在测试过程中电磁干扰的引入和防止
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
测试系统的抗干扰技术一、抑制干扰的基本措施干扰的形成必须同时具备二项因素.即T扰源、下扰途样以及刘啪声敏感件较白的接收电路一—俭测装置的的级电路。
=番之司的关系如图l 4—1所小;要想抑制干扰,首先应对干扰个全面而深入的了解,然后从形成T扰的一要素山发,存i个方面采取措施。
[一)消除或抑制干扰源消除十扰源是积极主动的措施。
继电路、接触器和断路器等的心肌点,在通断电时的电火花处较强的1:扰源,可以采取触点消弧电容等。
接佃件接触不良.电路接头松脱、虚焊等也是造成十扰的原因,对于这类可以消除的十扰源要尽心能消除。
对难以消除或不能消除的十扰源,如从些自然现象的十扰斗56—U的用电设备的干扰等,扰必须采取防护措施来抑制干扰源。
(二)破坏干扰途径(1)刘于以“路”的形式侵入的干扰,可以采取提尚绝缘性能的办法来抑制漏电流干扰;采用隔离变压器、光电锅台器等切断地环路的干扰途径,引用滤波器、扼流圈等技术,将干扰信号除去;改变接地形式以润东共阻抗藕合下扰等;对于数字信号可采用整形、限幅等信号处耶方法切断干扰途径!(2)对于以“场”的形式侵入的干扰,一般采取各种屏蔽措施。
(三硝di目接收电路对干扰信号的敏感性根据经验,尚输人阻抗电路比低输入阻抗电路易受干扰;布局松散的电子装冒比结构紧凑的电子浆置更扬受外来干扰;模拟亿宾微电子电路比数字电路的抗T扰能力差。
由此bJ见,吧路设汁、系统结构等都与十扰的形成有着密切关系。
因此,系统布局应合理品设计电此时应采用对1—扰信号敏感性是的电路。
t一)装置配线技术与信号电继的选择正确设门布线系统、正确选择传感器和正确设计信号处那装置是一个重要的问题国内外[业控制技术的发展动向主要仓3个方面:0趋向计算机化,即智能化;⑦上业榨制系统体积小型化;③采用标准化、通用化的组合系统。
但是,干扰信号通过各种线缆侵入电控装置所占的比例可达90%以上,因而控制装置的配线技术是首先应该考虑的。
对于静电噪声,川在信号线上包一层字体屏蔽层,老将屏蔽层两端接地则效果更好。
集成电路测试中的新型芯片电磁干扰抑制技术研究随着社会高科技的不断发展,集成电路的发展越来越快。
在集成电路制造中,运用先进的技术来测试芯片的可靠性是至关重要的。
由于芯片本身的特性和测试环境的不确定性,芯片电磁干扰的问题越来越受到了大家的关注。
因此,如何在测试过程中有效地抑制芯片的电磁干扰成为了一个热门的话题。
本文将探讨一种新型的芯片电磁干扰抑制技术在集成电路测试中的应用。
一、什么是芯片电磁干扰?首先我们需要了解什么是芯片电磁干扰。
芯片电磁干扰(EMI)是指电器或通信设备在使用时由于电磁作用而产生干扰,使得其他设备不能工作正常。
芯片集成了许多电子元器件,如晶体管、电容、电感等,这些元器件都会产生电磁场。
由于芯片内部电路的高速运行、频繁的开关等特性,会产生高频电磁干扰,而这种电磁干扰会通过导线、电源等途径传播到其他设备上,影响到设备的正常工作。
二、传统的芯片电磁干扰抑制方法在集成电路测试中,传统的电磁干扰抑制方法主要是通过屏蔽和滤波来实现。
屏蔽是指用金属或合金等材料将芯片包裹起来,从而防止电磁波通过芯片表面进入或从芯片内部逃逸出去。
滤波是指通过滤波电路来过滤掉芯片输出信号中的高频噪声,从而减少电磁干扰的影响。
然而,传统的屏蔽和滤波方法存在一些不足。
首先是成本较高,需要使用昂贵的金属材料进行屏蔽,或需要加装滤波电路,这使得芯片的制造成本和测试成本都相应地提高。
其次是效果有限,屏蔽材料和滤波电路无法完全消除电磁干扰,仍然会影响到芯片和其他设备的正常工作。
因此,研究新型的芯片电磁干扰抑制技术已成为当下的热门话题。
