肌电图基础知识总结和入门
- 格式:docx
- 大小:337.57 KB
- 文档页数:47
肌电图报告不会看?这份入门级攻略帮你总结好了!肌电图(EMG)是研究肌肉静息和随意收缩及周围神经受刺激时各种电特性的一门学科。
依据神经解剖原理和神经电生理特性对周围神经功能状态进行评估和分析,从而为临床进一步诊断提供可靠的依据。
一、肌电图检查的目的是什么?肌电图广义包括:神经传导检查(NCS);针电极肌电图检查(EMG)。
01. 有助于定位诊断肌肉?神经?神经肌肉接头?对于神经:① 弥漫性?根、丛、干、支?② 轴索损害?脱髓鞘损害?③ 感觉纤维损害?运动纤维损害?二者都有?④ 急性病程?亚急性?慢性?对于神经肌肉接头:前膜?后膜?02. 判断损伤程度二、临床哪些情况需要做肌电图?1)颈部和上肢、腰背和腿痛,手足麻木、疼痛、肢体麻木、无力、肌肉萎缩、或可疑单发性周围神经病如腕管综合征、肘管综合征、和腓总神经损害;2)可疑周围神经病变如糖尿病等引起的周围神经损害;3)骨折或其他外伤后可疑神经损伤等。
三、肌电图的基本概念01. 潜伏期(时)潜伏期是电信号从刺激点到记录点的传导时间。
潜伏期 = 运动神经传导时间 + 神经肌肉接头传递时间 + 肌肉兴奋到收缩的时间。
图 1. 潜伏期02. 传导速度感觉神经传导速度:刺激点到记录点之间的距离/潜伏期(没有神经肌肉接头参与);运动神经传导速度:近端刺激点与远端刺激点距离之差/二者潜伏期之差。
03. M 波M 波是指刺激运动神经干,诱发所刺激神经支配的肌肉收缩,在该肌肉记录运动电位,称为复合肌肉动作电位,CMAP(M 波)。
04. 自发电活动(失神经电位)肌肉在放松时所出现的自发电活动即自发电位(几乎所有除终板区自发电位,都属于异常自发电位)。
产生机制:>> 肌细胞受损→ 肌细胞膜稳定性↓ → 肌细胞内外环境变化→神经对肌肉的抑制作用丧失;>> 针电极使得肌细胞膜完整性破坏→ 肌细胞内外环境变化→ 神经对肌肉的抑制作用丧失。
1)肌强直放电:是病理性的持续肌纤维异常放电的结果,多出现在针尖插入或移动时。
肌电图是通过肌电对疾病进行辅助检查的一种手段。
正常肌电图在插入导针时,因刺激引起短暂的电活动,称为插入电位,针极移动停止电位迅速消失。
当肌肉在完全松弛状态时无动作电位出现,在肌电图上呈一直线,称为电静息。
当肌肉作小力收缩时可出现单相、双相、三相动作单位,各电位在描记图上互相分离,称为单纯相。
加大肌肉收缩力,各电位在描记图上互相重叠,基线不完全清晰,但仍可以辨认,称为混合相。
继续加大肌肉收缩力,各电位互相重叠干扰,基线不能分辨,称为干扰相。
病理状态下,肌电图会发生相应地改变常见的有以下几种:1.纤颤电位:失去神经支配的肌肉在受到刺激电极插入后,处于肌静息时出现的短时限、低电压电位,称为纤颤电位。
2.束颤电位:肌肉在放松时出现的自发运动电位,其时间宽、电压高,单个、成对或成群发放。
3.正锐波:很多失神经支配的肌纤维同步放电时,可产生波形呈正相的正锐波,其波形呈V 型。
多见于失神经变性的晚期。
4.多相电位:正常肌肉的多相电位不超过总数的5%,但部分失神经支配的肌肉收缩时出现大量的多相运动单位电位。
在腰椎间盘突出症患者,神经根受压变性,在肌静息时,可出现纤颤电位、束颤电位及正锐波。
在肌肉收缩时,可出现多相电位。
但是也有一部分腰椎间盘突出症患者,虽然有典型的临床症状,却并未有纤颤电位、束颤电位或正锐波。
异常自发电位:①纤颤电位:见于神经源性和肌源性损害。
②正锐波:意义同纤颤电位。
③束颤电位:见于神经源性损害。
④多相电位:为神经部分损伤而肌肉收缩不同步所致。
⑤肌颤搐电位:多见于周围神经病变。
⑥复杂重复放电:见于肌肉病变及慢性神经病变。
