动态无功补偿投切调节器的原理
- 格式:docx
- 大小:36.38 KB
- 文档页数:1
动态无功补偿调节器
GLTSC系列无谐波型动态无功补偿调节器是—种能够对电力并联电容器进行快速投切的电子型功率器件模块。
其电气结构主要由大功率半导体模块、隔离电路.触发电路及驱动电路组成.配有控制调节器导通或断开的接线端子和指示灯接线端子,控制电压为DC12V(导通)、配套使用本公司的GLVC-60系列动态无功功率补偿控制器可实现高精度快速补偿一一投切器接收到信号后20ms内完成投切任务,可实现过压、欠压、过流、缺相等自动保护功能。
本调节器采用国外先进技术,解决了当前该类产品自身会产生谐波,且需要较大电抗器串联的问题。
― 般情况下,只需普通限流电抗器与之串联即可。
本调节器具有安装简单、维护方便、响应快、投切无涌流、工作无噪声、运行稳定可靠,并具有过热保护等优点,是无功功率动态补偿装置采用投切电容器组的理想器件.
工作电压:(380V或220V)士15%
额定频率:50Hz
失真度:≤5%的正弦波
负载容量:380V级:总量≤50Kvar,220V级:单相容量≤15Kvar
动作时间:20ms
控制信号:12V±30%
接点耐压:1600V AC
空载实验耐压:2500V AC (2秒)。
无功功率(reactive power ):无功功率是按电磁感应原理工作的某个交流供用电设备和交流电源之间的能量交换,这种能量互换的最大值称为无功功率。
这部分能量是用电器工作所必须的,但不能转换为我们所需要的能量,如机械能和热能。
为了形象的描述电源利用的程度,我们提出了功率因数的概念,功率因数就是电路中有用功率和视在功率(电源总功率)的比值。
由此可见,提高电网的功率因数对国民经济发展的重要意义。
功率因数的提高,能使发电设备的容量得到充分利用,减少线路电流和功率损失。
无功补偿原理:通常我们用来提高功率因数的方法就是补偿法。
即采用能够提供无功功率的装置来补偿用电设备所需的无功功率,降低电源的功率损失,提高功率因数,采用电力电容器来补偿用电设备所需无功功率的方法,称为电容无功补偿法。
这是由于理想的电容器在电路里是不消耗电能的,它只是从电源吸收电能转换成电场能,再把电场能转换成电能还给电源,完成它与电源之间的能量互换,因此电容上的功率也是无功功率,它的无功功率是由于电容上的电流I超前电压90°引起的,而我们的用电设备大多数都是感性负载,其工作时由于电流滞后引起的无功功率刚好与电容引起的无功功率相反。
所以我们可以利用电容工作时产生的无功功率来补偿用电设备在工作时消耗的无功功率。
电容投切无功补偿简介:通过以上分析我们知道在电路中接入电容可以为设备提供无功功率,提高功率因数。
由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。
当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。
所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。
电容组投切的时机和数量则由专用控制器决定,而电容组容量一般选择系统额定容量的15%~40%。
电容投切无功补偿装置组成及其技术要点:电容器:选用优质自愈式并联电容器,可按不同容量灵活编码组合,投切级数多,大容量补偿可一次到位。
HIT WEIHAN高压TSC动态无功功率补偿装置产品简介制造厂名称:哈尔滨威瀚电气设备股份有限公司地址:哈尔滨开发区哈平路集中区渤海路25号日期:二零一二年高压TSC动态无功功率补偿装置产品简介1、无功补偿的目的所谓补偿就是吸收和供给可变的无功功率。
负荷补偿就是对无功功率进行调度以改善交流电力系统的供电质量,以达到功率因数矫正、改善电压质量、调节负荷平衡等目的。
功率因数校正应尽可能靠近需要无功的负荷处产生无功。
通常工业负荷多为感性,吸收无功,功率因数是滞后的,母线电流大于供给负载有功电流值。
在能量转换中,无功功率作为损耗掉了,却不能转化为有用功。
无功功率对供电系统和负荷的运行都是十分重要的。
电力系统网络元件的阻抗主要是电感性的。
因此,粗略地说,为了输送有功功率,就要求送电端和受电端的电压有一相位差,这在相当宽的范围内可以实现;而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。
不过大多数网络元件消耗无功功率,大多数负载需要消耗无功功率。
网络元件和负载所需要的无功功率必须从网络中某个地方获得。
显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,也是极不经济的,通常也是不可能的。
由于负荷对于无功功率的需求是变化的,无功的为化会引起电压的变化,导致不同用户的负荷间相互干扰。
一般规定电源电压的变化范围为±5%(平均值),特殊场合,如大负荷的急剧变化所产生的电压降会危害保护设备的正常运行或产生损害视力的电压闪烁现象,规定其范围要比±5%小的多。
超过了规定的电压范围时就要进行补偿。
通常根据负荷要求的最大有功功率来确定系统的规模,而用补偿器调节无功。
无功补偿的作用主要有以下几点:(1)提高系统功率因数,提高系统效率,降低设备容量,减少功率损耗;(2)稳定受电端及电网电压,提高供电质量。