三、新型芯片电磁干扰抑制技术近年来,一种新型的芯片电磁干扰抑制技术——基于三维电磁仿真和设计的解决方案已经被提出。
这种解决方案是基于电磁理论和计算机仿真技术,针对芯片的特性和测试环境的不确定性,通过优化芯片的电磁场分布和信号传输路径,从而实现电磁干扰的抑制。
该技术采用了三维电磁仿真软件,对芯片的电磁场进行分析和优化。
车载测试中的电磁兼容性问题与解决方案在车辆制造领域,车载测试是必不可少的一个环节。
然而,随着汽车电子系统的不断进步与普及,电磁兼容性问题逐渐凸显出来。
本文将探讨车载测试中的电磁兼容性问题,并提供解决方案。
一、电磁兼容性问题的背景车载测试包括对车辆电子系统的各种信号进行测试,如音频信号、视频信号、无线通信信号等。
然而,在这一系列测试过程中,电磁干扰问题开始显现。
电磁干扰可能会导致车载设备的功能降低,甚至造成系统崩溃,从而影响驾驶安全。
二、电磁兼容性问题的原因1. 车载设备内部干扰:车载设备内部的电子元件可能会产生电磁干扰,影响其他设备的正常运行。
2. 外部电磁源干扰:外部的电磁源,如电线、发射塔等,可能对车载设备产生干扰。
3. 电磁波传播:电磁波的传播特性也是电磁兼容性问题的原因之一。
在车辆内部,电磁波可能会反射,折射或穿透,导致信号衰减或失真。
三、电磁兼容性问题的解决方案1. 设计合理的电路和系统布局:在车载设备的设计过程中,应注意电路和系统的布局。
合理的布局可以减少内部干扰,降低电磁波在系统内部的传播。
2. 使用屏蔽材料和屏蔽技术:屏蔽材料和屏蔽技术可以有效地阻挡外部电磁干扰。
在车载设备内部使用适当的屏蔽材料,对敏感部件进行屏蔽,可以降低外部干扰对设备的影响。
3. 导入合适的滤波器:在车载设备中引入合适的滤波器可以抑制意外干扰信号。
滤波器可以消除特定频率的干扰,保障车载设备的正常工作。
4. 精确控制电磁辐射:在车辆制造过程中,可以通过控制电磁辐射来减少干扰。
采取合适的阻尼措施,使车辆电子系统不会向周围环境发射过多的电磁辐射。
5. 进行电磁兼容性测试:最后,进行电磁兼容性测试是确保车载设备正常工作的关键一步。
通过在不同频率和功率下对设备进行测试,可以有效地识别和解决潜在的电磁兼容性问题。
四、结语随着汽车电子系统的发展,车载测试中的电磁兼容性问题变得越来越重要。
在车辆制造过程中,通过合理的设计和措施,可以解决这些问题,并保障车载设备的正常工作。
防电磁干扰的措施引言在当今高科技发达的社会中,电子产品的普及已经无处不在。
然而,随之而来的电磁干扰问题也成为了一个严重的难题。
电磁干扰可以对电子设备的正常运行产生很大的影响,甚至导致设备故障。
因此,我们有必要采取一些措施来防止电磁干扰的发生。
本文将介绍一些常见的防电磁干扰的措施。
措施一:良好的电磁屏蔽电磁屏蔽是一种有效防止电磁干扰的手段,通过使用屏蔽材料来隔离电磁场的影响。
以下是一些常见的电磁屏蔽材料:•金属护罩:对于较小的设备,可以使用金属护罩来屏蔽电磁信号。
金属护罩可以将电磁信号导引到地面,从而防止其对设备的干扰。
•电磁屏蔽涂料:电磁屏蔽涂料可以在设备表面形成一层保护膜,阻止电磁信号的进入。
这种涂料通常使用铜或铝粉末作为主要成分。
•镀金屏蔽:将设备的外部表面镀上一层金属,可以有效地屏蔽电磁信号。
金属的良好导电性可以阻止电磁信号的进入。
良好的电磁屏蔽可以大大减少电磁干扰的发生,提高设备的可靠性和稳定性。
措施二:地线连接地线连接是防止电磁干扰的另一种重要手段。
良好的地线连接可以将电磁信号导引到地面,从而减少信号对设备的干扰。
以下是一些地线连接的重要注意事项:•地线长度:地线应尽可能短,以减少电流在地线上的阻抗。
长的地线会增加电流在地线上的损耗,降低地线的效果。
•地线材料:地线通常使用导电性能良好的材料,如铜或铝。
