第五讲时分多路复用
- 格式:ppt
- 大小:326.00 KB
- 文档页数:88
时分多路复用(TDM)展开全文因数字信号是有限个离散值,所以TDM技术广泛应用于包括计算机网络在内的数字通信系统,而模拟通信系统的传输一般采用FDM。
以电话通信为例说明时分多路复用的过程:发送端的各路话音信号经低通滤波器将带宽限制在3400Hz 以内,然后加到匀速旋转的电子开关SA1上,依次接通各路信号,它相当于对各路信号按一定的时间间隙进行抽样。
SA1旋转一周的时间为一个抽样周期T,这样就做到了对每一路信号每隔周期T 时间抽样一次,此时间周期称为1帧长。
发送端电子开关SA1不仅起到抽样作用,同时还要起到复用和合路的作用。
合路后的抽样信号送到编码器进行量化和编码,然后,将信号码流送往信道。
在接收端,将各分路信号码进行统一译码,还原后的信号由分路开关SA2依次接通各分路,在各分路中经低通滤波器将重建的话音信号送往收端用户。
在上述过程中,应该注意的是,发、收双方的电子开关的起始位置和旋转速率都必须一致,否则将会造成错收,这就是PCM(脉冲编码调制(Pulse Code Modulation,PCM)系统中的同步要求。
收、发两端的数码率或时钟频率相同叫位同步或称比特同步,也可通俗的理解为两电子开关旋转速率相同;收、发两端的起始位置是每隔1帧长(即每旋转一周)核对一次的,此称帧同步。
这样才一能保证正确区分收到的哪8位码是属于一个样值的,又是属于哪一路的。
为了完成上述同步功能,在接收端还需设有两种装置:一是同步码识别装置,识别接收的 PCM信号序列中的同步标志码的位置;二是调整装置,当收、发两端同步标志码位置不对应时,需在收端进行调整使其两者位置相对应。
以上两种装置统称为帧同步电路。
时分多路复用不仅局限于传输数字信号,也可同时交叉传输模拟信号。
应用当使用频分复用时占有不同频带的多路信号合在一起在同一信道中传输,各路频带间要有防护频带;而时分复用则使占有不同时隙的多路信号合在一起在同一信道中传输,各路时隙间要有防护时隙。
频分多路复用、时分多路复用和统计时分多路复用三种方法摘要: 多路复用是把两个以上的单独信号合并起来。
同时在一条通信线路上进行传输。
多路复用的方法很多,这里主要介绍频分多路复用、时分多路复用和统计时分多路复用三种方法。
首先介绍频分多路复用,简称FDM,频分多路复用是把每个要传输的...多路复用是把两个以上的单独信号合并起来。
同时在一条通信线路上进行传输。
多路复用的方法很多,这里主要介绍频分多路复用、时分多路复用和统计时分多路复用三种方法。
首先介绍频分多路复用,简称FDM,频分多路复用是把每个要传输的信号以不同的载波频率进行调制,然后在传输介质上进行传输,这样在传输介质上就可以同时传输许多路信号。
之前介绍的宽带信号主要的实现方法就是频分多路复用。
其次介绍时分多路复用,时分多路复用利用每个信号在时间上交叉,可以在一个传输通路上传输多个数字信号。
时分多路复用的特点是每个信号都是基带信号,通过轮流使用时隙,实现多路复用。
最后介绍统计时分多路复用,统计时分多路复用是在时分多路复用基础上,动态按需分配时隙。
多路复用还有波分、码分等方法,请同学们查阅资料进行了解。
波分复用WDM 是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。
光波分复用包括频分复用和波分复用光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。
通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。
计算机网络原理 时分多路复用技术
时分多路复用(Time division Multiplexing ,TDM )是一种多路传输数字信号的方法,它已经在现代数据网络上替代了频分多路复用技术。
在通信序列中,时分多路复用向在网络上交换信号的每一个设备分配一段时间或时间片。
在这个时间片中,信道只传输来自那个节点的数据。
例如,有若干个计算机连接在同一条公共传输通道上,多路复用器在通信信道中将会按一定的次序轮流的给每台计算机分配一个时间,当轮到某台计算机时,这台计算机与通道接通,执行操作。
而其他的设备与通道的联系均被切断,待分配的时间片用完后,则通过时分多路转换开关把通道联接到下一个要连接的计算机上。
