2018年高考数学专题突破练5立体几何的综合问题试题理
- 格式:doc
- 大小:400.00 KB
- 文档页数:14
限时规范训练十四 空间向量与立体几何限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.(2017·山东青岛模拟)已知正三棱柱ABC A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( )A.64B.104 C.22D.32解析:选A.如图所示建立空间直角坐标系,设正三棱柱的棱长为2,则O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,故sin θ=|AB 1→·BO →||AB 1→||BO →|=|-3|22×3=64.2.在直三棱柱ABC A 1B 1C 1中,AA 1=2,二面角B AA 1C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B. 6C. 5D .2解析:选A.由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1→·BC 1→=(BB 1→-BA →)·(BB 1→+BC →)=4,|AB 1→|=22,|BC 1→|=4,cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=24, 故tan 〈AB 1→,BC 1→〉=7.3.如图所示,在三棱锥P ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB=4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为( )A .-3010B .-305C.305 D.3010解析:选D.因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC . 过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,-2,0). 因为D 为PB 的中点,所以D (2,0,1). 故CP →=(-4,2,2),AD →=(2,0,1).所以cos 〈AD →,CP →〉=AD →·CP →|AD →|×|CP →|=-65×26=-3010.设异面直线PC ,AD 所成的角为θ, 则cos θ=|cos 〈AD →,CP →〉|=3010.4.(2017·山西四市联考)在空间直角坐标系O xyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1解析:选D.如图所示,△ABC 为三棱锥在坐标平面xOy 上的正投影,所以S 1=12×2×2=2.三棱锥在坐标平面yOz 上的正投影与△DEF (E ,F 分别为OA ,BC 的中点)全等,所以S 2=12×2×2= 2.三棱锥在坐标平面xOz 上的正投影与△DGH (G ,H 分别为AB ,OC 的中点)全等,所以S 3=12×2×2= 2.所以S 2=S 3且S 1≠S 3,故选D.5.如图,点E ,F 分别是正方体ABCD A 1B 1C 1D 1的棱AB ,AA 1的中点,点M ,N 分别是线段D 1E 与C 1F 上的点,则与平面ABCD 垂直的直线MN 的条数有( )A .0条B .1条C .2条D .无数条解析:选B.假设存在满足条件的直线MN ,如图,建立空间直角坐标系,不妨设正方体的棱长为2,则D 1(2,0,2),E (1,2,0),设M (x ,y ,z ),D 1M →=mD 1E →(0<m <1),∴(x -2,y ,z -2)=m (-1,2,-2),x =2-m ,y =2m ,z =2-2m ,∴M (2-m,2m,2-2m ),同理,若设C 1N →=nC 1F →(0<n<1),可得N (2n,2n,2-n ),MN →=(m +2n -2,2n -2m,2m -n ).又∵MN ⊥平面ABCD .∴⎩⎪⎨⎪⎧m +2n -2=0,2n -2m =0,解得⎩⎪⎨⎪⎧m =23,n =23,即存在满足条件的直线MN ,且只有一条.6.(2017·安徽合肥模拟)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,点P 在线段AD 1上运动,给出以下四个命题:①异面直线C 1P 和CB 1所成的角为定值; ②二面角P BC 1D 的大小为定值; ③三棱锥D BPC 1的体积为定值;④直线CP 与平面ABC 1D 1所成的角为定值. 其中真命题的个数为( ) A .1 B .2 C .3D .4解析:选C.如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,1,0),B (1,1,0),C 1(0,1,1),B 1(1,1,1). 设P (t,0,1-t ),0≤t ≤1.