女生的概率. 20.已知抛物线C :23y x =的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (Ⅰ)若4AF BF +=,求l 的方程; (Ⅱ)若3AP PB =,求AB .21.为了解学生身高情况,某校以10%的比例对全校700名学按性别进行分层抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm 之间的概率;(Ⅲ)样本中身高在165~180cm 之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率. 22.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(Ⅰ)求动点M 的轨迹E 的方程;(Ⅱ)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.石家庄二中2020~2021学年第一学期期中考试高二理科班数学答案一、选择题1.A 2.B 3.C 4.B 5.B 6.A 7.B 8.B 9.D 10.C 11.D 12.C二、填空题13.6 14.24 15.0.98 16.三、解答题17.【解析】若p 真,则210k -<,即12k <;若q 真,则2(31)40k ∆=+-≤,解得113k -≤≤, 由()p q ∧⌝是真命题,所以p 真且q 假,即12113k k k ⎧<⎪⎪⎨⎪<->⎪⎩或.所以,11(,1),32k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 18.【解析】(Ⅰ)设回归直线方程为ˆˆˆybx a =+. 由题意可得, 3.4y =,6x =.所以,()()11()(3)( 1.4)(1)(0.4)10.63 1.6ˆ0.59119nn nni nn i xx y y bx x ==---⨯-+-⨯-+⨯+⨯===+++-∑∑,ˆˆ 3.40.560.4ay bx =-=-⨯=. 所以,利润额y 关于销售额x 的回归直线方程为ˆ0.50.4yx =+. (Ⅱ)当4x =时,0.540.4 2.4y =⨯+=,于是,当销售额为4万元时,可以估计该零售店的利润额为2.4万元.19.【解析】从某小组的2名女生和3名男生中任选2人去参加一项公益活动的所有方法种数为25C 10=. (Ⅰ)设事件A :所选2人中恰有一名男生,则事件A 的基本事件个数为1132C C 6=,于是,由古典概型计算公式可得,63()105P A ==. 所以,所选2人中恰有一名男生的概率为35.(Ⅱ)设事件B :所选2人中至少有一名女生,则事件B :所选2人中没有女生,由题意可得,事件B 的基本事件个数为23C 3=.于是,由对立事件概率公式可得,37()1()11010P B P B =-=-=. 所以,所选2人中至少有一名女生的概率为:710. 20.【解析】设直线l :32y x t =+,()11,A x y ,()22,B x y .(Ⅰ)由题设得3,04F ⎛⎫⎪⎝⎭,故1232AF BF x x +=++,由题设可得1252x x +=. 由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-, 所以l 的方程为3728y x =-.(Ⅱ)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故21y =-,13y = 代入C 的方程得13x =,213x =.故3AB =.21.【解析】(Ⅰ)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400. (Ⅱ)有统计图知,样本中身高在170~185cm 之间的学生有141343135++++=人, 样本容量为70,所以样本中学生身高在170~185cm 之间的频率350.570f ==, 故由频率f 估计该校学生身高在170~185cm 之间的概率0.5P =.(Ⅲ)样本中女生身高在165~180cm 之间的人数为10,身高在170~180cm 之间的人数为4. 设事件A 表示“从样本中身高在165~180cm 之间的女生中任选2人,至少有1人身高在170~180cm 之间”,则26210C 2()1C 3P A =-=,或112644210C C C 2()C 3P A +==. 至少有1人身高在170~180cm 之间的概率为23. 22.【解析】(Ⅰ)在ABM △中,由余弦定理得:22121242cos 2d d d d θ=+-.又212cos 1d d θ=,整理得,12d d +=M 的轨迹E 是以(1,0)A -和(1,0)B 为焦点,长轴长为故点M 的轨迹E 的方程是2212x y +=. (Ⅱ)假设存在直线l 满足题设,当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,与轨迹E 的方程2212x y +=联立,消去y 整理得:()2222124220k x k x k +-+-=, 设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,由韦达定理得,2122412k x x k +=+,21222212k x x k -=+.由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即21210x x y y +=. 又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦, 整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++.代入整理得:22222222222410121212k k k k k k k ⎛⎫--+-+= ⎪+++⎝⎭,即k =当直线l 的斜率不存在时,直线l 的方程为1x =,此时1,2P ⎛⎝⎭、1,2Q ⎛- ⎝⎭,经验证0OP OQ ⋅≠不满足题意.综上所述,所求直线l 存在,其方程为1)y x =-.。