在对轧机、提升机、电弧炉等冲击型负荷的补偿中,可显著稳定系统电压,改善电网的稳定性;(3)无功补偿可以提高变压器出力,提高变压器带载容量;2、无功补偿的种类目前国内外普遍采用的无功功率的方法主要有五种:(1)同步发电机通过调整励磁电流,使其在超前功率因数下运行,输出有功功率的同时输出无功功率。
磁控式动态无功补偿装置技术原理、优势及适用行业摘要无功补偿有多种形式,基于MCR的动态无功补偿是其中较为先进的一类,磁控电抗器(MCR)利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。
该系统装置具有较高的安全性,运行稳定可靠。
与其他类型的无功补偿装置对比。
此类补偿装置与其它类型的无功补偿装置的区别主要在于磁控电抗器(MCR),因此,该文重点讲述了MCR的基本原理和技术优势,与它类型的无功补偿装置做了技术比较,预测了MSVC技术的发展前景。
关键词:MCR;直流励磁;可控硅;无功功率引言目前,无功补偿的主要装置是电容器、电抗器和少量的动态无功补偿装置。
开关(断路器)投切电容器的调节方式是离散的,不能取得理想的补偿效果。
开关投切电容器所造成的涌流和过电压对系统和设备本身都十分有害。
20世纪80年代以来,基于相控电抗器(TCR)的静止型动态无功补偿器(SVC)在电力系统中投入实际运行。
但由于其投资昂贵,难以推广。
20世纪末,因具有价格便宜、维护方便等优点,基于磁阀式可控电抗器(MCR)的SVC,相继在一些国家电网投入运行,并展示了它的优越性。
磁控电抗器(MCR)型SVC(简称MSVC)装置利用直流励磁原理,采用小截面磁饱和技术通过调节磁控电抗器的磁饱和度,改变其输出的感性无功功率,中和电容器组的容性无功功率,实现无功功率的连续可调。
一、MSVC装置的基本结构:MSVC装置由补偿(滤波)支路和磁控电抗器(MCR)并联支路组成,其中补偿(滤波)支路经隔离开关固定接于母线,通过调节磁控电抗器的输出容量(感性无功功率)实现无功的柔性补偿。
因与其它各类补偿装置的主要区别在于磁控电抗器,故下面集中对磁控电抗器(MCR)作介绍。
图1动态无功补偿装置(MSVC)一次系统图二、磁控电抗器(MCR)2.1基本工作原理磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁芯,改变铁芯磁导率,实现电抗值的连续可调,其内部为全静态结构,无运动部件,工作可靠性高。
电机系统肖能掘进机SV G动态无功补偿器的原理及仿真金江张胜达(煤科总院山西煤机装备有限公司,太原030006)摘要本文介绍了掘进机SV G无功补偿器的基本原理,并详细的介绍了其控制方法,最后以1140V/200kvar掘进机SV G无功补偿器进行了仿真。
关键词:SV G;直接电流控制;SV P W MT he Pri nci pl e of R oadheader St at i c V ar G e nr e t e r a nd Si m ul a t i on i n Si m ul i nkJi n J i ang Z ha ng Shen gda(Shanxi C oal M i ni ng M ac hi ner y C o.,Lt d of C hi na C oal R es ear ch I nst i t ut e,Tai yua n030006)A bs t r act T he Pap er i nt r oduced t he ba si c pr i nci pl e of R oa dhead er St a t i c V ar G en r et er and C ont r olm et ho d,A T t he end,t he s i m ul at i on w i t h l140V/200k var R oa dhead er St a t i c V at G enr et er ar e show n.K ey w or ds:SV G:di r ec t c ur r e nt c ont r ol;S V PW Ml掘进机无功补偿的意义随着煤矿向高产高效的集约化方向发展,采掘设备的大型化、重型化已经成为发展的必然趋势。
掘进机械的装机容量不断上升,而矿井的特殊环境使得井下电网容量非常有限,在这种供电条件下,大功率掘进机电机的起停对电网产生很大的冲击,造成电网电压瞬时大幅跌落、功率因数下降、输电损耗增加等。
动态无功补偿投切调节器的原理
动态无功补偿投切调节器(Dynamic VAR Compensator,DVC)主要用于电力系统中的无功补偿,通过控制投切电容器的开关状态来实现。
DVC的原理如下:
1. 检测电力系统的无功功率需求,根据需求计算出需要补偿的无功功率数量。
2. 根据计算结果,控制DVC的电容器开关状态。
如果需要补
偿的无功功率较大,DVC将投入电容器,以提供无功功率;
如果需要补偿的无功功率较小或为负值,DVC将切除电容器,以吸收系统中的无功功率。
3. DVC还可以监测电力系统中的电压变化,当电压过高或过
低时,DVC可以及时作出响应,调整电容器的开关状态,以
使系统电压稳定在合适的范围内。
4. DVC还可以通过与其他系统组件的通信,实现与电力系统
的其他控制和保护功能的协调。
总而言之,动态无功补偿投切调节器通过监测电力系统的无功功率需求以及电压变化,并通过控制电容器的开关状态,实现对电力系统的动态无功补偿以及电压稳定的调节。