肌电图的有关知识一、什么是肌电图?肌电图学(electromyography),是研究神经和肌肉细胞电活动的科学,简称EMG,有广义和狭义之分。
狭义的肌电图是指以同心圆针插入肌肉中,收集针电极附近一组肌纤维的动作电位,以及肌肉处于静息状态或肌肉作不同程度随意收缩时的电活动。
广义的肌电图学,还包括神经传导,神经重复电刺激,诱发电位等有关周围神经、神经肌肉接头和肌肉疾病的电诊断学。
二、肌电图产生的原理是什么?众所周知,神经系统是通过动作电位传递信息,而动作电位起源于细胞体或轴突终末,并沿神经纤维传播。
肌电图学就是记录神经和肌肉生物电活动,以判断其功能的一种电诊断方法。
检查时将针电极插入肌肉或电流刺激神经,通过放大系统将肌肉在静息或收缩状态的生物电流放大,再由阴极射线示波器显示出来。
动作电位的变化以静息电位为基础,当神经纤维处于静息状态时,细胞膜外呈正电位,细胞膜内呈负电位,膜内外有90mv的电位差,这种电位差叫静息电位,也叫极化状态。
当给予神经足量的刺激或肌肉收缩时就产生了动作电位。
动作电位包括上升支和下降支,上升支也就是去极化状态,是由于Na+离子通道开放,而使细胞外的Na+离子扩散进入细胞内而形成,下降支即复极化状态,是由于K+离子通道开放而使细胞内K+离子扩散进入细胞外而形成。
三、肌电图检查的范围和目的是什么?肌电图检查的范围主要是周围神经系统,包括周围神经系统的每一个环节,即原发性运动神经元如脊髓前角细胞,原发性感觉神经源如后根神经节,脊神经根,神经丛,周围神经,神经肌肉接头和肌肉本身。
肌电图检查的目的主要是确定神经和肌肉损害的部位,性质和范围,为神经和肌肉病变提供更多的有关损害的电生理损害类型,损害程度,病程和预后等方面的信息,从而使临床医生对周围神经系统疾病的诊断和治疗更有目的性。
四、肌电图检查的基本方法是什么?肌电图检查的基本方法有以下几种:1、神经传导检查:神经传导检查是用表面电极或针电极记录在神经干受到刺激时,神经或肌肉产生的电活动。
肌电图electromyography 河南科技大学第一附属医院神经内科参考《肌电图规范化检测和临床应用共识》综合整理,总结并辑录为四部分:概论、检测和意义、常见疾病检测方法和报告书写。
第一部概论电生理诊断目的一.补充临床的定位诊断:当根据临床的症状和体征进行定位诊断存在困难是更具有价值。
(1)辅助临床明确病变的部位(2)提高早期诊断的阳性率和发现临床下病变(3)辅助发现临床不易识别的病变(4)鉴别中枢和周围神经病变,判断病变累及的范围二.为临床定性诊断提供线索(1)NCV的测定提示病变部位是轴索损害为主,还是脱髓鞘为主,或二者并重。
(2)某些电生理的特异性所见有助于缩小疾病诊断的范围,甚至是唯一确诊的方法。
(3)有助于判断病变处于急性期、恢复期或稳定期。
三.有助于判断病变的严重程度,客观评价治疗的效果和判断预后。
肌电图是记录肌肉静息、随意收缩及周围神经受刺激时各种电特性的一门技术。
导电极有表面电极和针电极两种。
表面电极可以导出深处全体肌肉活动的合成电位,但不能分辨单块肌肉的电位。
将针电极插入欲检查的肌肉可以导出个别肌肉的动作电位。
肌电诊断检查基本上包括三大部份: 1.神经传导检查(nerve conduction studies,NCS) ;2.针极肌电图检查(needle electromyography) ;3.诱发电位检查(evoked potentials)。
神经传导检查:以电极刺激受测神经,而于其支配的感觉神经或肌肉上记录电位,以得到感觉神经电位波(sensory nerve action potential)、复合肌肉动作电位波(compound muscle action potential),及特殊反射的电位波(H-reflex及F-response)之检查。
