《隧道结构计算》PPT课件
- 格式:ppt
- 大小:4.00 MB
- 文档页数:102
一.基本资料惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。
围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。
考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。
求二衬内力,作出内力图,偏心距分布图。
1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。
2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。
二.荷载确定1.围岩竖向均布压力:q=0.6×0.45⨯12-S γω式中: S —围岩级别,此处S=5;γ--围岩重度,此处γ=19.2KN/3m ;ω--跨度影响系数,ω=1+i(m l -5),毛洞跨度m l =13.14+2⨯0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1⨯(13.26-5)=1.826。
所以,有:q=0.6×0.451-52⨯⨯19.2⨯1.826=151.456(kPa )此处超挖回填层重忽略不计。
2.围岩水平均布压力:e=0.4q=0.4⨯151.456=60.582(kPa ) 三.衬砌几何要素 5.3.1 衬砌几何尺寸内轮廓线半径126.12m , 8.62m r r ==内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=︒=︒; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d =此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。
外轮廓线半径:110 6.57m R r d =+= 2209.07m R r d =+=拱轴线半径:'1200.5 6.345m r r d =+= '2200.58.845m r r d =+=拱轴线各段圆弧中心角:1290,8.996942θθ=︒=︒5.3.2 半拱轴线长度S 及分段轴长S ∆分段轴线长度:'11190π 3.14 6.3459.9667027m 180180S r θ︒==⨯⨯=︒︒'2228.996942π 3.148.845 1.3888973m 180180S r θ︒==⨯⨯=︒︒半拱线长度:1211.3556000m S S S =+=将半拱轴线等分为8段,每段轴长为:11.3556 1.4194500m 88S S ∆===5.3.3 各分块接缝(截面)中心几何要素(1)与竖直轴夹角i α11'1180 1.4194518012.8177296π 6.345πS r αθ∆︒︒=∆=⨯=⨯=︒ 21112.817729612.817729625.6354592ααθ=+∆=︒+︒=︒ 32125.635459212.817729638.4531888ααθ=+∆=︒+︒=︒43138.453188812.817729651.2709184ααθ=+∆=︒+︒=︒54151.270918412.817729664.0886480ααθ=+∆=︒+︒=︒ 65164.088648012.817729676.9063776ααθ=+∆=︒+︒=︒ 76176.906377612.817729689.7241072ααθ=+∆=︒+︒=︒2'2180 1.419451809.2748552π8.845πS r θ∆︒︒∆=⨯=⨯=︒ 87289.72410729.194855298.996942ααθ=+∆=︒+︒=︒另一方面,8129012.817729698.996942αθθ=+=︒+︒=︒ 角度闭合差Δ≈0。
一、衬砌1衬砌形式整体式模筑混凝土衬砌—就地灌筑混凝土衬砌装配式衬砌—将衬砌分成若干块构件,这些构件在现场或工厂预制,然后运到坑道内用机械将它们拼装成一环接着一环的衬砌。
喷锚支护—喷射混凝土和加设锚杆、金属网和钢架共同支护复合式衬砌—外衬和内衬两层,所以也叫它为“双层衬砌”2衬砌的适用条件整体式模筑混凝土衬砌—对地质条件的适用性较强,易于按需要成型,整体性好,抗渗性强,并适用于多种施工条件,如可用木模板、钢模板或衬砌模板台车等装配式衬砌—拼装成环后立即受力,便于机械化施工,改善劳动条件,节省劳力。
目前多在使用盾构法施工的城市地下铁道中采用。
喷锚支护—喷锚支护是目前常用的一种围岩支护手段,适用于各种围岩地质条件,但是若作为永久衬砌,一般考虑在Ⅰ、Ⅱ级等围岩良好、完整、稳定的地段中采用。
复合式衬砌—是一种较为合理的结构形式,适用于多种围岩地质条件,有其广阔的发展前途。
