超静定结构的概念和超静定结构次数的确定
- 格式:doc
- 大小:48.00 KB
- 文档页数:3
超静定结构的受力分析及特性一、超静定结构的特征及超静定次数超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。
结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。
通常采用去除多余约束的方法来确定结构的超静定次数。
即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。
去除约束的方法有以下几种:(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。
(二)切断一根两端刚接的杆件,相当于去除三个约束。
(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。
(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。
去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。
去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。
再用其他去除多余约束的方案确定其超静定次数,结果是相同的。
二、力法的基本原理(一)力法基本结构和基本体系去除超静定结构的多余约束,代以相应的未知力Xi (i=1、2、…、n),Xi 称为多余未知力或基本未知力,其方向可以任意假定。
去除多余约束后的结构称为力法基本结构。
力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。
选取力法基本结构应注意下面两点:1.基本结构一般为静定结构,即无多余约束的几何不变体系。
有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。
2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。
超静定结构的超静定次数超静定结构是指在受力平衡条件下,由于约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
超静定结构的超静定次数是指约束条件数量与自由度数量之差。
一、超静定结构的特点超静定结构具有以下特点:1. 约束条件数量大于自由度数量:超静定结构的约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
这导致了结构的设计和分析变得更加困难。
2. 结构具有较高的刚度:由于超静定结构的约束条件数量较多,结构具有较高的刚度。
这使得超静定结构在承受荷载时能够更好地保持形状稳定性。
3. 结构能够承受更大的荷载:超静定结构由于具有较高的刚度,能够承受更大的荷载。
这使得超静定结构在工程实践中得到广泛应用。
二、超静定结构的应用超静定结构在工程实践中有着广泛的应用,主要包括以下几个方面:1. 桥梁工程:超静定结构在桥梁工程中得到了广泛应用。
由于桥梁需要承受大量的荷载,超静定结构能够提供更高的刚度和稳定性,保证桥梁在使用过程中不发生塌陷或变形。
2. 建筑结构:超静定结构在建筑结构中也有重要的应用。
例如,高层建筑的框架结构通常采用超静定结构设计,以提高结构的稳定性和抗震性能。
3. 机械设备:超静定结构在机械设备中也有广泛的应用。
例如,汽车的悬挂系统和起重机的支撑结构都是超静定结构,能够提供更高的稳定性和承载能力。
三、超静定结构的分析方法超静定结构的分析方法主要包括以下几个步骤:1. 定义自由度和约束条件:首先确定结构的自由度和约束条件。
自由度是指结构中可以独立变形的数量,约束条件是指结构中限制自由度的条件。
2. 建立平衡方程:根据结构的受力平衡条件,建立结构的平衡方程。
平衡方程是超静定结构分析的基础,通过平衡方程可以求解结构的受力状态。
3. 引入支座反力:由于超静定结构的约束条件数量大于自由度数量,结构中存在未知的支座反力。
通过引入支座反力,可以将超静定结构转化为静定结构进行分析。
4. 求解支座反力:利用平衡方程和约束条件,求解支座反力。
超静定结构的超静定次数超静定结构是指在外力作用下,结构内部的约束力大于外力的个数,从而使得结构处于静定状态的一种结构形式。
即结构内部的约束力可以完全抵消外力的作用,使得结构保持平衡。
超静定结构的超静定次数是指结构内部的约束力多于外力的个数。
超静定次数越高,结构的稳定性越好。