在时分多路复用中,时间片是为它们特定的节点保留的,而不管该节点是否有数据要传输。
如果一个节点没有要发送的数据,那么它的时间片就保留空白的。
虽然这种安排合乎逻辑,但是如果网络上的某些节点很少发送数据,那么它的效率会比较低下。
图1-16为一个时分多复用模型。
发射器
A
B
C
A B C 接收器时间片2
图1-16 时分多复用系统
时分多路复用又分为同步时分多路复用和异步时分多路复用:同步时分多路复用是指分配给每个设备的时间片是固定的,不管该设备是否有数据发送,属于该设备的时间片都不能被其他设备占用。
异步时分多路复用允许动态地分配时间片,如果某个设备不发送信息,则其他的设备可以占用这个设备的时间片。
通信系统中的多路复用技术介绍多路复用技术指的是在通信系统中,通过将多个信号合并在一个信道中传输,以提高通信信道的利用率和传输效率的一种技术。
它可以将不同用户的信号同时传输在同一个信道中,从而实现多个用户同时进行通信。
下面将详细介绍多路复用技术的原理和步骤。
一、多路复用技术的原理1. 频分多路复用(FDM):将传输信道频带划分为若干个不重叠的子信道,每个子信道用于传输一个用户的信号。
通过控制每个子信道的带宽,可以使不同用户之间的信号不会相互干扰。
2. 时分多路复用(TDM):将传输信道的时间分成若干个时隙,每个时隙用于传输一个用户的信号。
用户的信号在不同的时隙进行传输,通过控制每个用户的传输速率,可以实现多用户同时传输。
3. 统计多路复用(SDM):根据用户的传输需求和信道的使用情况,动态地分配信道资源。
当用户的传输需求较小或者其他用户没有传输时,可以将信道资源分配给其他用户使用。
二、多路复用技术的步骤1. 信号接入:将不同用户产生的信号接入到通信系统中。
用户的信号可以通过不同的方式接入,如数字化后通过信号结构器输入、模拟信号通过模数转换器转换为数字信号后输入等。
2. 信号编码:对每个用户的信号进行编码。
编码可以使得不同用户的信号在传输过程中相互独立,不会相互干扰。
常见的编码方式有频分编码、时分编码等。
3. 多路复用:将各个用户的信号按照多路复用技术的原理进行合并。
例如,对于频分多路复用技术,可以将每个用户的信号经过调制后分配到不同的频带中;对于时分多路复用技术,可以将每个用户的信号按照时间顺序分配到不同的时隙中。
4. 信号传输:将多路复用后的信号通过信道传输。
传输过程中需要保持信号的完整性和准确性,避免信号受到干扰或衰减。
5. 信号分解:在接收端,将传输的信号进行分解,分离出各个用户的信号。
分解可以使用与多路复用技术相对应的解复用技术,如频分解复用、时分解复用等。
6. 信号解码:对分离出的每个用户的信号进行解码。
时分多路复用(TDM):概念时分多路复用(TDM:Time Division Multiplexing)是按传输信号的时间进行分割的,它使不同的信号在不同的时间内传送,将整个传输时间分为多时间间隔(Slot time,TS,又称为时隙),每个时间片被一路信号占用。
TDM就是通过在时间上交叉发送每一路信号的一部分来实现一条电路传送多路信号的。
电路上的每一短暂时刻只有一路信号存在。
因数字信号是有限个离散值,所以TDM技术广泛应用于包括计算机网络在内的数字通信系统,而模拟通信系统的传输一般采用FDM。
TDM是以信道传输时间作为分割对象,通过多个信道分配互不重叠的时间片的方法来实现,因此时分多路复用更适用于数字信号的传输。
它又分为同步时分多路复用和统计时分多路复用。
采用基带传输的数字数据通信系统,如计算机网络系统、现代移动通信系统等;原理由于基带传输系统采用串行传输的方法传输数字信号,不能在带宽上划分。
TDM技术在信道使用时间上进行划分,按一定原则把信道连续使用时间划分为一个个很小的时间片,把各个时间片分配给不同的通信过程使用;由于时间片的划分一般较短暂,可以想象成把整个物理信道划分成了多个逻辑信道交给各个不同的通信过程来使用,相互之间没有任何影响,相邻时间片之间没有重叠,一般也无须隔离,信道利用率更高。
通常采用的技术有:STDM同步十分多利复用技术和ATDM异步时分多路复用技术同步时分复用采用固定时间片分配方式,即将传输信号的时间按特定长度连续地划分成特定的时间段(一个周期),再将每一时间段划分成等长度的多个时隙,每个时隙以固定的方式分配给各路数字信号,各路数字信号在每一时间段都顺序分配到一个时隙。
