隧道圆环内力计算
- 格式:xlsx
- 大小:14.87 KB
- 文档页数:2
有压隧洞多采用圆形断面,内水压力常是控制衬砌断面的主要荷载。
为了充分利用围岩的弹性抗力,围岩厚度应超过三倍开挖洞径,并使衬砌与围岩紧密贴结。
欲求衬砌在某种荷载组合下的内力,只需分别计算出各种荷载单独存在时衬砌的内力,然后进行叠加。
1、均匀内水压力作用下的内力计算当围岩厚度大于3倍开挖洞径时,应考虑围岩的弹性抗力,将衬砌视为无限弹性介质中的厚壁圆管,根据衬砌和围岩接触面的径向变位相容条件,求出以内水压力p 所表示的弹性抗力P 0,而后按轴对称受力的弹性理论厚壁管公式计算衬砌的内力。
如图1所示,在内水压力p 和弹性抗力p 0作用下,按弹性理论平面变形情况,求得厚壁管管壁任意半径r 处的径向变位u 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+--+-+=0222221)21()(1)()21()1(p t t r r p t r r E r u e e μμμ (1) 取r=r e ,得衬砌外缘的径向变位u e 为 ⎥⎦⎤⎢⎣⎡--+--+-+=02221)21(111)21()1(p t t p t Er u e e μμμ (2) 式中 E ——衬砌材料的弹性模量;μ——衬砌材料的泊松比;t ——衬砌外半径与内半径之比,t=r e /r i 。
图1 衬砌在均匀内水压力作用下的应力计算图当开挖的洞壁作用有p 0时,按文克尔假定,洞壁的径向变位y=p 0/K=p 0r e /100K 0,此处,K 为岩石的弹性抗力系数,K 0为单位弹性抗力系数。
根据变形相容条件,y=u e ,整理后可得围岩的弹性抗力为p At Ap --=201 (3))21)(1()1(00μμμ-+++-=K E K E A (4)A 为弹性特征因素,式中的E 、K 0分别的kPa 和kN/m 3计;若以kg/cm 2和kg/cm 3为单位,则需将式中的E 改为0.01E 。
按弹性理论的解答,厚壁管在均匀内水压力p 和弹性抗力p 0作用下,管壁厚度内任意半径r 处的切向正应力σt 为0222221)(1)(1p t r r t p t r r e e t -+--+=σ (5) 分别令r =r i 及r =r e ,即可得到单层衬砌在均匀内水压力p 作用下内边缘切向拉应力σi和外边缘切向拉应力σe 为p At A t i -+=22σ (6)p At Ae -+=21σ (7) 因为t >1,显然σi >σe 。
文章编号:1004—5716(2002)05—94—03中图分类号:U455143 文献标识码:B 盾构隧道管片衬砌的内力分析肖龙鸽,薛文博(中铁隧道集团三处有限公司,广东乐昌512250)摘 要:结合上海市大连路越江隧道的工程特点,采用结构力学解析方法及多种计算模型进行了越江隧道盾构管片衬砌的内力计算,通过对衬砌内力的分析,为目前城市地铁区间盾构隧道管片衬砌内力计算探索出了一条计算模式。
关键词:盾构隧道;管片;衬砌;内力分析1 工程概况上海市大连路越江隧道横穿黄浦江,根据隧道所穿越土层的工程地质、水文地质条件而采用盾构法施工,衬砌采用单层装配式钢筋混凝土衬砌,衬砌外径为 11.040m,衬砌厚度δ= 55cm。
根据地质资料,浦东段沿线地基土按其岩性、时代、成因及物理力学性质差异从上至下可划分为10层,其工程地质特性如下:(1)人工填土层:以杂填土为主,部分素填土。