①中,C 1P →=(t ,-1,-t ),CB 1→=(1,0,1),因为C 1P →·CB 1→=0,所以C 1P ⊥CB 1,故①对;②中,因为D 1A ∥C 1B ,所以平面PBC 1即平面ABC 1D 1,两平面都固定,所以其二面角为定值,故②对;③中,因为点P 到直线BC 1的距离AB =1,所以V 三棱锥D BPC 1=13×⎝ ⎛⎭⎪⎫12×BC 1×AB ×12CB 1=16,故③对;④中,CP →=(t ,-1,1-t ),易知平面ABC 1D 1的一个法向量为CB 1→=(1,0,1),所以cos 〈CP →,CB 1→〉不是定值,故④错误.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·江苏南京三模)如图,三棱锥A BCD 的棱长全相等,点E 为AD 的中点,则直线CE 与BD 所成角的余弦值为________.解析:设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →)=⎝ ⎛⎭⎪⎫12AD →-AC →·(AD →-AB →)=12AD →2-12AD →·AB →-AC →·AD →+AC →·AB →=12-12cos 60°-cos 60°+cos 60°=14. ∴cos〈CE →,BD →〉=CE →·BD→|CE →||BD →|=1432=36. 答案:368.在直三棱柱ABC A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,点M 为AA 1的中点,点P 为BM的中点,Q 在线段CA 1上,且A 1Q =3QC ,则异面直线PQ 与AC 所成角的正弦值为________.解析:由题意,以C 为原点,以AC 边所在直线为x 轴,以BC 边所在直线为y 轴,以CC 1边所在直线为z 轴建立空间直角坐标系,如图所示.设棱柱的高为a ,由∠BAC =π3,AC =4,得BC =43,所以A (4,0,0),B (0,43,0),C (0,0,0),A 1(4,0,a ),M ⎝⎛⎭⎪⎫4,0,a 2,P ⎝⎛⎭⎪⎫2,23,a 4,Q ⎝ ⎛⎭⎪⎫1,0,a 4.所以QP →=(1,23,0),CA →=(4,0,0).设异面直线QP 与CA 所成的角为θ,所以|cos θ|=|QP →·CA →||QP →|·|CA →|=4413=1313.由sin 2θ+cos 2θ=1得,sin 2θ=1213,所以sin θ=±23913,因为异面直线所成角的正弦值为正,所以sin θ=23913即为所求.答案:239139.(2017·河北衡水模拟)如图,在正方体ABCD A 1B 1C 1D 1中,点M, N 分别在AB 1,BC 1上,且AM =13AB 1,BN =13BC 1,则下列结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④BD 1⊥MN .其中正确命题的序号是________.(写出所有正确命题的序号)解析:如图,建立以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.令正方体的棱长为3,可得D (0,0,0),A (0,3,0),A 1(0,3,3),C 1(3,0,3),D 1(0,0,3),B (3,3,0),M (1,3,1),N (3,2,1).①中,AA 1→=(0,0,3),MN →=(2,-1,0),因为AA 1→·MN →=0,所以①正确;②中,A 1C 1→=(3,-3,0),与MN →不成线性关系,所以②错;③中,易知平面A 1B 1C 1D 1的一个法向量为DD 1→=(0,0,3),而DD 1→·MN →=0,且MN ⊄平面A 1B 1C 1D 1,所以③正确;④中,BD 1→=(-3,-3,3),因为BD 1→·MN →≠0,所以④错误.答案:①③三、解答题(本题共3小题,每小题12分,共36分)10.(2017·高考全国卷Ⅱ)如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为45°,求二面角M AB D 的余弦值. 解:(1)证明:取PA 中点F ,连接EF ,BF ,CE . ∵E ,F 为PD ,PA 中点,∴EF 为△PAD 的中位线, ∴EF ═∥12AD .又∵∠BAD =∠ABC =90°,∴BC ∥AD . 又∵AB =BC =12AD ,∴BC ═∥12AD ,∴EF ═∥BC .∴四边形BCEF 为平行四边形,∴CE ∥BF . 又∵BF ⊂面PAB ,∴CE ∥面PAB .(2)以AD 中点O 为原点,如图建立空间直角坐标系.设AB =BC =1,则O (0,0,0),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,3).M 在底面ABCD 上的投影为M ′,∴MM ′⊥BM ′.又BM 与底面ABCD 所成角为45°,∴∠MBM ′=45°,∴△MBM ′为等腰直角三角形. ∵△POC 为直角三角形,且|OP ||OC |=3,∴∠PCO =60°. 设|MM ′|=a ,|CM ′|=33a ,|OM ′|=1-33a . ∴M ′⎝ ⎛⎭⎪⎫1-33a ,0,0.BM ′→=⎝ ⎛⎭⎪⎫-33a ,1,0,|BM ′|=⎝ ⎛⎭⎪⎫33a 2+12+02=13a 2+1=a ⇒a =62. ∴|OM ′|=1-33a =1-22. ∴M ′⎝ ⎛⎭⎪⎫1-22,0,0,M ⎝⎛⎭⎪⎫1-22,0,62 AM →=⎝ ⎛⎭⎪⎫1-22,1,62,AB →=(1,0,0).