由于在同步时分复用方式中,时隙预先分配且固定不变,无论时隙拥有者是否传输数据都占有一定时隙,这就形成了时隙浪费,其时隙的利用率很低,为了克服STDM的缺点,引入了异步时分复用技术。
异步时分复用(ATDM)技术又被称为统计时分复用技术(Statistical Time Division Multiplexing),它能动态地按需分配时隙,以避免每个时间段中出现空闲时隙。
时分多路复用技术嘿,朋友们!今天咱来唠唠时分多路复用技术。
你说这玩意儿像不像个超级管理员呀!它能把时间分割得特别精细,就好像把一天的时间分成好多好多小格子。
咱平常过日子,每个人都有自己的事情要做,时间就那么多,对吧?这时分多路复用技术也是一样,它得合理安排各种信息的传输时间。
想象一下,信息就像一群着急赶路的人,都想快点到达目的地,这时候时分多路复用技术就站出来了,指挥着它们一个一个有序地通过。
比如说,有好多不同的信号都想通过同一条线路传输,这要是没个规矩,那不就乱套啦!但有了时分多路复用技术,它就会给每个信号分配特定的时间段,就像给每个人都安排了专属的时间窗口。
在这个时间段里,这个信号就能尽情地传输,不用担心被别的信号干扰。
这多厉害呀!你看啊,我们平时打电话,声音信号就是通过这种方式被准确无误地传送到对方那里。
它就像个神奇的魔法,能让信息乖乖听话,按照规定好的路线前进。
而且这技术还特别灵活呢!如果有些信号需要更多的时间,它也能调整安排,满足不同的需求。
这就好比我们生活中,有时候有些事情比较紧急重要,我们就得给它多分配点时间和精力。
再想想我们的交通系统,不同的车辆在道路上行驶,也得遵守交通规则,按照一定的顺序通过路口。
这不就和时分多路复用技术很像嘛!它保证了信息的顺畅传输,就像交通规则保证了车辆的有序行驶。
这技术在我们生活中的应用可多了去了,从通信到广播电视,到处都有它的身影。
它就像一个默默工作的幕后英雄,让我们的信息世界变得更加有序和高效。
咱不得不感叹,人类的智慧真是无穷无尽啊!能想出这么厉害的技术来。
有了时分多路复用技术,我们的通信变得更加快捷、准确,让我们能更好地和世界连接。
所以啊,别小看了这小小的时分多路复用技术,它可是在背后发挥着大大的作用呢!它让信息的传输变得如此神奇和美妙,真的是太了不起啦!。
第三章时分多路复用与复接技术1 时分多路复用为了提高信道利用率,使多个信号沿同一信道传输而互相不干扰,称多路复用。
目前采用较多的是频分多路复用和时分多路复用。
频分多路复用用于模拟通信,例如载波通信,时分多路复用用于数字通信,例如PCM通信。
时分多路复用通信,是各路信号在同一信道上占有不同时间间隙进行通信。
由前述的抽样理论可知,抽样的一个重要作用,是将时间上连续的信号变成时间上离散的信号,其在信道上占用时间的有限性,为多路信号沿同一信道传输提供了条件。
具体说,就是把时间分成一些均匀的时间间隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开,互不干扰的目的。
图3-1为时分多路复用示意图,各路信号经低通滤波器将频带限制在3400Hz以下,然后加到快速电子旋转开关(称分配器)开关不断重复地作匀速旋转,每旋转一周的时间等于一个抽样周期T,这样就做到对每一路信号每隔周期T时间抽样一次。
由此可见,发端分配器不仅起到抽样的作用,同时还起到复用合路的作用。
合路后的抽样信号送到 PCM编码器进行量化和编码,然后将数字信码送往信道。
在收端将这些从发送端送来的各路信码依次解码,还原后的PAM信号,由收端分配器旋转开关K2依次接通每一路信号,再经低通平滑,重建成话音信号。
由此可见收端的分配器起到时分复用的分路作用,所以收端分配器又叫分路门。
当采用单片集成PCM编解码器时,其时分复用方式是先将各路信号分别抽样、编码、再经时分复用分配器合路后送入信道,接收端先分路,然后各路分别解码和重建信号。
要注意的是:为保证正常通信,收、发端旋转开关必须同频同相。
同频是指的旋转速度要完全相同,同相指的是发端旋转开关连接第一路信号时,收端旋转开关K2也必须连接第一路,否则收端将收不到本路信号,为此要求收、发双方必须保持严格的同步。
时分复用后的数码流示意图示于图3-21.1 时分复用中的同步技术时分复用通信中的同步技术包括位同步(时钟同步)和帧同步,这是数字通信的又一个重要特点。