检查方法是以超大电量刺激(supramaximal stimulation)来刺激受测神经(H反射例外),以使该神经所有轴突均同时兴奋,而得到一最大反应波,根据此最大反应波之传导潜期(latency),振幅(amplitude),表面积(surface area),及传导速度(nerve conduction velocity),再与正常值作比较,可以帮助区别神经的轴突病变(axonopathy)或髓鞘病变(demyelination)。
肌电图学习工作总结
肌电图是一种用来记录肌肉电活动的技术,通过测量肌肉电位的变化来分析肌
肉的活动情况。
在工作学习中,肌电图可以帮助我们更好地了解自己的工作状态和学习效果,从而提高工作和学习的效率。
首先,肌电图可以帮助我们了解自己的工作状态。
通过记录肌肉电活动的变化,我们可以得知自己在工作时的肌肉紧张程度和放松程度,从而及时调整姿势和工作方式,避免长时间处于高度紧张状态下导致身体不适和疲劳。
比如,当我们发现自己在工作时肌肉一直处于紧张状态时,可以及时进行放松休息,调整姿势,从而减轻身体的负担,提高工作效率。
其次,肌电图也可以帮助我们评估学习效果。
在学习过程中,我们可以通过记
录肌肉电活动的变化来了解自己的学习状态,比如在学习时肌肉处于放松状态的时间较长,可以说明学习效果较好;而在学习时肌肉一直处于紧张状态,可能意味着学习效果不佳,需要及时调整学习方法和节奏。
通过肌电图的记录和分析,我们可以更科学地评估自己的学习效果,及时调整学习策略,提高学习效率。
总的来说,肌电图在工作学习中的应用可以帮助我们更好地了解自己的工作状
态和学习效果,从而及时调整工作方式和学习策略,提高工作和学习的效率。
希望大家能够重视肌电图的应用,将其运用到工作学习中,让我们的工作和学习更加科学、高效。
肌电图报告不会看?这份进阶攻略总结好了肌电图该如何解读,不同的数值代表什么意义,面对可疑神经-肌肉损伤的患者,我们又该选择怎样的检测方法呢?本文简要介绍肌电图的原理以及各个检查项目的含义,包括神经传导速度测定、针极肌电图、重复频率电刺激、F 波、H 反射及瞬目反射等,同时,我们还将结合实际病例展现常见的神经系统疾病的特异性肌电图表现。
1肌电图的意义首先我们要明确肌电图的意义,肌电图主要用于协助神经源性及肌源性疾病的定位以及定性诊断。
对于神经源性疾病,我们可以通过进一步明确受损部位(神经肌肉接头、单根神经、神经根、神经丛、神经干及脊髓前角等)。
同时,我们还可以通过明确受累的神经类型(感觉或运动),受累纤维部位(轴索或髓鞘)协助进一步明确定性诊断。
2神经传导速度测定主要为运动神经传导速度测定以及感觉神经传导速度测定。
运动神经传导速度测定通过对神经干上的远、近两点进行记录,检测该神经所支配的远端肌肉上记录到的发出的混合肌肉动作电位(CMAP),通过对于波幅、潜伏期及时程的分析,来判断运动神经的传导功能。
与之类似,感觉神经传导速度测定通过刺激一段感觉神经,在另一端记录这种形式产生的感觉神经电位(SNAP)。
01、临床应用可以帮助对于神经病变的类型及范围进行初步了解。
1)协助判定病变范围由于神经传导速度测定的刺激电极及记录电极均位于同一根神经分布区域,因此,神经根以上疾病神经传导速度测定多基本正常(比如前角细胞病变,代表疾病是运动神经元病)。
同时,由于感觉神经并不参与运动单位,因此神经肌肉接头病变及肌肉本身病变也不会出现感觉神经电位受累。
2)协助判定病变类型通过对于神经传导速度异常的判定,可以分为① 以轴索损害为主的疾病:主要表现为波幅减低、传导速度可轻度减慢、潜伏期可轻度延长,多见于中毒、代谢及遗传因素;②以髓鞘损害为主的疾病:主要表现为传导速度减慢、潜伏期明显延长、传导阻滞和波形离散、波幅可轻度减低,多见于压迫及嵌压性疾病,也可以见于腓骨肌萎缩症及吉兰巴雷综合症等。
