汽车混合动力新架构:双电机全功能混合动力系统全解析
- 格式:doc
- 大小:22.00 KB
- 文档页数:6
混合动力汽车双电机驱动系统分析1前言为了有效降低汽车燃油消耗量和尾气排放,满足双积分政策的要求,越来越多的汽车厂商进行推广和研发混合动力汽车。
混合动力汽车利用电池给电机提供动力来源,并通过电机来调节发动机的工作点,可以有效降低油耗和排放,进一步提高整车动力性和经济性[1-2]。
同时,混合动力汽车利用电机制动,借助新增零部件,可以进行有效的能量回收和能量管理,不同的混合动力系统构型方案可以实现不同的扭矩分配功能[3]。
在构型方案上,混合动力汽车可以采用单电机动力系统构型也可以采用双电机动力系统构型,而深混的混合动力系统多采用双电机构型,以便实现全部的混合动力功能,比如串联功能、并联功能和串并联混合功能等。
本文通过对两款典型的双电机系统车型进行技术分析,包括构型方案、系统功能及工作模式等,旨在为后续混合动力系统开发提供借鉴意义。
2本田i-MMD双电机系统构型本田雅阁i-MMD(IntelligentMulti-ModeDrive)系统技术方案结构如图1所示[4],其动力驱动系统主要包括2.0L发动机、驱动电机、发电机、离合器以及传动机构等。
其中,驱动电机、发电机以及离合器集成形成了电动耦合e-CVT,取代了传统的变速箱,发电机始终与发动机相连,主要用于发电,驱动电机与驱动车轮相连,主要用于驱动车辆行驶,在制动的时候,电机可以回收能量对电池进行充电。
雅阁混合动力汽车搭载了i-MMD双电机系统,整车动力来源采用了以驱动电机为主,发动机为辅的设计,可以实现纯电动、混合动力以及发动机直驱的模式功能。
纯电动模式下利用驱动电机驱动车轮;混动模式下发动机启动通过发电机给驱动电机充电,再让驱动电机驱动车轮;发动机直驱模式下离合器闭合,发动机作为动力源与传动系相连驱动车轮。
通过三种模式有效切换,使得车辆表现出了更为出色的动力与节油优势。
图1i-MMD系统技术方案结构[4] 3本田i-MMD双电机系统工作模式3.1纯电动模式驱动。
并联混合动力电动汽车的工作原理在现代汽车工业中,混合动力电动汽车已经成为了一种热门的发展趋势。
相比于传统的汽油车,混合动力电动汽车不仅更加环保,而且在燃油经济性和动力性能上也有着显著的优势。
而在混合动力电动汽车中,最为常见的一种类型就是并联混合动力电动汽车。
那么,究竟并联混合动力电动汽车是如何工作的呢?下面就让我们一起来详细地探讨一下。
1. 电动机工作原理要了解并联混合动力电动汽车的工作原理,就必须先对电动机有一个清晰的认识。
电动机是并联混合动力电动汽车的关键组成部分,它负责提供动力和驱动车辆前进。
电动机利用电能转换成机械能,从而推动车辆前进。
在并联混合动力电动汽车中,电动机可以单独驱动车辆,也可以与传统的内燃发动机协同工作,以提供更加高效和可靠的动力输出。
2. 内燃发动机工作原理除了电动机,内燃发动机也是并联混合动力电动汽车的重要组成部分。
内燃发动机利用燃料燃烧产生的热能转换成机械能,进而驱动车辆运动。
在并联混合动力电动汽车中,内燃发动机通常被用作发电机的角色,为电池组充电,从而保证车辆长途行驶时的动力供应。
3. 电池组和能量管理系统在并联混合动力电动汽车中,电池组是储存电能的重要部件,它能够为电动机提供动力。
而能量管理系统则负责控制电池组的充放电过程,以确保电能的高效利用和车辆的动力输出平稳可靠。
4. 工作模式切换和能量分配并联混合动力电动汽车在行驶过程中会根据车速、车辆负载以及驾驶员需求等因素自动切换工作模式,以最大程度地发挥电动机和内燃发动机的优势,从而达到更好的燃油经济性和动力输出效果。
在工作模式切换的过程中,能量的分配也扮演着至关重要的角色,这需要能量管理系统精确地控制能量的流动和分配,以确保车辆的高效运行。
5. 个人观点和理解在我看来,并联混合动力电动汽车的工作原理充分体现了能源的灵活利用和高效转换。
通过电动机、内燃发动机和电池组之间的协同配合和能量管理系统的精确控制,并联混合动力电动汽车能够在保证动力性能的实现燃油经济性的最大化。
装有双电机自动变速器(EVT)的混合动力汽车的原理、系统设计和试验(一)随着环保议题的不断升温和燃油价格的不断攀升,混合动力汽车作为一种新型的动力系统逐渐得到人们的关注。
双电机自动变速器(EVT)是混合动力汽车中非常重要的一个部件。
本文将针对装有双电机自动变速器的混合动力汽车的原理、系统设计和试验进行探讨。
一、原理双电机自动变速器是混合动力汽车中的一种动力分配系统,主要由两个电机、离合器以及减速器等部件组成。
它的工作原理是将电机的电能转换为动力,用来驱动车辆行驶,同时通过离合器控制发动机和电机的联动,实现动力的更加合理分配。
相比于传统的自动变速器,它通过电机与发动机的相互作用,让动力输出更加连续流畅,并且极大的提高了汽车的油耗和排放性能。
二、系统设计双电机自动变速器系统主要由电机、控制程序、传感器以及架子等部件构成。
其中电机主要负责提供动力,并通过程序来控制电机的输出,实现车辆的前进或者倒退。
控制程序则是整个系统的中心部件,通过对传感器输入的数据进行分析,来调控电机的输出以及离合器的开合,实现动力的优化分配。
传感器主要负责感应相关的车辆信息,如转速、速度、加速度等,即时传递给控制程序进行分析。
架子是整个系统的支撑部件,负责将电机、传感器等部件牢固的固定在一起,确保系统的正常运转。
三、试验为了验证双电机自动变速器的性能,将其安装在混合动力汽车上,进行实车试验。
试验主要包括静态试验和动态试验两部分内容。
静态试验主要是将汽车停放在平地上,以不同的油门打开程度,测量车辆的转速、电池电量以及电机输出等参数的变化情况。
比较试验结果,发现双电机自动变速器系统能够更加流畅地输出动力,并且在电池电量高的情况下,电机的输出也更加强劲。
