超静定结构的概念和超静定结构次数的确定说课讲解
- 格式:doc
- 大小:45.50 KB
- 文档页数:3
《材料力学》课程教案2(二)拉伸、压缩的超静定问题设教学安排 ● 新课引入如图所示的两杆组成的桁架结构受力,由于是平面汇交力系,可由静力平衡方程求出两杆内力。
如果为了提高构件安全性,再加一个杆,三杆内力还能由静力平衡方程求出吗?● 新课讲授一、 静定结构(一)提出问题1和2两杆组成桁架结构受力如图所示,角度已知,两杆抗拉刚度相同,2211A E A E =,求两杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程)⇒=∑0x 021=-ααSin F Sin F N N ⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,两个未知数,可以求解。
引出静定结构:约束反力(轴力)可以由静力平衡方程完全求出。
二、 超静定结构和超静定次数(一)继续提问在现实中为了增加构件的安全性,往往可以多加一个杆,在问题一的基础上在中间再加一个3杆,抗拉刚度为33A E ,如图所示,求3杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程) ①静平衡方程:平面汇交力系,只能列两个平衡方程⇒=∑0x21=-ααSin F Sin F N N⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,三个未知数,解不出。
引出超静定结构:约束反力(轴力)不能由静力平衡方程完全求出。
超静定次数:约束反力(轴力)多余平衡方程的个数。
上述问题属于一次超静定问题。
三、超静定结构的求解方法(一)继续提问,引导学生深入思考:超静定到底能不能求解?实际上F 一定,作用于每个杆上的力都是确定的。
还需再找一个补充方程,材料力学是变形体,受力会引起变形,力和力的关系看不出, 先把变形关系找到,再转化成力的关系。
(重点)②几何方程——变形协调方程:要找变形关系,关键是画变形图(难点)。
节点在中间杆上,左右两杆抗拉刚度相同,角度相同,即对称,因此中间杆仅沿竖直方向产生伸长,确定最终位置。
第十章超静定结构一、内容提要1、理解超静定结构中的一些基本概念,即:静定与超静定、超静定次数、多余约束、超静定系统(结构)、基本静定系以及相当系统等。
2、熟练掌握用力法求解超静定结构。
3、掌握对称与反对称性质并能熟练应用这些性质求解超静定结构。
4、了解连续梁的概念以及三弯矩方程。
二、基本内容1、超静定系统中的一些基本概念超静定结构或系统:用静力学平衡方程无法确定全部约束力和内力的结构或结构系统。
静定结构或系统:无多余联系的几何不变的承载结构系统,其全部约束反力与内力都可由静力平衡方程求出的机构或结构系统。
多余约束:在无多余联系的几何不变的静定系统上增加约束或联系。
外超静定:超静定结构的外部约束反力不能全由静力平衡方程求出的情况。
内超静定:超静定结构内部约束(或联系)形成的内力不能单由静力平衡方程求出的情况。
混合超静定结构:对于内、外超静定兼而有之的结构。
基本静定系:解除超静定结构的某些约束后得到静定结构,称为原超静定结构的基本静定系(简称为静定基)。
静定基的选择可根据方便来选取,同一问题可以有不同选择。
相当系统:在静定基上加上外载荷以及多余约束力的系统称为静不定问题的相当系统。
超静定次数:超静定结构的所有未知约束反力和内力的总数与结构所能提供的独立的静力平衡方程数之差。
2、力法与正则方程力法:以多余约束力为基本未知量,将变形或位移表示为未知力的函数,通过变形协调条件作为补充方程求来解未知约束力,这种方法称为力法,又叫柔度法。
应用力法求解超静定问题的步骤:1)根据问题,确定其是静定还是超静定问题,如为后者,则确定超静定次数。
2)确定哪些约束是多余约束,分析可供选择的基本静定系,并注意利用对称性,反对称性,选定合适的静定系统,在静定系上加上外力和多余约束力,形成相当系统。
3)比较相当系统与原系统,在多余约束处,确定变形协调条件,并列写正则方程(对有n个多余约束的结构)011212111=∆++⋅⋅⋅++F Rn n R R F F F δδδ 022222121=∆++⋅⋅⋅++F Rn n R R F F F δδδ.02211=∆++⋅⋅⋅++nF Rn nn R n R n F F F δδδ其中F Ri 表示n 个多余约束力,δij 表示F Rj =1引起i 处沿F Ri 方向的位移,∆iF 表示结构所有已知载荷产生的在i 处沿F Ri 方向的位移。