肌电图知识简介WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】肌电图知识简介肌电图学是研究神经和肌肉电活动的科学。
其价值在于神经源性和肌源性病变的鉴别诊断,以及对神经病变的定位、损害程度和预后判断等方面。
一、哪些情况需要做肌电图检查当出现肢体麻木、无力、疼痛、肌萎缩、肌痉挛、抽搐等症状,怀疑患有运动神经元病、颈椎病或腰椎病、神经损伤或局部神经受压、重症肌无力、肌肉疾病、周围神经病时,需要进行该项检查。
二、肌电图主要适应症:主要帮助我们判断有无前角细胞及以下损害,也就是确定运动或感觉神经元、神经、肌肉以及神经肌肉接头功能正常与否,并对异常功能区域进行定位。
主要包括:1、运动神经元病:前角细胞损害(肌萎缩侧索硬化就是其中最常见一种,俗称”渐冻人”)2、周围神经病变(①神经根病变②神经丛病变③单神经病④多数性单神经病⑤多发性神经病)3、神经肌肉接头病变(重症肌无力等)4、肌肉病变(皮肌炎等)三、我院可行肌电图检查的科室1、神经内科:应用肌电图检查最广泛的科室,包括运动神经元病,周围神经病变,神经肌肉接头病变。
2、内分泌科:主要为糖尿病周围神经病病人3、骨科:骨科颈腰椎手术前排除四肢周围神经病变,以确保手术疗效。
4、肾病科:主要为肾病周围神经病病人。
5、各中医类科室:颈腰椎病、腕管综合症、面瘫及所有有麻木、无力、萎缩症状的病人都可行肌电图检查。
6、皮肤科:主要为皮肌炎的病人。
四、肌电图检查过程肌电图检测一般包括神经传导检测和针极肌电图检查两部分。
前者指对神经予以刺激,从而记录神经或肌肉的电活动;后者指将针插入肌肉中记录其电活动,以了解疾病累及的是神经还是肌肉,及其病变之性质。
五、检查前、后注意事项1、检测前一般无需做特殊准备,但最好穿宽松的衣服;检测完后可进行正常日常活动,但最好24小时内暂不洗澡。
检测完后一般当天可取报告。
2、有以下情况应提前告知医生:严重的凝血功能障碍;安装了起搏器、电复律-除颤器心脏装置;严重的心脑血管病;传染病患者。
肌电图electromyography 河南科技大学第一附属医院神经内科参考《肌电图规范化检测和临床应用共识》综合整理,总结并辑录为四部分:概论、检测和意义、常见疾病检测方法和报告书写。
第一部概论电生理诊断目的一.补充临床的定位诊断:当根据临床的症状和体征进行定位诊断存在困难是更具有价值。
(1)辅助临床明确病变的部位(2)提高早期诊断的阳性率和发现临床下病变(3)辅助发现临床不易识别的病变(4)鉴别中枢和周围神经病变,判断病变累及的范围二.为临床定性诊断提供线索(1)NCV的测定提示病变部位是轴索损害为主,还是脱髓鞘为主,或二者并重。
(2)某些电生理的特异性所见有助于缩小疾病诊断的范围,甚至是唯一确诊的方法。
(3)有助于判断病变处于急性期、恢复期或稳定期。
三.有助于判断病变的严重程度,客观评价治疗的效果和判断预后。
肌电图是记录肌肉静息、随意收缩及周围神经受刺激时各种电特性的一门技术。
导电极有表面电极和针电极两种。
表面电极可以导出深处全体肌肉活动的合成电位,但不能分辨单块肌肉的电位。
将针电极插入欲检查的肌肉可以导出个别肌肉的动作电位。
肌电诊断检查基本上包括三大部份: 1.神经传导检查(nerve conduction studies,NCS) ;2.针极肌电图检查(needle electromyography) ;3.诱发电位检查(evoked potentials)。
神经传导检查:以电极刺激受测神经,而于其支配的感觉神经或肌肉上记录电位,以得到感觉神经电位波(sensory nerve action potential)、复合肌肉动作电位波(compound muscle action potential),及特殊反射的电位波(H-reflex及F-response)之检查。