动态试验则是在驾驶车辆过程中,测量其油耗、加速度以及排放量等指标。
通过对比传统变速器和双电机自动变速器的试验结果,证明双电机自动变速器能够显著的降低汽车的油耗和排放量,同时也提升了车辆的加速性能。
车辆工程技术22车辆技术1 新能源汽车定义及分类 根据国家发布的《汽车产业中长期发展规划》,未来汽车技术发展方向是节能汽车和新能源汽车。
其中新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。
2 插电式混合动力汽车分类 插电式混合动力汽车介于纯电动与燃油汽车两者之间的新能源汽车,既有传统汽车的内燃机、传动系统、油箱,也有纯电动汽车的电动机、电池、控制器、充电接口;既能实现纯电动、零排放行驶,也能通过混动模式利用内燃机增加车辆的续驶里程。
插电式混合动力汽车从内燃机和电机的联结方式和驱动特点,可分为三大类型:串联、并联、混联式动力系统。
因各家设计理念、基本思路不同,各车型混动系统构型具备不同特点,混联式动力系统是现阶段市场主要发展方向,主流车型如表1。
表1 混合动力汽车系统基本构型类型系统构型代表车型系统基本组件混联P1/P3非功率分流i-MMD本田雅阁电机x2,离合x1四驱(前后电机)三菱欧蓝德PHEV电机x3,离合x1小混联南京依维柯电机x2,离合x1PS功率分流单模THS III丰田普锐斯四代电机x2,行星排x2CHS吉利帝豪EC7电机x2,行星排x1.5,离合x2双模Voltec二代通用迈锐宝电机x2,行星排x2,离合x2Voltec三代凯迪拉克电机x2,行星系x3,离合x5ActiveHybrid宝马x6电机x2,行星系x3,离合x53 几种典型车型的混联式混合动力系统构型分析 新能源汽车混动系统构型直接关系到该车的运行模式、工作特点、控制策略,也体现了该车型的优缺点,我们针对市场上几款典型车型的混联式混合动力系统构型进行分析。
3.1 本田雅阁混动版(i-MMD双电机) 该车型是混联插电式混合动力汽车,匹配2.0L排量Atkinson发动机、双电机动力系统。
发动机、驱动电机可同时为整车输出动力、发电机则负责能量转化,充电,发动机可根据实际需求参与工作,如图a所示。
混动开局者,DM-i超级混动系统(五)作者:来源:《汽车与运动》2021年第07期2021年作为混动的开局之年,总体来看具备三大要素:《节能与新能源汽车技术路线图(2.0版)》的政策推动,多家主机厂的深度混动平台,以及现象级混动产品DM-i。
比亚迪DM-i超级混动系统真正让市场开始“跑步”迎接混动车,同时让所有汽车人意识到混动车的潜力以及市场巨大。
从2003年一路走来,比亚迪始终致力于推动全球新能源发展,“用技术创新满足人们对美好生活的向往”。
众所周知,DM双模技术是比亚迪插电混动技术的专属名称,DualMode兼顾纯电和混动,插电混动是燃油和纯电技术的综合体,其技术难度一直被誉为汽车技术的珠穆朗玛峰。
2008年,比亚迪推出了全球第一款插电式混合动力汽车F3DM,第一代DM技术采用双电机串并联架构,开创了插电式混动汽车的先河;2013年,比亚迪推出DM第二代,系统采用了发动机+DCT耦合P3+P4的三擎四驱架构,实现了百公里加速5秒以内、智能电四驱,树立了比亚迪在混动领域的性能标杆;2018年,第三代DM技术持续创新,在第二代架构的基础上,引入全新PO电机,使双模车的动力性、经济性和平顺性全面提升,给用户带来极致的用车体验。
为了满足更多消费者的需求,2020年6月,比亚迪发布了双模技术双平台战略:DM-p和DM-i。
DM-p,“p”即powerful,指动力强劲、极速,满足“追求更好驾驶乐趣”的用户;DM-i:“i”即intellige nt,智慧、节能、高效,以电为主,满足“追求极致行车能耗”的用户。
DM-p是对DM三代强劲动力的延续,DM-i则是对DM代的传承。
从2008年到2021年,十三年的沉淀积累,突破性的技术創新,比亚迪投入了超2000名工程师,精心打磨。
截止到2020年,比亚迪DM销量已突破42万辆,中国市场占比超过44.2%;插混销量全球第一;累计获得专利408项,并多次获得中国专利金奖和优秀奖。
摘要针对全球气候的逐步恶化、城市大气污染加剧以及石油资源过度消耗,许多国家都正在积极开发节能型、环保型汽车。
混合动力车辆已成为汽车技术研究的热点,而总线通讯技术和分布式控制网络也在汽车电子领域广泛应用。
混合动力汽车是传统燃油汽车和纯电动汽车两相结合的新车型,具有低污染和低油耗的特点,是当前解决节能问题、环保问题的切实可行的过渡方案。
为实现混合动力车辆能量管理和运动控制,基于DSP单片机和CAN总线技术实现混合动力汽车整车能量控制器的设计,包括电源管理模块、DSP外围配置电路、CAN接口电路、SCI串口通信电路、LCD显示电路、数据采集电路。
DSP接收由数据采集单元采集来的车辆实时运行信息,如:加速踏板位置、刹车踏板位置、车速等信息,进行计算,求出车辆运行需要的发动机转矩、ISG 驱动电机转矩,并通过CAN总线以电信号的形式将输出传输到各个控制单元以实现整车的实时控制。
相对传统内燃机汽车,本控制器取消了发动机怠速;提高了发动机平均负荷率;实现了制动能量回收。
优化了车辆的经济性。
在车辆需要频繁加减速和怠速起停的城市循环工况下,节能效果更加明显。