(2)褐黄~灰黄色粉质粘土:可塑~软塑状,中~高压缩性。
(3)灰色淤泥质粉质粘土:流塑,高压缩性。
(3—a)灰色粉质粘土:很湿~湿,中压缩性。
(4)灰色淤泥质粘土:流塑,高压缩性。
(5—1)灰色粘土:软塑状,高压缩性。
(5—2)灰色粉质粘土:可塑,中压缩性。
(6)暗绿~草黄色粘土:可塑~硬塑状,中压缩性。
(7-1)草黄色砂质粉土:湿,中密,中压缩性。
(7-2)草黄色粉细砂:湿,密实,中压缩性。
2 管片衬砌的内力分析2.1 概述地下结构设计和进行力学计算的模型和方法较多,目前主要采用荷载结构法设计模型和荷载结构法进行计算。
荷载结构法认为地层对结构的作用只是产生作用在地下结构上的荷载,以计算衬砌在荷载作用下产生的内力和变形,荷载结构法又可区分为两类:局部变形理论计算法和共同变形理论计算法。
图1为圆形衬砌常用计算方法的计算简图,其中,图1(a)表示周边承受主动荷载的自由变形圆环,对于松软地层可按自由变形圆环计算内力,图1(b)所示的圆环在侧向作用有弹性抗力,在坚硬地层中圆形衬砌结构内力计算必须考虑弹性抗力的作用。
第一章绪论1. 隧道:构筑在离地面一定深度的岩层或土层中用作通到底建筑物2. 隧道分类:按周围介质分:岩石隧道和土层隧道;按用途不同分:交通隧道和市政工程隧道3. 公路隧道:穿越公路路线障碍物的交通隧道4. 公路隧道的主要特点:(1)断面形状复杂:宽而扁,高:宽<=1.; 常有特殊构造:岔洞,紧急停车带回车区,以及双连拱隧道,小间距隧道,双层隧道;(2) 荷载形式单一:主要是围岩压力,方向不会改变;(3)附属设施多:通风,照明,交通信号,消防,监控设施5. 断面几何形状:考虑功能和经济的两方面:马蹄形,圆形(盾构开挖),拱形(山岭隧道),双连拱(浅埋土层,地形受限),矩形(沉管法,城市隧道)6.. 衬砌的结构类型分为四类:整体式砼衬砌;装配式衬砌;锚喷支护衬砌;复合式衬砌7.. 整体式砼衬砌又可分为:半衬砌;厚拱薄墙衬砌;直墙拱形衬砌;曲墙拱形衬砌(1)半衬砌:适用于岩石较坚硬并且整体稳定或基本稳定的围岩; 对于侧压力很大的较软岩层或土层,为避免直墙承受较大压力,采用落地拱(2)厚拱薄衬砌:适用于水平压力很小的情况,拱脚较厚,边墙较薄(3) 直墙拱形衬砌:铁路隧道常用,竖向压力较大,水平侧压力不大(4)曲墙拱形衬砌:地质条件差,岩石破碎松散和易于坍塌地段8. 装配式衬砌:用于盾构法施工,深埋法施工,TBM 法施工9. 锚喷支护衬砌:喷混凝土和加锚杆两方法的统称。
常用方法:喷混凝土,钢筋网喷混凝土,锚杆喷混凝土,钢筋网锚杆混凝土,钢纤维喷混凝土;特点:有很强时效性,新奥法和挪威法10. 复合式衬砌:主要应用于含水量较多的地段,外层为锚喷支护,中间有一层防水层,内层多为整体式衬砌,新奥法多采用11. 初始地应力场由两种力系组成:自重应力分量;构造应力分量影响因素:一类是和地壳的运动,地下水的变化以及人类活动等因素有关12. 构造应力场:区域性明显,测试方法:解析反演法,原位测试法(1)地质的构造过程不公改变了地质的重力应力场,而且还有一总分残余在岩体内(2) 构造应力场在一定深度内普遍存在且多为水平分量(3)构造应力具有明显的区域性和时间性13. 作用在隧道结构上的荷载分为三类:主要荷载(就是长期作用的荷载,包括地层压力,围岩弹性抗力,结构自重力,回填岩土重力,地下静水压力及使用荷载); 附加荷载(指非经常作用的荷载,包括施工荷载,灌浆压力,局部落石以及有温度变化或砼收缩引起的温度应力和收缩用力) ;特殊荷载(一些偶然发生的荷载,如炮弹冲击力和爆炸时产生激波压力,地震力,车祸时冲撞力)14. 