检查方法是以超大电量刺激(supramaximal stimulation)来刺激受测神经(H反射例外),以使该神经所有轴突均同时兴奋,而得到一最大反应波,根据此最大反应波之传导潜期(latency),振幅(amplitude),表面积(surface area),及传导速度(nerve conduction velocity),再与正常值作比较,可以帮助区别神经的轴突病变(axonopathy)或髓鞘病变(demyelination)。
肌电图electromyography 河南科技大学第一附属医院神经内科参考《肌电图规范化检测和临床应用共识》综合整理,总结并辑录为四部分:概论、检测和意义、常见疾病检测方法和报告书写。
第一部概论电生理诊断目的一.补充临床的定位诊断:当根据临床的症状和体征进行定位诊断存在困难是更具有价值。
(1)辅助临床明确病变的部位(2)提高早期诊断的阳性率和发现临床下病变(3)辅助发现临床不易识别的病变(4)鉴别中枢和周围神经病变,判断病变累及的范围二.为临床定性诊断提供线索(1)NCV的测定提示病变部位是轴索损害为主,还是脱髓鞘为主,或二者并重。
(2)某些电生理的特异性所见有助于缩小疾病诊断的范围,甚至是唯一确诊的方法。
(3)有助于判断病变处于急性期、恢复期或稳定期。
三.有助于判断病变的严重程度,客观评价治疗的效果和判断预后。
肌电图是记录肌肉静息、随意收缩及周围神经受刺激时各种电特性的一门技术。
导电极有表面电极和针电极两种。
表面电极可以导出深处全体肌肉活动的合成电位,但不能分辨单块肌肉的电位。
将针电极插入欲检查的肌肉可以导出个别肌肉的动作电位。
肌电诊断检查基本上包括三大部份: 1.神经传导检查(nerve conduction studies,NCS) ;2.针极肌电图检查(needle electromyography) ;3.诱发电位检查(evoked potentials)。
神经传导检查:以电极刺激受测神经,而于其支配的感觉神经或肌肉上记录电位,以得到感觉神经电位波(sensory nerve action potential)、复合肌肉动作电位波(compound muscle action potential),及特殊反射的电位波(H-reflex及F-response)之检查。
检查方法是以超大电量刺激(supramaximal stimulation)来刺激受测神经(H反射例外),以使该神经所有轴突均同时兴奋,而得到一最大反应波,根据此最大反应波之传导潜期(latency),振幅(amplitude),表面积(surface area),及传导速度(nerve conduction velocity),再与正常值作比较,可以帮助区别神经的轴突病变(axonopathy)或髓鞘病变(demyelination)。
例如在髓鞘病变可见潜期延长或传导速度变慢,而轴突病变或有肌纤维丧失则可导致振幅或表面积减小。
F反应及H反射:F反应是利用超大电量刺激神经,使去极波沿运动神经轴突逆向传到脊髓,再经同一运动神经元或数个中间神经元后传回下运动神经元,引发其支配的肌肉收缩所产生之反应波,这一电位多出现在手、足部小肌肉,不随刺激强度增加而减小。
经由一定次数之刺激(20-100次)可计算其出现频率及传导潜期,当出现频率变少或传导潜期延长则表该运动神经至脊髓的近端传导径路有问题。
F波潜伏期是指从刺激伪差到F波起始部的时间。
一般应计算最短潜伏期、最长潜伏期、平均潜伏期、F波离散度。
引出H波的阈强度低于引出M波的阈强度, H波出现在M波之前。