关键词:CAN总线,DPS,混合动力汽车,整车能量控制The Power Control System Of Hybrid Electric VehicleAbstractWith the deterioration of the global climate and the excessive consume of the oil resources,developing energy-efficient automobiles becomes an important direction in the automobile industry.Hybrid electric vehicle has become hot-spot in automotive engineering,and bus communication and distributed control network are widely used in automotive electronics.Hybrid electric vehicle employing two power souces-neternal combustion engine and electric motor,has been accepted world-widely as one of the most promising methods to solve these two problems.To realize energy management and kinetic control of HEV,according to DSP and CAN communication carry out the the vehicle power control module ,including the power management module,DSP module,CAN communication module, SCI communication module and LCD module.DSP receives the data that collected of the vehicle that the unit collects by the data to go an information, such as:Accelerate pedal position and braking pedal position,speed information, carry on a calculation, beg the motor that a vehicle circulates a demand to turn and ISG to drive electrical engineering to turn,and pass the CAN communication delivers the exportation to each control unit by the form of telecommunication with carry out the vehicle power control module.Opposite traditional internal combustion engine car, this controller canceled motor Dai soon;Raised a motor the burden rate is on the average;Carried out to make an amount of kinetic energy recall.It was excellent to turn the economy of the vehicle.Economize on energy effect Under circulating work condition in the city that needs to be multifarious to add and subtract soon to soon rise to stop in the vehicle,it's getting more obvious.Key words:CAN bus,DSP,Hybrid electric vehicle,the vehicle power control module目录第一章绪论-------------------------------------------------------------------------------------------------------- 11.1本课题的背景、目的和意义 ------------------------------------------------------------------------ 11.2混合动力汽车国内外发展现状 --------------------------------------------------------------------- 31.3混合动力汽车的分类---------------------------------------------------------------------------------- 61.4混合动力汽车的特点及比较 ------------------------------------------------------------------------ 91.4.1串联式混合动力汽车的特点---------------------------------------------------------------- 91.4.2并联式混合动力汽车的特点--------------------------------------------------------------- 101.4.3混联式混合动力汽车的特点--------------------------------------------------------------- 101.5论文的研究内容--------------------------------------------------------------------------------------- 