这些材料具有低电阻和良好的导电性能,有助于提高地线的效果。
•地线接地:地线应连接到地面的可靠的接地点。
接地点应选择在地下水位以下,以确保地线能够有效地导引电磁信号到地面。
良好的地线连接可以有效地减少电磁干扰的产生,提高设备的抗干扰能力。
措施三:滤波器的使用滤波器是另一种有效防止电磁干扰的措施。
它通过滤除电源线上的高频干扰信号,提供稳定的供电环境,从而减少电磁干扰的发生。
以下是一些常见的滤波器类型:•EMI滤波器:EMI滤波器主要用于滤除电磁干扰信号。
它可以安装在电源线入口处,提供良好的抗干扰能力。
空间电磁干扰的测量和去除1、空间的测量和去除?可以采用示波器测量的方式,将其耦合方式设定为交流耦合,只测量其交流噪声信号。
以下两图分别为采用模拟示波器和数字示波器检测的情况。
两示波器测量的情况不尽相同,模拟示波器测得的噪声信号幅值约在3.5mV 左右,频率在10MHz 的级别,而数字示波器测得的噪声信号幅值在40mV 左右,频率在50MHz 左右。
首先可以采用屏蔽线的方式,来隔绝空间,应该说这是比较简单可行的方法。
当然在精密仪器中,根据其频率远高于生物医学信号的特点,应该采用低通滤波器滤除这一空间。
试验中还发现,探测回路的形状和面积都对在回路中激发出的干扰信号的强度有影响,所以从设计角度考虑,可以采用嵌入人体的探测方法从结构上来避免空间的影响。
对于使用了数字芯片的电路,应该考虑采用去耦电容的方式让高频分量接地。
2、如何用没有电容档的数字万用电表测量电容的好坏试验中不一定使用的数字万用电表都带有电容档,所以需要使用其他方法解决检测万用电表好坏的问题。
考虑到数字万用表在电阻档时由表内供电,通过测量两表笔之间的电压大小来反映阻抗的大小,可以转化成一个简单的判断电容好坏的档位。
试验中采用一只33uf 的电解电容,根据电阻档时万用电表的红色表笔为正极,黑色表笔为负极的条件,让红色表笔接触电解电容的正极,黑色表笔接触电解电容的负极,一旦接通之后就能发现万用表的读数不断变化并上升,最后显示溢出符号“1.”,根据这一情况,结合电容的基本常识可知,万用表显示的就是电容充电曲线。
根据时间常数τ =RC 可知,在同一电阻档位时万用电表的内阻一定的这一情况下,可以通过比较不同电容测试时显示溢出符号需要时间的长短来比较电容得大小和判断电容的好坏。
实验中容易出现的情况有:1、始终显示000,应该是电容短路损坏。
2、显示溢出符号的时间特别短,应该是由于档位选择不合适,电表内阻太小,充电时间太短,应该选择测量较大电阻的档位。
而且如果反接的话,通过选用较大档位的电阻档位,理论上观察到的示数反映了电容漏电电流的大小,但是对于电解电容存在一定的危险,没有进行尝试。
电器使用中的防止电磁干扰对电子设备的干扰方法电器使用中的防止电磁干扰对电子设备的干扰方法随着科技的发展,电子设备在我们的生活中扮演着越来越重要的角色。
然而,电磁干扰成为了我们使用电子设备时面临的一个问题。
电磁干扰可能导致电子设备出现性能下降、功能受损甚至瘫痪。
因此,为了保护我们的电子设备,我们需要采取一些方法来防止电磁干扰对它们的干扰。
首先,我们可以选择购买经过电磁兼容性测试并具有合格认证的电子设备。
这些设备经过特定的测试,可以在一定范围内抵御电磁干扰的影响。
购买这类设备可以确保我们的设备在使用时不受电磁干扰的干扰。
其次,我们可以设计合理的电路和布线来减少电磁干扰。
在电路设计中,我们可以采取一些措施,例如使用屏蔽线材、选择合适的滤波器等,来降低电磁干扰的可能性。
在布线时,我们可以避免电源线与信号线交叉敷设,减少信号线的长度等。
这些措施可以帮助我们减少电磁干扰的影响,提高设备的工作稳定性。
另外,我们还可以使用电磁屏蔽材料来防止电磁干扰对设备产生干扰。
电磁屏蔽材料可以将电磁波吸收或反射,减少电磁波对设备的影响。
