电子传递和氧化呼吸链
- 格式:ppt
- 大小:9.92 MB
- 文档页数:79
呼吸链与电⼦传递 在三羧酸循环中,⼄酰CoA氧化释放的⼤部分能量都储存在辅酶(NADH和FADH2)分⼦中。
细胞利⽤线粒体内膜中⼀系列的电⼦载体(呼吸链),伴随着逐步电⼦传递,将NADH或FADH2进⾏氧化,逐步收集释放的⾃由能最后⽤于ATP的合成,将能量储存在ATP的⾼能磷酸键。
■电⼦载体(electron carriers) 在电⼦传递过程中与释放的电⼦结合并将电⼦传递下去的物质称为电⼦载体。
参与传递的电⼦载体有四种∶黄素蛋⽩、细胞⾊素、铁硫蛋⽩和辅酶Q,在这四类电⼦载体中,除了辅酶Q以外,接受和提供电⼦的氧化还原中⼼都是与蛋⽩相连的辅基。
●黄素蛋⽩(flavoproteins)黄素蛋⽩是由⼀条多肽结合1个辅基组成的酶类,每个辅基能够接受和提供两个质⼦和电⼦。
●细胞⾊素(cytochromes)细胞⾊素是含有⾎红素辅基(图7-24)的⼀类蛋⽩质。
在氧化还原过程中,⾎红素基团的铁原⼦可以传递单个的电⼦。
⾎红素中的铁通过Fe3+和 Fe2+两种状态的变化传递电⼦;在还原反应时,铁原⼦由Fe3+状态转变成Fe2+状态;在氧化反应中,铁由Fe2+转变成Fe3+. 四个卟啉环都含有侧链,不同的细胞⾊素所含侧链不同。
图中所⽰是细胞⾊素c,⾎红素与多肽的两个半胱氨酸共价结合,但在⼤多数细胞⾊素分⼦中,⾎红素并不与多肽共价结合。
●铁硫蛋⽩(iron-sulfur proteins, Fe/S protein)铁硫蛋⽩是含铁的蛋⽩质,也是细胞⾊素类蛋⽩。
在铁硫蛋⽩分⼦的中央结合的不是⾎红素⽽是铁和硫,称为铁-硫中⼼(iron-sulfur centers)。
醌(uniquinone UQ)或辅酶Q(coenzyme Q)辅酶Q是⼀种脂溶性的分⼦,含有长长的疏⽔链,由五碳类戊⼆醇构成。
如同黄素蛋⽩,每⼀个醌能够接受和提供两个电⼦和质⼦(图7-26),部分还原的称为半醌,完全还原的称为全醌(UQH2)。
解释氧化呼吸链
氧化呼吸链是生物体利用氧气来产生能量的过程中的一个关键步骤。
这一过程发生在细胞的线粒体内,特别是线粒体的内膜。
氧化呼吸链涉及多个复杂的蛋白质和分子,其主要功能是将食物中的化学能转换为细胞能够利用的能量形式,即三磷酸腺苷(ATP)。
整个过程可以分为几个主要步骤:
1、糖代谢:
在细胞质中,糖类物质经过糖酵解和柯恩循环产生临时的能量分子,如辅酶A和NADH。
2、线粒体内膜传递:
辅酶A和NADH将产生的能量分子通过内线粒体膜转运到线粒体内。
3、氧化呼吸链:
在线粒体内膜上,存在一系列的电子传递蛋白质,它们组成氧化呼吸链。
NADH和FADH₂将其携带的电子输入到氧化呼吸链。
4、电子传递:
电子依次通过一系列的电子传递蛋白质,这些蛋白质构成了氧化呼吸链中的复杂结构。
电子在这个过程中释放出能量。
5、质子泵:
在电子通过氧化呼吸链的过程中,质子(氢离子)被从线粒体基质(内膜内侧)输送到线粒体间腔(内膜外侧)。
6、ATP合成:
质子梯度的形成产生了电化学势差,质子通过ATP合酶酶复合物,驱动ADP与磷酸根结合形成ATP。
7、氧还原:
最终,电子通过氧气来还原,形成水。
这是氧化呼吸链的最终步骤,也是细胞内将食物中的能量与氧气结合产生能量的过程。
结束语:
总体而言,氧化呼吸链是将食物中的电子能量通过一系列蛋白质复合物传递,并最终将电子与氧气结合形成水的过程。
这一过程产生的能量用于合成ATP,为细胞提供所需的能量。
简述氧化磷酸化和电子传递的偶联机制1.生物氧化是生物体内营养物质被氧化产生二氧化碳、H2O和能量的过程。
包括进料、脱氢和电子损失。
2。
呼吸链是线粒体内膜上按一定顺序参与氧化还原的酶和辅酶,起传递氢和电子的作用。
它们分别被称为氢供体和电子供体。
3。
复合物ⅰ:NADH-泛醌还原酶位于线粒体内膜,有39条多肽链和FMN-Fe-S(2)复合物ⅱ:壬酸-泛醌还原酶位于线粒体内膜,有4条多肽链和FAD-Fe-S电子传递序列。
(3)复合体ⅲ:泛醌-Cytc 还原酶,位于线粒体内膜,多肽链数为11,电子传递序列为cytb-Fe-s-cytc,细胞色素B562,B566,C. (4)复合体ⅳ: CYTC氧化酶,位于线粒体内膜,多肽链数为13,电子传递序列为CUA-CYTA-CYTA-库伯。
4.呼吸链的组成和顺序由低到高(1)NADH氧化呼吸链NADH→FMN→Fe-S→CoQ→CyTB→Fe-S→Cytc→Cytc→CuA→Cyta→CUB-Cyta→O2。