形变压力: 由岩体变形所产生的挤压力;15. 松散压力: 岩体坠落、滑移、坍塌所产生的重力16. 围岩压力:形变压力和松散压力统称为围岩压力17. 影响围岩压力的因素:a岩土的重力b岩体的结构c.地下水的分布d.隧道洞室的形状和尺寸e. 初始地应力18•确定围岩压力的方法:a•现场量测b•理论估算c工程类比法19•常用的围岩分类方法:a岩石坚固系数分类法b•太沙基理论c•铁路围岩分类法d•人工岩石洞室围岩分类法e.水工隧道围岩分类法20. 隧道结构计算的任务:就是采用数学力学的方法,计算分析在隧道修筑的整个过程中 (包括竣工,运营)a.隧道围岩及衬砌的强度 b.刚度和稳定性,为隧道的设计及施工提供具体设计参数21. 隧道的计算方法可分为三大部分: a.刚体力学法b.结构力学法(荷载位移法)c.连续介质力学法(地层结构法)22. 附:19 世纪后期,砼材料与钢材料的出现,地下结构的建造于计算进入地下连续拱形框架结构阶段,而计算的理论基础为线弹性结构力学;地下连续拱形框架结构式一种超静定弹性结构系统,荷载为地层压力,优点:以结构力学原理为计算理论基础缺点:没有考虑地层对衬砌结构变形所产生的弹性抵抗力23. 如果人工考虑隧道衬砌和地层的相互作用,地下结构的计算方法仅分为结构力学方法和连续介质力学方法24. 造成隧道结构计算结果不能直接应用的主要原因:(1) 围岩的物理力学参数无法准确确定(2)隧道的荷载量级很大,无法准确给出(3) 围岩自承能力除受围岩自身条件影响外,还受施工方法、时间、支护形式、洞室几何尺寸等的影响( 4)围岩本构关系复杂和屈服性准则不完善性,使围岩自承能力无法发挥第二章隧道结构计算的结构力学法1. 在分析过程中首先要确定地层压力,然后计算衬砌在地层压力和其他荷载作用下的内力分布,最后根据内力分布对衬砌结构断面进行验算2. 荷载结构法和计算地表结构所采用的结构力学方法基本相同,主要差别是衬砌结构在变形过程中要受到周围介质的限制,分为力法与位移法3. 拱形半衬砌隧道的结构计算: ( 1)半衬砌结构可简化为弹性固定平面无铰拱(计算模型) (2)拱顶截面建立位移协调方程,由拱顶截面的位移协调方程得拱脚处的位移和转角( 3) 将拱脚位移和转角方程代入拱顶截面位移协调方程,得关于未知力X1 ,X2 的线性代数方程组,可得拱顶截面未知力( 4)各截面强度校核4. 拱形曲墙隧道的结构计算: (1)假定弹性抗力为镰刀形分布,拱形曲墙式衬砌的计算模型为墙角弹性固定而两侧受周围约束的无铰拱( 2)通过h点的变形协调条件计算弹性抗力bh(3)计算主动荷载作用下衬砌的内力(4) b h=1时衬砌的内力⑸求出最大抗力值b h(6)用叠加的方法求出衬砌内任一点的内力5. 拱形曲墙隧道的结构计算模型:竖向荷载所引起的侧墙部分的变形,将受到侧面围岩的约束,形成一个抗力区,这里假定弹性抗力为镰刀形,其量值用 3 个特征值控制:抗力上零点对一般与对称中线夹角为40°-60°;抗力下零点在拱脚处;最大抗力点h 在衬砌最大跨度处,一般在抗力区2/3 处6. 