H反射则是利用较小电量刺激神经,经感觉神经纤维向上传导至脊髓,再经单一突触联结(monosynape)传入下运动神经元而引发肌肉收缩所记录到之反应波,同时随着电量加大、复合肌肉动作电位波(M波)逐渐变大,H反射波会逐渐被抑制变小乃至消失(如下图)。
H反射不同于F反应,后者可见于所有运动神经,而H反射在正常成人只在于第一荐椎神经根所支配的肌肉为必定出现,其它部位则较少见。
若H反射消失则表该神经根有病变或是传导径路的其它部位有问题,相反的若H反射大量出现于其它部位则代表中枢神经病变。
重复电刺激检查(repetitive nerve stimulation):主要用于诊断神经肌肉接点之异常。
检查方法是利用低频(2-3Hz)或高频(10-20Hz)的电刺激连续刺激神经,记录复合肌肉动作电位波,若于低频电刺激下出现递减反应,即前五个连续电位波中,最小的波与第一个最大波间振幅减小达10%以上,则可诊断重症肌无力;反之若于高频电刺激下,连续电位波显示递增反应则为肌无力症候群。
针极肌电图检查利用针极刺入肌肉,记录其各种状态下的电位活动,再经由多条肌肉的检查来判定神经、肌肉病变的特性,部位及范围和严重度。
一般常用针极为同轴针极(较耐用,干扰少,但较痛)及单极针极(记录面积大、较不痛,但干扰大、易损坏)两种。
常规之针极检查包括四个步骤,依序观察下列活动电位: 1.针极刺入活动电位(insertional activity) ;2.自发性活动电位(spontaneous activity) ;3.轻微/小力收缩时运动单元电位波(MUAP)之型态;4.最大力量收缩下,运动单元电位之征召/募集(recruitment)波及干扰型态(interference pattern)。
在正常情况下,针极利入肌肉会引起短暂的刺入活动电位,但正常应于300ms内恢复静止状态,如针刺活动电位延长,代表肌纤维细胞膜之不稳定,如去神经现象,肌强直异常,或肌肉病变等;反之针刺活动电位减少或消失,常代表肌肉明显萎缩或纤维化。
若针极静止不动,肌肉亦处于完全放松状态,此时应记录不到任何活动电位,除非针极正好位于运动终板区,则可见到运动终板电位(endplate potential)或微运动终板电位(miniatual end plate potential),除此之外,若出现下列自发性运动电位均属异常: 1.颤波(fibrillation)或正相尖波(positive sharp wave):均为单一肌纤维放电形成之自发性活动电位,通常代表肌肉去神经现象,但须在神经受伤后2-3周才会出现,亦见于肌肉病变,某些上运动神经元病变,及失用性肌萎缩症。
2.肌束波(fasciculation)及肌束阵弯(myokymia):肌束波是由一群肌纤维同时不自主的放电而造成之运动单元电位波,常见于下运动神经元疾病,但也可于上运动神经元病变,特定代谢疾病、及偶尔在正常肌肉见到。
而肌束阵弯则指一群运动单元连续反复的放电引起肌肉收缩,临床上可见该肌肉上的皮肤蠕动现象,见于慢性神经病变。
3.复杂重复放电波(complex repetitive discharge, C.R.D.):一组肌纤维以相同频率重复放电所形成的复杂电位、声音有如机关枪,见于肌肉病变及慢性神经病变。
4.肌强直放电波(myotonic discharge):肌纤维周期性振幅由小而大再由大而小的放电,造成如飞机俯冲般之声音,见于先天性肌强直症及肌强直性肌肉失养症。
个别运动单元电位波之型态则于轻微肌肉收缩时观察。
运动单元是肌肉收缩的功能单位,每一运动单元包括一个运动神经元、其轴突及所支配的肌纤维,当一运动神经元之神经冲动传至其所支配之肌纤维时,引起所有肌纤维收缩,经整合而得一运动单元电位波,其判读参数主要包括:1.振幅(amplitude):最高正相波与负相波间之电位差,正常在200μv~5000μv之间,过高或过低均为异常。