3衬砌的一般结构要求混凝土与钢筋混凝土隧道工程所用的混凝土强度等级不应低于C15洞门用混凝土整体灌筑,其强度不应低于C20强度等级对于衬砌段不应低于C20,对于洞门不应低于C15片石混凝土在岩层较好地段的边墙衬砌,可采用片石混凝土(片石的掺量不应超过总体积的20%)。
当起拱线以上1m以外部位有超挖时,其超挖部分也可用片石混凝土进行回填。
选用的石料要坚硬,其强度等级不应低于MU40,有裂隙和易风化的石料不应采用。
石料和混凝土预制块石料或混凝土预制块用强度等级不低于M10的水泥砂浆砌筑衬砌。
石料的强度等级不应低于MU60,并且有裂隙和易风化的石料不应采用。
混凝土预制块强度等级不应低于MU20。
喷射混凝土喷射混凝土的强度等级采用C20,所用的水泥应优先采用硅酸盐水泥或普通硅酸盐水泥喷射钢纤维混凝土中的钢纤维宜采用普通碳素钢制成,等效直径为0.3~0.5㎜的方形或圆形断面,长度宜为20~25㎜锚杆锚杆的杆体宜用20 MnSi钢筋,也可采用Q235钢筋;缝管式锚杆宜采用16 MnSi钢管,亦可采用Q235钢管;锚杆直径宜为18~22㎜,垫板可采用Q235钢板。
隧道结构体系的计算模型与方法王丽琴主讲第五章隧道结构体系设计原理与方法第一节概述第二节围岩的二次应力场和位移场第三节隧道围岩与支护结构的共同作用第四节支护结构的设计原则第五节围岩压力第六节隧道结构体系的计算模型第七节隧道结构体系设计计算方法王丽琴主讲第六节隧道结构体系的计算模型一、计算模型的建立原则二、常用的计算模型王丽琴主讲一、计算模型的建立原则地下结构的力学模型必须符合下列条件:与实际工作状态一致能反映围岩的实际状态以及与支护结构的接触状态荷载假定应与在修建隧道过中(各作业阶段)中荷载发生的情况一致算出的应力状态要与经过长时间使用的结构所发生的应力变化和破坏现象一致材料性质和数学表达要等价。
王丽琴主讲目前,地下结构设计方法可以归纳为以下四种设计模型:①工程类比模型:参照过去隧道工程实践经验进行设计②监控量测模型:以现场量测和实验室试验为主的实用设计方法例如通过洞周位移和衬砌应力的量测不断优化支护参数③荷载结构模型:即作用与反作用模型例如假定弹性抗力法、弹性地基梁法和弹性链杆法④地层结构模型:即连续介质模型包括解析法、数值法、特征曲线法和剪切滑移破坏法。
数值计算法目前主要是有限单元法。
王丽琴主讲第一类模型:以支护结构作为承载主体围岩作为荷载主要来源同时考虑其对支护结构的变形起约束作用传统结构力学模型第二类模型:与上述模型相反是以围岩为承载主体支护结构则约束和限制围岩向隧道内变形。
现代岩体力学模型二、常用的计算模型从各国的地下结构设计实践看目前在设计隧道的结构体系时主要采用两类计算模型:王丽琴主讲第七节隧道结构体系设计计算方法一、结构力学方法二、岩体力学方法三、以围岩分级为基础的经验设计方法四、监控设计方法(信息化设计和施工)王丽琴主讲这一类计算模型主要适用于围岩因过分变形而发生松弛和崩塌支护结构主动承担围岩“松动”压力的情况。
属于这一类模型的计算方法有:弹性连续框架(含拱形)法假定抗力法和弹性地基梁(含曲梁和圆环)法等。
一、计算原则和依据1、采用ANSYS有限元通用程序(注:该程序是目前唯一通过ISO9001国际认证的有限元计算分析程序)对竹篱晒网隧道进行结构受力及变形分析。
2、采用地层-结构模型对暗挖隧道的受力和变形进行分析。
3、分析对象为纵向宽1m的隧道结构和地层。
4、依据《竹篱晒网隧道施工图设计文件》、《公路路隧道设计规范》等建立计算模型。
二、计算内容对竹篱晒网隧道的计算,分别取洞口段、洞身段中V、IV、III级围岩进行计算,取断面计算如下:1、出洞段KY2+760(V级围岩,采用双侧壁法施工);2、洞身段KY2+480(IV级围岩,采用环形台阶法施工);3、洞身段KY2+500(III级围岩,采用台阶法施工)。
三、结构计算模型、荷载1、计算模型采用隧道与地层共同作用的地层-结构模式,模拟分析施工过程地层和结构的受力及变形特点。
计算模型所取范围是:水平方向取隧道两侧3倍洞跨,而竖直方向,仰拱以下地层,以洞跨的3倍为限,即从仰拱至地层下3倍洞跨深度范围,隧道拱顶以上地层:V级围岩取至地面,IV 、III 级围岩根据计算高度取值。
计算中地层及初期支护(初衬喷砼及钢架除外)采用了DP 材料的弹塑性实体单元模拟,而初衬(钢架喷砼)、二次衬砌采用弹性梁模拟,为使点和点之间位移协调,初衬和地层之间用约束方程联系、初衬和二衬之间用只传递轴向压力的链杆连接。
ANSYS 程序中,采用单元的“生”(KILL )、“死”(ALIVE )来模拟衬砌和临时支撑的施作和拆除过程,当单元“死”时,受力体系不受其影响,“死”单元的应力、应变不计(即内力为0),而后被激“活”的单元不计以前自身应变,也就是说,“活”的单元只对以后应力发生变化时产生作用。
2、计算荷载模拟开挖过程中,先计算初始应力,每开挖一步形成“毛洞”时,释放一部分初始应力,施作支护时释放余下的初始应力。
有限元计算中,采用莫尔—库仑屈服准则对结构的开挖过程进行弹塑性分析。
也即采用 Drucker-Prager (DP )模型计算结构非线形的变形特性。