例如,我们可以在设备外部使用金属屏蔽罩来封装设备,以阻隔外部的电磁干扰。
此外,我们还可以使用电磁屏蔽膜在电子设备的内部进行覆盖,以隔离不同信号之间的干扰。
此外,我们在使用电子设备时还需要注意电磁干扰的来源。
例如,电视、手机、微波炉等电器设备都有可能产生电磁干扰。
因此,我们应尽量避免将这些设备放置在电子设备附近,以免产生干扰。
另外,我们还可以将电子设备放置在电磁干扰较小的区域,例如远离通信基站、电子设备附近没有大功率电器等。
在日常使用电子设备时,我们还应注意合理使用电源和电缆。
电源和电缆的质量将直接影响电磁干扰的大小。
我们应尽量使用符合国家质量标准的电源和电缆,以确保电子设备不受电磁干扰的干扰。
总之,电磁干扰是我们使用电子设备时面临的一个问题,因此我们需要采取一些措施来防止电磁干扰对设备的干扰。
测量仪器的防干扰技术大家都知道测量的质量与测量仪器、测量标准和测量人员有关,这些方面仪器使用人员都很重视,但是测量的质量与测量环境也关系很大,各种可能存在的自然干扰和人为干扰是影响测量质量的重要因素。
因此,防干扰技术的研究和应用,越来越受到重视。
各计量测试专业都大量、普遍地使用各种测量仪器和测量标准,因此,营造和保持良好的测量环境,掌握和应用基本的、必要的干扰防护技术,对提高测量质量和保护测量设备是十分必要的。
第一节电磁干扰和干扰源一、电磁环境一切电、磁设备包括测量仪器、测量系统,控制、测量(校准/检定或测试)工作,使用设备进行控制、测量工作的人员,都处于一定的环境之中。
温度、湿度、尘埃、振动、声、光等是被人们直接感觉、受到容易重视的环境,而电磁环境时常被忽视。
可是,电、磁设备包括使用人员本身的健康对电磁环境却十分敏感。
电磁环境的定义是在给定场所存在的有意产生或无意产生的所有电磁现象的总和。
从事计量测试的计量人员自然关心实验室的电磁环境条件。
在我国,各种技术标准包括检定规程,都对实验室的电磁环境加以限制,规定除地磁场外,应“不存在影响测量结果的电磁干扰”。
但目前,我国还没有对各类实验室给出电磁干扰允许值的定量标准。
必要时,应采取专门的屏蔽和滤波措施,以获得安全的电磁环境,保证测量的质量。
二、电磁干扰源电磁干扰源种类繁多,可按不同的方法进行分类。
产生的原因,产生的性质、波形、持续时间,干扰的传波途径、频率分布等各种表现或特点进行分类。
对测量环境中直接影响测量及测量设备的干扰来源可分为自然干扰源(大气、太阳、宇宙噪声干扰,静电放电)和人为干扰源(无线电发射设备、电力设备、电子设备)。
第二节接地技术任何测量仪器其电子电路均有接地点。
为保证信号正常传输,接地点的选择和接地方式是十分重要的。
从电路的观点看,“地”是电位的参考点。
不同系统参考点可以不同,电力系统把大地表面作为参考点,因此电力系统接地多数把电路中的某一点与大地相连。
自动化设备技术规范的防电磁干扰测试在当今高度数字化和电气化的时代,自动化设备在各个领域得到了广泛应用,从工业生产中的智能制造到日常生活中的智能家居。
然而,这些设备在运行过程中面临着各种各样的电磁干扰,这可能会影响其性能、稳定性甚至安全性。
为了确保自动化设备能够在复杂的电磁环境中正常工作,防电磁干扰测试成为了设备技术规范中不可或缺的一部分。
一、电磁干扰的来源与影响电磁干扰可以来源于多个方面。
首先,自然现象如雷电放电会产生强大的电磁脉冲。
其次,电力系统中的各种设备,如变压器、电动机等在运行时会产生电磁场。
此外,通信设备的发射信号、电子设备内部的高频电路等也都是常见的电磁干扰源。
对于自动化设备而言,电磁干扰可能导致多种问题。
它可能会使设备的控制信号失真,导致设备误动作或失控。
例如,在工业自动化生产线中,一个微小的电磁干扰可能导致机器人的操作失误,从而影响产品质量甚至造成生产事故。