超静定结构的超静定次数取决于结构的约束性质和约束方式。
常见的超静定结构有悬挑梁、连续梁和桁架等。
这些结构的超静定次数可以通过力平衡方程和几何关系进行计算。
在设计超静定结构时,需要合理选择约束方式和约束点的位置,以提高结构的稳定性和承载能力。
悬挑梁是一种常见的超静定结构。
它由一根悬挑在空中的梁组成,一端固定在墙上,另一端悬空。
在外力作用下,悬挑梁的约束力可以完全抵消外力的作用,使得梁保持平衡。
悬挑梁的超静定次数为1,即悬挑梁有一个多余的约束力。
连续梁是另一种常见的超静定结构。
它由多个梁段组成,梁段之间通过铰接连接。
在外力作用下,连续梁的约束力可以完全抵消外力的作用,使得梁保持平衡。
连续梁的超静定次数为2,即连续梁有两个多余的约束力。
桁架是一种由杆件和节点组成的超静定结构。
杆件之间通过节点连接,形成一个刚性的空间网格结构。
在外力作用下,桁架的约束力可以完全抵消外力的作用,使得结构保持平衡。
桁架的超静定次数取决于节点的个数和杆件的个数。
一般情况下,桁架的超静定次数为3,即桁架有三个多余的约束力。
超静定结构的超静定次数越高,结构的稳定性越好。
在实际工程中,超静定结构常用于悬挑梁、连续梁和桁架等场合。
例如,在大跨度桥梁的设计中,常采用连续梁结构,以提高桥梁的稳定性和承载能力。
此外,在高层建筑的设计中,常采用悬挑梁结构,以增加建筑物的空间利用率。
超静定结构的设计需要考虑结构的约束性质和约束方式。
合理选择约束方式和约束点的位置,可以提高结构的稳定性和承载能力。
同时,超静定结构的设计还需要考虑结构的材料性质和施工工艺。
选择合适的材料和采用适当的施工方法,可以确保结构的安全性和经济性。
一、超静定结构和超静定次数1超静定结构的概念①几何构造方面:有多余约束的几何不变体系。
②力学解答方面:方程的个数少于未知力的个数。
2.超静定次数的确定去掉多余约束使超静定结构成为静定结构,所去掉的多余约束数目,就是超静定次数。
一般地,*切断链杆(或支杆)是去掉了一个约束,相应一个约束力;*拆开一个铰(或固定铰支座)是去掉了两个约束,相应两个约束力;*切端刚结点(或固定支座)是去掉了三个约束,相应三个约束力;*刚结点变为铰结点,是去掉了一个约束,相应一个约束力;②③?11d练习:按上述去掉约束的办法,判定下列结构的超静定次数。
二、力法的基本结构和多余未知力1.超静定结构经过去掉多余约束后,变为静定结构,这个静定结构称为力法的基本结构。
去掉的多余约束所对应的约束力,称为力法的多余约束力。
基本结构、荷载与多余未知力合称基本体系。
2.基本结构的形式不唯一。
一般地,基本结构和多余未知力同时产生。
选取时,应使计算简单为前提。
前例题与练习中,给出了每个结构的部分基本结构和相应的多余未知力。
三、力法原理1.基本假设:弹性小变形2.确定超静定次数,选取恰当的基本体系3.位移协调条件的确定(即,补充方程的建立)4.计算柔度系数(单位未知力产生的位移),建立力法方程5.结构内力的叠加公式6.作内力图示例1P ~* A ElElP *LX■Ck丁L nZf———r基本体系解:1)一次超静定结构,取基本体系如图所示。
2)基本思路超静定结构用平面三个平衡方程是不够的。
注意到原结构在荷载作用下的内力和变形是唯一确定的,特别地,支座反力也是确定的。
因此,如果设X是支座反力,则原结构的内力与变形就与基本体系(其结构是静定的)在荷载P和支座反力X共同作用下的内力与变形等价。
这样,原超静定结构的计算就转化为静定结构的计算。
问题是,X是未知的。
需要考虑位移协调条件,即,补充方程。
显然,基本体系中,B端是自由端;而原超静定结构中却是有支座的。
五.力法一.超静定结构概念和超静定次数的确定1.超静定结构的概念:有多余约束存在,支座反力和内力不能仅靠静力平衡方程确定的几何不变体系;2.超静定结构的性质:(1)多余约束反力的确定,除使用静力平衡条件外,还需考虑变形;(2)受力情况与材料的物理性质、截面几何性质有关系;(刚度)(3)去掉一些约束后,体系仍可以保持几何不变;(4)制造误差、支座移动、温度等原因能使结构产生内力;2.超静定次数的确定:(1)超静定次数=未知力个数-平衡方程的个数=多余未知力的个数=多余约束的个数=把结构变成静定结构时所需撤除的约束个数(2)将超静定结构变成静定结构的几种基本方法:A.去掉支座的一根链杆或切断一根链杆,相当于去掉一个约束;B.去掉一个单铰,相当于去掉两个约束;C.将刚性连接改成单铰连接,相当于去掉一个约束;D.刚性连接处切断,相当于去掉三个约束;(3)需要注意的几个问题:A去掉的约束必须是保证体系几何不变的多余约束;B.多余约束必须都拆除;C.去多余约束的办法不仅只有一种,只是要保证去掉约束后保证其几何不变性;D.