(2)FADH2氧化呼吸链(琥珀酸氧化呼吸链):琥珀酸→fad→Fe-s(cytb)→CoQ→cytb→Fe-s→cytc→cytc→cua→cyta→cub-cyta→O2。
5.细胞因子C直接参与反应:生物氧化。
6.细胞产生ATP的两种途径:(1)氧化磷酸化(偶联磷酸化):是偶联ADP磷酸化产生ATP的过程,是主要途径。
(2)底物水平磷酸化:代谢产物直接产生ATP的过程。
无氧糖酵解和三羧酸循环中有三个底物水平的磷酸化反应。
7.ATP是最重要的高能磷酸盐化合物,是细胞可以直接利用的最重要的能量形式。
它可以被转移到UDP、CDP和GDP,并生成相应的UTP(用于糖原合成)、CTP(用于磷脂合成)和GTP(用于蛋白质合成)。
8.复合物ⅰ被异丙醇、鱼藤酮和翅霉素A抑制,复合物ⅲ被粘噻唑醇和抗霉素A抑制..解偶联剂是二硝基苯酚。
9.NADPH直接参与胆固醇的生物合成。
呼吸链与电子传递[细胞生物学]呼吸链与电子传递在三羧酸循环中,乙酰CoA氧化释放的大部分能量都储存在辅酶(NADH和FADH2)分子中。
细胞利用线粒体内膜中一系列的电子载体(呼吸链),伴随着逐步电子传递,将NADH或FADH2进行氧化,逐步收集释放的自由能最后用于ATP的合成,将能量储存在ATP的高能磷酸键。
■电子载体(electroncarriers)在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。
参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。
●黄素蛋白(flavoproteins)黄素蛋白是由一条多肽结合1个辅基组成的酶类,每个辅基能够接受和提供两个质子和电子。
●细胞色素(cytochromes)细胞色素是含有血红素辅基(图7-24)的一类蛋白质。
在氧化还原过程中,血红素基团的铁原子可以传递单个的电子。
血红素中的铁通过Fe3+和Fe2+两种状态的变化传递电子;在还原反应时,铁原子由Fe3+状态转变成Fe2+状态;在氧化反应中,铁由Fe2+转变成Fe3+.四个卟啉环都含有侧链,不同的细胞色素所含侧链不同。
图中所示是细胞色素c,血红素与多肽的两个半胱氨酸共价结合,但在大多数细胞色素分子中,血红素并不与多肽共价结合。
●铁硫蛋白(iron-sulfurproteins,Fe/Sprotein)铁硫蛋白是含铁的蛋白质,也是细胞色素类蛋白。
在铁硫蛋白分子的中央结合的不是血红素而是铁和硫,称为铁-硫中心(iron-sulfurcenters)。
醌(uniquinoneUQ)或辅酶Q(coenzymeQ)辅酶Q是一种脂溶性的分子,含有长长的疏水链,由五碳类戊二醇构成。
如同黄素蛋白,每一个醌能够接受和提供两个电子和质子(图7-26),部分还原的称为半醌,完全还原的称为全醌(UQH2)。
图7-26辅酶Q的氧化和还原形式辅酶Q的氧化还原分两步进行,先接受一个电子,得到部分还原,称为半醌,再得到一个电子,成为完全还原的醌,称为全醌。
人体两条重要氧化呼吸链的电子传递模式
人体有两个重要的氧化呼吸链,即第一氧化呼吸链和第二氧化呼
吸链。
这两条链子都是通过电子传递来促进氧化作用的。
第一氧化呼吸链又称为膜质氧化磷酸化链。
它有四个酶,分别是Nadh脱氢酶、苏氨酸脱氢酶、水合酶和氧化脱氢酶。
它的电子传递模
式如下所示:NADH进行脱氢作用,将加入氢原子,形成NADH氢还原物,然后该物质被苏氨酸脱氢酶转化成FADH2,再由水合酶转化成H2O和FAD。
之后,FAD进入氧化脱氢酶,产生大量的ATP。
第二氧化呼吸链也称为氧合酶呼吸链,它比第一氧化呼吸链要复
杂一些,它由七个酶组成,主要有NADH脱氢酶、苏氨酸脱氢酶、水合酶、细胞色素b海绵、细胞色素c海绵、细胞色素c1-海绵和细胞色素
o海绵。
它的电子传递模式如下:NADH进行脱氢作用,形成NADH氢还
原物,这种氢还原物进入苏氨酸脱氢酶,被转化成FADH2;FADH2穿过
水合酶,被转化成H2O和FAD,随后FAD穿过细胞色素b海绵、细胞色
素c海绵、细胞色素c1-海绵和细胞色素o海绵,并最终被氧化脱氢酶转化成大量的ATP。
总的来说,两条重要氧化呼吸链都是通过电子传递来促进氧化反
应的,而电子传递的过程主要由NADH脱氢酶、苏氨酸脱氢酶、水合酶、以及细胞色素b海绵、细胞色素c海绵、细胞色素c1-海绵和细胞色素
o海绵发挥作用。