11 第二章方案论证 ------------------------------------------------------------------------------------------------ 122.1 ISG型HEV的工作原理 ---------------------------------------------------------------------------- 122.2控制器CPU的选择 ---------------------------------------------------------------------------------- 122.3 CAN总线的在混合动力汽车上的运用---------------------------------------------------------- 132.4动力总成控制系统的结构分析和选择----------------------------------------------------------- 152.5系统硬件总体框图------------------------------------------------------------------------------------ 152.6稳压芯片的选择--------------------------------------------------------------------------------------- 162.7 RS-232收发器接口芯片----------------------------------------------------------------------------- 172.8 CAN收发器 -------------------------------------------------------------------------------------------- 172.9 ISG型混合动力汽车动力传动系统布置方案和整车控制策略 ---------------------------- 17 第三章HEV动力总成硬件系统设计 ---------------------------------------------------------------------- 203.1系统的硬件需求分析--------------------------------------------------------------------------------- 203.2功能模块划分 ------------------------------------------------------------------------------------------ 203.3 TMS320F2812的介绍-------------------------------------------------------------------------------- 203.4 DSP最小系统及相关电路 -------------------------------------------------------------------------- 223.4.1供电电路---------------------------------------------------------------------------------------- 223.4.2复位电路---------------------------------------------------------------------------------------- 233.4.3时钟振荡电路 --------------------------------------------------------------------------------- 233.4.4 JTAG接口电路-------------------------------------------------------------------------------- 233.4.5 SCI串口通讯电路---------------------------------------------------------------------------- 243.4.6 AD转换电路----------------------------------------------------------------------------------- 243.4.6 CAN通讯接口电路 -------------------------------------------------------------------------- 253.5 LED灯与按键电路 ----------------------------------------------------------------------------------- 263.6 LCD液晶驱动电路 ----------------------------------------------------------------------------------- 273.7油门/制动踏板位置信号采集电路 ---------------------------------------------------------------- 273.8车速采集电路 ------------------------------------------------------------------------------------------ 