设平面ABM 的法向量m =(0,y 1,z 1).y 1+62z 1=0,∴m =(0,-6,2) AD →=(0,2,0),AB →=(1,0,0).设平面ABD 的法向量为n =(0,0,z 2),n =(0,0,1).∴cos〈m ,n 〉=m·n |m ||n |=210×1=21010=105.∴二面角M AB D 的余弦值为105. 11.如图所示的几何体中,ABC A 1B 1C 1为三棱柱,且AA 1⊥平面ABC ,四边形ABCD 为平行四边形,AD =2CD ,∠ADC =60°.(1)若AA 1=AC ,求证:AC 1⊥平面A 1B 1CD .(2)若CD =2,AA 1=λAC ,二面角C A 1D C 1的余弦值为24,求三棱锥C 1A 1CD 的体积. 解:(1)证明:若AA 1=AC ,则四边形ACC 1A 1为正方形, 则AC 1⊥A 1C ,因为AD =2CD ,∠ADC =60°, 所以△ACD 为直角三角形,则AC ⊥CD , 因为AA 1⊥平面ABC ,所以AA 1⊥CD , 又AA 1∩AC =A ,所以CD ⊥平面ACC 1A 1,则CD ⊥AC 1, 因为A 1C ∩CD =C ,所以AC 1⊥平面A 1B 1CD . (2)若CD =2,因为∠ADC =60°,所以AC =23,则AA 1=λAC =23λ,建立以C 为坐标原点,CD ,CA ,CC 1分别为x ,y ,z 轴的空间直角坐标系如图所示,则C (0,0,0),D (2,0,0,),A (0,23,0),C 1(0,0,23λ),A 1(0,23,23λ). 则A 1D →=(2,-23,-23λ),CD →=(2,0,0),C 1A 1→=(0,23,0). 设平面CA 1D 的一个法向量为m =(x ,y ,z ). 则m ·A 1D →=2x -23y -23λz =0,m ·CD →=2x =0, 则x =0,y =-λz ,令z =1,则y =-λ,则m =(0,-λ,1). 设平面A 1DC 1的一个法向量为n =(x 1,y 1,z 1),n ·A 1D →=2x 1-23y 1-23λz 1=0, n ·C 1A 1→=23y 1=0,则y 1=0,2x 1-23λz 1=0,令z 1=1,则x 1=3λ, 则n =(3λ,0,1), 因为二面角C A 1D C 1的余弦值为24. 所以cos 〈m ,n 〉=m·n |m |·|n |=11+λ2·1+3λ2=24. 即(1+λ2)(1+3λ2)=8,得λ=1,即AA 1=AC , 则三棱锥C 1A 1CD 的体积V =VD A 1C 1C =13CD ·12AC ·AA 1=13×2×12×23×23=4. 12.(2017·浙江宁波模拟)如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E A 1B C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB的值;若不存在,说明理由.解析:(1)证明:∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC . 又∵AD 1⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE , ∴DC ⊥A 1E .又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE .(2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴BA 1→=(-2,0,2),BC →=(2,23,0),平面A 1BE 的一个法向量为n =(0,1,0). 设平面A 1BC 的法向量为m =(x ,y ,z ), 由BA 1→·m =0,BC →·m =0, 得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(-3,1,-3),∴cos〈m ,n 〉=m·n |m |·|n |=17×1=77.由图,得二面角E A 1B C 为钝二面角,∴二面角E A 1B C 的余弦值为-77. (3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t,0,0)(0≤t ≤2),则A 1P →=(t,0,-2),A 1D →=(0,23,-2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由⎩⎨⎧A 1D →·p =0,A 1P →·p =0,得⎩⎨⎧ 23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝ ⎛⎭⎪⎫2,t 3,t . ∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23-t3+3t =0,解得t =-3.∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .。
2018届高三数学立体几何测试题(有答案)
5 c 2018届高三数学末综合测试题(14)立体几何
一、选择题本大题共12小题,每小题5分,共60分.