超静定结构的超静定次数超静定结构是指在受力平衡条件下,由于约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
超静定结构的超静定次数是指约束条件数量与自由度数量之差。
一、超静定结构的特点超静定结构具有以下特点:1. 约束条件数量大于自由度数量:超静定结构的约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
这导致了结构的设计和分析变得更加困难。
2. 结构具有较高的刚度:由于超静定结构的约束条件数量较多,结构具有较高的刚度。
这使得超静定结构在承受荷载时能够更好地保持形状稳定性。
3. 结构能够承受更大的荷载:超静定结构由于具有较高的刚度,能够承受更大的荷载。
这使得超静定结构在工程实践中得到广泛应用。
二、超静定结构的应用超静定结构在工程实践中有着广泛的应用,主要包括以下几个方面:1. 桥梁工程:超静定结构在桥梁工程中得到了广泛应用。
由于桥梁需要承受大量的荷载,超静定结构能够提供更高的刚度和稳定性,保证桥梁在使用过程中不发生塌陷或变形。
2. 建筑结构:超静定结构在建筑结构中也有重要的应用。
例如,高层建筑的框架结构通常采用超静定结构设计,以提高结构的稳定性和抗震性能。
3. 机械设备:超静定结构在机械设备中也有广泛的应用。
例如,汽车的悬挂系统和起重机的支撑结构都是超静定结构,能够提供更高的稳定性和承载能力。
三、超静定结构的分析方法超静定结构的分析方法主要包括以下几个步骤:1. 定义自由度和约束条件:首先确定结构的自由度和约束条件。
自由度是指结构中可以独立变形的数量,约束条件是指结构中限制自由度的条件。
2. 建立平衡方程:根据结构的受力平衡条件,建立结构的平衡方程。
平衡方程是超静定结构分析的基础,通过平衡方程可以求解结构的受力状态。
3. 引入支座反力:由于超静定结构的约束条件数量大于自由度数量,结构中存在未知的支座反力。
通过引入支座反力,可以将超静定结构转化为静定结构进行分析。
4. 求解支座反力:利用平衡方程和约束条件,求解支座反力。
超静定结构的超静定次数超静定结构是指在外力作用下,结构内部的约束力大于外力的个数,从而使得结构处于静定状态的一种结构形式。
即结构内部的约束力可以完全抵消外力的作用,使得结构保持平衡。
超静定结构的超静定次数是指结构内部的约束力多于外力的个数。
超静定次数越高,结构的稳定性越好。
超静定结构的超静定次数取决于结构的约束性质和约束方式。
常见的超静定结构有悬挑梁、连续梁和桁架等。
这些结构的超静定次数可以通过力平衡方程和几何关系进行计算。
在设计超静定结构时,需要合理选择约束方式和约束点的位置,以提高结构的稳定性和承载能力。
悬挑梁是一种常见的超静定结构。
它由一根悬挑在空中的梁组成,一端固定在墙上,另一端悬空。
在外力作用下,悬挑梁的约束力可以完全抵消外力的作用,使得梁保持平衡。
悬挑梁的超静定次数为1,即悬挑梁有一个多余的约束力。
连续梁是另一种常见的超静定结构。
它由多个梁段组成,梁段之间通过铰接连接。
在外力作用下,连续梁的约束力可以完全抵消外力的作用,使得梁保持平衡。
连续梁的超静定次数为2,即连续梁有两个多余的约束力。
桁架是一种由杆件和节点组成的超静定结构。
杆件之间通过节点连接,形成一个刚性的空间网格结构。
在外力作用下,桁架的约束力可以完全抵消外力的作用,使得结构保持平衡。
桁架的超静定次数取决于节点的个数和杆件的个数。
一般情况下,桁架的超静定次数为3,即桁架有三个多余的约束力。
超静定结构的超静定次数越高,结构的稳定性越好。
在实际工程中,超静定结构常用于悬挑梁、连续梁和桁架等场合。
例如,在大跨度桥梁的设计中,常采用连续梁结构,以提高桥梁的稳定性和承载能力。
此外,在高层建筑的设计中,常采用悬挑梁结构,以增加建筑物的空间利用率。
超静定结构的设计需要考虑结构的约束性质和约束方式。
合理选择约束方式和约束点的位置,可以提高结构的稳定性和承载能力。
同时,超静定结构的设计还需要考虑结构的材料性质和施工工艺。
选择合适的材料和采用适当的施工方法,可以确保结构的安全性和经济性。