283.9发动机转速采集电路--------------------------------------------------------------------------------- 29 第四章HEV动力总成软件系统设计 ---------------------------------------------------------------------- 304.1软件系统总体设计------------------------------------------------------------------------------------ 304.1.1能量控制算法 --------------------------------------------------------------------------------- 314.1.2主程序流程图 --------------------------------------------------------------------------------- 324.2 AD转换模块 ------------------------------------------------------------------------------------------- 344.3显示模块 ------------------------------------------------------------------------------------------------ 35第五章结论------------------------------------------------------------------------------------------------------- 365.1总结------------------------------------------------------------------------------------------------------- 365.2展望------------------------------------------------------------------------------------------------------- 36 参考文献 ----------------------------------------------------------------------------------------------------------- 38 致谢 -------------------------------------------------------------------------------------------------------------- 40 附录1:程序清单------------------------------------------------------------------------------------------------ 41 附录2:硬件连接图 -------------------------------------------------------------------------------------------- 51第一章绪论1.1本课题的背景、目的和意义内燃机汽车经过120多年的发展和壮大,为人类文明做出了巨大贡献,创造了难以计算的直接或间接经济利益【1】。
汽车混合动力新架构:双电机全功能混合动力系统全解析
随着地球环境每况愈下,新能源汽车行业蒸蒸日上,全球汽车企业纷纷推出各种新能源汽车,最近大众、通用、本田、宝马以及比亚迪、吉利等也纷纷推出混动车型,可以说混动进入了百家争鸣的时代,发展混合动力汽车的动力系统主要趋势。
前提是选择性发展的基于这些新能源技术有着高效的能耗管理系统,尤其是代表中小型车新能源发展趋势的混连式技术。
混联式技术需要精细化的能耗管理,将发动机更长时间维持在高效率区间运转,以及高效、充分的回收减速和制动的能量。
混联式装置包含了串联式和并联式的特点。
混合动力的出现就是把发动机低负荷工况下的剩余能量储存在电池里,然后在车辆运行在高负荷工况时通过电机释放出来,从而实现发动机尽可能多的在高效工况下运行,达到降低油耗、节能减排的初衷。
对于混合动力汽车来说,离合器、变速器、传动轴、差速器都是必不可少的,而这些部件不但重量不轻、让车辆的结构更为复杂,同时零部件越多存在故障率高的问题。
在混动技术从丰田的混动是靠单排行星轮开始,雄霸混合动力汽车十多年,丰田只采用了一个行星齿轮组,现弱混合动力系统是将电机与曲轴直接连接,这种系统也意味着无法纯电动行驶,弊端是发动机和电动机无法保证同时在最佳工况时工作。
本田的混动就是串联+发动机直驱加上离合器,这套机构的原理倒为简单,粗暴复杂化,仅仅是在传统发动机和传统变速箱之间埋一个电机的做法肯定是不够的。
而通用的混动技术则是集合了两家之所长但又相对复杂。
它是由两组电机、两组行星轮和三组离合器组成。
主要有四种动力输出方式,纯电动模式(低负荷工况),混合驱动模式(常规行驶),混合驱动模式(中高速),制动发电模式(减速刹车)。
一直都是用的两个行星系齿轮,并辅以三个离合器。
听上去很复杂,其实也真的复杂。
对于插电式混合动力确认为新能源车汽车可通过电网获取电能充电具有高效节能、排放低、续航里程长等优点而成为各大汽车公司研发的热点,被视为目前最具有应用前景的新能源汽车,这个可从电网获取电能充电,虽然只是这么一点简单的改变,传统混合动力汽。