电磁干扰还可能影响设备的数据传输,导致数据丢失或错误。
在医疗设备中,这可能会危及患者的生命安全。
另外,强烈的电磁干扰还可能会损坏设备的电子元件,缩短设备的使用寿命。
二、防电磁干扰测试的重要性为了保障自动化设备的可靠运行,防电磁干扰测试具有极其重要的意义。
首先,通过测试可以提前发现设备在电磁兼容性方面存在的问题,从而在设计阶段就采取相应的措施进行改进,降低后期整改的成本和风险。
其次,测试能够为设备的质量评估提供依据。
符合电磁兼容性标准的设备在市场上更具竞争力,能够赢得用户的信任。
再者,防电磁干扰测试有助于确保设备在各种电磁环境中的兼容性。
这对于那些需要在复杂电磁环境中工作的设备,如军事设备、航空航天设备等,尤为重要。
最后,从法律法规的角度来看,许多国家和地区都制定了相关的电磁兼容性标准和法规,设备必须通过相应的测试才能上市销售和使用,以保障公共电磁环境的安全和稳定。
三、防电磁干扰测试的方法(一)传导干扰测试传导干扰是指通过电源线、信号线等导体传播的电磁干扰。
在测试过程中电磁干扰的引入和防止
一、引言
在测试某款模块的纹波和噪声时,用示波器看模块输出电压波形,经常会由于噪声的干扰使波形失真。
经过一番调整和部线后噪声消失。
由此想总结一下在测试过程中噪声引入的途径以及防止这些噪声干扰的方法。
二、测试过程中噪声引入的途径
通过电磁兼容学理论我们知道电磁干扰的产生必须具备三个条件:电磁干扰源、耦和途径以及被干扰设备。
他们的组成如图1所示[1]。
图1、 电磁干扰的基本组成
在测试中被测试设备和测试仪器就是被干扰的设备。
同时从图1中我们可以看出电磁干扰的产生必须有干扰源。
电磁干扰源安其来源来分可分为自然干扰源和人为干扰源。
自然干扰源,是指由于大自然现象所造成的各种电磁噪声。
它们主要包括大气层噪声、雷电、太阳异常电磁辐射以及来自宇宙的电磁辐射噪声等。
人为干扰源来源于各种电器设备,涉及的范围十分广泛。
在我们的测试环境中这两个方面的干扰都存在。
在测试中引入干扰的途径有两个一、是由金属导线或集总元件(如电容、变压器等)引入的传导噪声;二、电磁能量通过空间以电磁场的形式传送,由机箱以及输入电缆接收的辐射噪声。
传导耦合产生的噪声是通过交流供电电流以及直流供电电流的公共电源阻抗是产生的干 扰 源 被干 扰 设备
耦 和 途 径
[2]。
传导耦合引入的噪声从我们日常的测试工作完全感觉到:一旦有一次电源接到同一段电网上,无论是我们测纹波噪声还是测环路从示波器上都可以看到有很大的噪声使波形失真,甚至使测试无法进行。
由机箱以及输入电缆接收的噪声主要是辐射对回路远场耦合。
根据电磁场理论,在一定的电场强度Eo 下干扰产生的电动势为U,则可得: )log(200βS E U = (1)
其中:Eo 为坐标原点的场强、S 为回路面积、β为电磁场的角度。
从(1)中可以看出干扰与回路的面积成正比[3]。
3.测试过程中噪声的防止
知道了测试过程中噪声引入的途径,我们就可以很方便地找到减少噪声引入的方法。
● 示波器,因其功能在于观察模块的电压、电流波形,所以它对噪声是最敏感的。
在
使用示波器时要用两个脚电源插头,这样就切断了从公共地线引入传导干扰的途径;
● 输入电源线和输出负载线以及测量仪器的测量线所围成的环路面积要尽可能地小,
以减少空间的电磁辐射产生的噪声。
要做到环路面积尽可能小,首先要是线尽可能短,其次可将正负两根线绞在一齐;
● 示波器的探头尽量接近被测信号输出点,以减少测试所围成的环路面积;
● 外接电容要尽量靠近输入、输出端口,一方面是减小回路面积,另一方面是减少电
容的ESR ,使滤波效果更好。
● 使外接器件以及测试探头与被测端口要稳定接触。
器件与端口不能虚焊、探头要
稳定地固定在被测点上,防止由于天线效应而引入噪声。