拱形直墙隧道的局部变形法:在分析拱形直墙式隧道结构时,需将拱圈与直墙分开考虑,拱圈是一个拱脚弹性固定的无铰拱,弹性抗力假定为二次抛物线分布,边墙视为弹性地基梁,全部抗力有文克勒假设确定,墙顶和拱脚弹性固结,墙脚与基岩间有较大的摩擦力,无水平位移发生,他在基岩的作用视为刚性体7•外荷载产生的位移卩hp和直墙拱的结构计算:(1)由弹性地基梁公式,计算系数卩1, 3 1,卩2, 3 2(墙顶位移)(2)由主动荷载及单位弹性抗力所产生的h点位移计算单位弹性抗力所产生的位移h b (3)由口hp和口h b求得弹性抗力b h (4)根据任一截面i处的内力表达式得拱的截面内力( 5)求出直梁的内力( 6)校核8•隧道衬砌结构计算的矩阵力法计算步骤:(1)计算[F0](2)计算[丫SX]并将其转化为[丫SX]'⑶计算[丫SP]并将其转化为[丫SP]' (4)计算[Fxx],[Fxp](5)计算赘余力{x} (6)计算衬砌单元节点{s} ( 7)计算衬砌节点位移{ S }9•隧道衬砌结结构计算的矩阵位移法计算步骤:(1)计算衬砌单元刚度位移矩阵( 2)计算链杆刚度( 3)计算墙底支座的刚度矩阵( 4)集成总体刚度矩阵,并计算各元素值( 5)消去已知位移( 6)计算节点位移( 7)计算单元节点力10•拱形直墙计算模型:拱圈是一个拱脚弹性固定的无铰拱,拱圈弹性抗力假定为二次抛物线分布,边墙视为弹性地基梁,全部抗力由文壳勒假设确定。
圆形有压隧洞结构计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本资料:1.依据规范及参考书目:《水工隧洞设计规范》(DL/T 5195-2004,以下简称《规范》)《水工混凝土结构设计规范》(SL 191-2008),以下简称《砼规》《隧洞》(中国水利水电出版社,熊启钧编著)2.计算参数:衬砌外半径r o=3.100 m;衬砌内半径r i=2.500 m隧洞衬砌内缘顶部的内水压力水头P =12.00 m,压强p =120.00 kN/m2内力计算时不考虑围岩弹性抗力的作用。
围岩垂直松动压力强度q =40.00 kN/m2围岩侧向松动压力强度e =10.00 kN/m23.材料信息:混凝土强度等级:C20轴心抗压强度标准值f ck=13.5 MPa;轴心抗拉强度标准值f tk=1.50 MPa 轴心抗压强度设计值f c=10.0 MPa;轴心抗拉强度设计值f t=1.10 MPa 混凝土弹性模量E c=2.55×104 MPa纵向受力钢筋种类:Ⅱ级钢筋强度设计值f y=310 MPa;弹性模量E s=2.0×105 MPa内外圈钢筋合力点到衬砌内、外边缘的距离a =0.050 m三、内力计算:1.均布垂直山岩压力作用的内力计算在垂直松动压力q作用下,各断面弯矩和轴力按下式计算:M =qr o r(A3α+B3)(规范表G.7)N =qr o(C3α+D3)(规范表G.7)式中α =2-r o/r =2-3.10/2.80 =0.8929n =1/[0.06416+EJ/(r3r o Kb)]b -- 计算采用的衬砌宽度,取b =1mr -- 衬砌轴线半径,r=(r o+r i)/2=2.80mJ -- 衬砌断面惯性矩,J=bh3/12J =1.0×0.603/12 =0.0180 m4K -- 围岩弹性抗力系数,K=Ko/r o=0/3.10=0kN/m3n =1/[0.06416+2.55×107×0.0180/(2.8033.10×0×1)]=0.000计算系数A3、B3、C3、D3从规范表G.8查得φ=0(洞顶)截面的弯矩M及轴向力N分别为:M =40.00×3.10×2.80×(0.16280×0.89286+0.06443)=72.84 kN·mN =40.00×3.10×(0.21220×0.89286+-0.15915)=3.76 kN 其余各截面的计算与此相同,结果见弯矩及轴向力计算结果表。