去掉多余约束后的静定结构称该超静定结构的基本结构,由上知基本结构不唯一;二.计算超静定结构的基本方法(1)计算超静定结构的方法很多,但基本方法只有两种:力法、位移法;(2)力法:多余约束力为基本未知量,位移谐调建立平衡方程(3)位移法:位移为基本未知量,节点受力平衡建立平衡方程(4)力法位移法基本思路:把不会算的结构通过未知量转换成会算的结构即基本结构(5)力法与位移法计算步骤:A.选取基本结构、基本未知量;B.用关于力的或位移的代数方程组求解未知量;三.力法思想(1)取图b为基本结构,则相应的基本体系为图e,这种情况下,图a中C处可动铰支座被视为多余约束,X1为基本未知量;(2)图a为一次超静定;(3)力法方程的概念(以图b所示的基本结构为例):图a中,在F P作用下,体系将产生变形,但支座C处竖向位移为零(约束边界条件决定),想要静力等效,在基本体系1中(图e),基本结构在F P和基本未知量X1的作用下,C点的竖向位移为零;力法中,体系必须为线性体系,内力和位移才可以使用叠加原理,在图e 中,使用叠加原理保证C点的竖向位移为零是力法的基本思想;在F P作用下,基本结构C 点将发生竖向的位移分量Δ1P,同样,在基本未知量X1作用下,C点将产生竖向位移分量Δ11,Δ1P和Δ11必须保证C点竖向位移分量为零,则有Δ1P+Δ11=0由图乘法可以求得Δ1P和Δ11(X1的函数),然后通过C点位移为零建立方程,最终求得X1;(4)力法典型方程:⎪⎭⎪⎬⎫=∆+++=∆=∆+++=∆=∆+++=∆0X X X 0X X X 0X X X P 33332321313P 23232221212P 131********δδδδδδδδδ相同道理,如果是n 次超静定,力法方程可表示成为⎪⎪⎭⎪⎪⎬⎫=∆++++=∆++++=∆++++0X X X 0X X X 0X X X nF n nn 22n 11n F 2n n 2222121F 1n n 1212111δδδδδδδδδ矩阵表达式:0X X X nF F2F 1n 21nn 1n 1n n 22121n 11211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡δδδδδδδδδ 柔度系数:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn 22n1n22212n 11211δδδδδδδδδ自由项:{}iF ∆根据位移互等定理,柔度矩阵是一个对称矩阵,主对角线元素ii δ称为主系数,主系数均为正值且不等于零。
第四节超静定结构的受力分析及特性一、超静定结构的特征及超静定次数超静定结构的几何特征是除了保证结构的几何不变性所必须的约束外,还存在多余约束。
超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。
结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。
通常采用去除多余约束的方法来确定结构的超静定次数。
即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。
去除约束的方法有以下几种:(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。
(二)切断一根两端刚接的杆件,相当于去除三个约束。
(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。
(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。
去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。
去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。
再用其他去除多余约束的方案确定其超静定次数,结果是相同的。
(a)(b)图4-1二、力法的基本原理(一)力法基本结构和基本体系去除超静定结构的多余约束,代以相应的未知力X i (i=1、2、…、n),X i 称为多余未知力或基本未知力,其方向可以任意假定。
去除多余约束后的结构称为力法基本结构。
力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。
选取力法基本结构应注意下面两点:1.基本结构一般为静定结构,即无多余约束的几何不变体系。
有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。