2.间期(duration):电位波初离开基线至最后回到基线之时间,与记录范围内之肌纤维数有关,正常约2-15ms之间。
3.表面积(surface area):指电位波内所含之面积。
4. 相数(phase):波形穿过基线之次数,代表肌纤维密度与放电整合情形,正常不超过4个相数,否则称为多相波,每条肌肉之多相波约占5-15%。
5. 转折(turn):波形极化方向转变之次数。
6. 升起期(rise time):针极接近肌纤维之程度。
7. 电频率(firing rate):在不同疾病及疾病不同阶段所出现之运动单元电位异常均不相同,例如在神经病变急性期可见到残余之正常运动单元电位波及一些正常间期之多相波;当神经末梢再生时可见微小多相波;如有侧枝再生则出现后电位(late component);至于慢性神经再生则呈现长间期、高振幅之多相波。
至于肌肉病变之典型异常则为放电频率增加、短间期、低振幅之多相波。
最后则叫病人作最大力量收缩,使所有运动单元均被征召(recruitment)加入收缩,同时个别运动单元电位之放电频率亦增加,以加强肌肉收缩力量,此称为征召现象。
此时针极记录到的众多电位波互相干扰,使整个监视器屏幕均充满电位波,看不到基线,是为干扰型态(interference pattern)。
随着肌肉征召异常的程度,可将之区分为轻度下降(decreased rich)、重度下降(decreased poor)、弧离征召(discrete recruitment)、单一动作电位征召(single unit recruitment)乃至无征召反应。
除了上述常用检查外,还有一些特殊针极检查,如单纤维肌电图即是以微小电极(25以m)来侦测单一肌纤维运动电位波之变化,藉以了解单一肌纤维运动终板及肌肉内神经枝之活动情形,由于其高敏感度,现已被广泛用于诊断神经肌肉传导的疾病。
单纤维肌电图可以记录到二个单纤维间期之变异称为颤移(jitter),它有一定正常值,可用于诊断重症肌无力,因这类病人神经肌肉传导异常会导致颤移延长,更严重者会造成阻断(blocking)。
除此外,也可用以测量肌纤维密度(fiber density),正常人应小于1.5,有神经肌肉病变时密度增加。
另外巨形肌电图(macro EMG)乃记录整个运动单元之情形,以测定神经再支配分布的容量。
诱发电位检查临床上常用的诱发电位检查包括视觉诱发电位(vep,visual evoked potential)、听觉诱发电位(aep,auditory evoked potential)、体感觉诱发电位(sep,somatosensory evoked potential),及运动诱发电位(mep,motor evoked potential)。
视觉诱发电位:施以视觉性刺激(闪光或图形反复刺激),由视网膜接收后经视觉径路传到大脑枕叶之视觉反应区,记录所激发的脑细胞电位活动。
图形反复刺激所得之诱发电位(pattern reversal evoked potential),正常,清醒下呈"V"字形,含有二个负(N)波及一个正(P)波,其中又以正波P100之判读最具意义,根据其潜期、振幅及波形之改变可用以诊断及定位视神经径路之病变;如视神经炎、球后神经炎、多发性硬化症等。
而听觉诱发电位则是用听觉刺激诱发听神经反应,传到大脑听觉中枢之活动电位,以电极于头部记录而得。
正常的脑干听觉诱发电位有七个波,分别代表听神经到大脑显叶之听觉径路。
其中又以第1,3,5波最具临床应用价值。
可用于听神经及脑干病变之检查定位,提高多发性硬化症之诊断率,评估昏迷患者之预后;同时可用于手术时监视听神经及脑干功能,避免开刀时之损伤。