1 .建立坐标系用斜二测画法画正△ABc的直观图,其中直观图不是全等三角形的一组是( )
解析由直观图的画法知选项c中两三角形的直观图其长度已不相等
答案c
2.已知几何体的三视图(如下图),若图中圆的半径为1,等腰三角形的腰为3,则该几何体的表面积为( )
A.4π B. 3π c.5π D.6π
解析由三视图知,该几何体为一个圆锥与一个半球的组合体,而圆锥的侧面积为π×1×3=3π,半球的表面积为2π×12=2π,∴该几何体的表面积为3π+2π=5π
答案c
3.已知a,b,c,d是空间中的四条直线,若a⊥c,b⊥c,a⊥d,b⊥d,那么( )
A.a∥b,且c∥d
B.a,b,c,d中任意两条都有可能平行
c.a∥b或c∥d
D.a,b,c,d中至多有两条平行
解析如图,作一长方体,从长方体中观察知c选项正确
答案c
4.设α、β、γ为平面,、n、l为直线,则⊥β的一个充分条是( )
A.α⊥β,α∩β=l,⊥l B.α∩γ=,α⊥γ,β⊥γ
c.α⊥γ,β⊥γ,⊥α D.n⊥α,n⊥β,⊥α。
【简介】1.立体几何是高考的重要内容,为解答题的必考题型.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).【2015新课标1】如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值【答案】在直角梯形BDFE 中,由BD =2,BE DF =2可得EF =2,∴222EG FG EF +=,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角.【2015新课标2】如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F==.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.【答案】(Ⅰ)详见解析;【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角.【2016新课标1】如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析;(II )【解析】试题分析:(I )证明ΑF ⊥平面ΕFDC ,结合F A ⊂平面ΑΒΕF ,可得平面ΑΒΕF ⊥平面ΕFDC .(II )建立空间坐标系,利用向量求解.试题解析:(I )由已知可得ΑF DF ⊥,ΑF FE ⊥,所以ΑF ⊥平面ΕFDC . 又F A ⊂平面ΑΒΕF ,故平面ΑΒΕF ⊥平面ΕFDC .(II )过D 作DG ΕF ⊥,垂足为G ,由(I )知DG ⊥平面ΑΒΕF .以G 为坐标原点,GF 的方向为x 轴正方向,GF为单位长,建立如图所示的空间直角坐标系G xyz -.由(I )知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =,3DG =,可()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//AB EF ,所以//AB 平面EFDC .又平面ABCD 平面EFDC DC =,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以C ΕF ∠为二面角C BE F --的平面角,60C ΕF ∠= .从而可得(C -.所以(ΕC = ,()0,4,0ΕΒ= ,(3,ΑC =-- ,()4,0,0ΑΒ=-.设(),,x y z =n 是平面ΒC Ε的法向量,则【考点】垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量法解决. 【2016新课标2】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF交BD 于点H . 将△DEF 沿EF 折到△D EF '的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;.故D H OH '⊥.又D H EF '⊥,而OH EF H = , 所以D H ABCD '⊥平面.(Ⅱ)如图,以H 为坐标原点,HF的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,1,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC = ,()3,1,3AD '=【考点】线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 【2016新课标3】如图,四棱锥P−ABC 中,P A ⊥底面ABCD ,AD ∥BC ,AB=AD=AC =3,P A=BC =4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面P AB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(I )详见解析;(II . 【解析】试题分析:(I )取BP 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT ,由此结合线面平行的判定定理可证;(II )以A 为坐标原点,AE的方向为x 轴正方向,建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 的法向量的夹角的余弦值来求解AN 与平面PMN 所成角的正弦值.试题解析:(I )由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ……3分 又BC AD //,故=TN AM ∥,四边形AMNT 为平行四边形,于是MN AT . 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB . ……6分设(,,)x y z =n 为平面PMN 的一个法向量,则0,0,PM PN ⎧⋅=⎪⎨⋅=⎪⎩n n即240,20,y z x y z -=⎧+-= ……10分 可取(0,2,1)=n .于是|||cos ,|||||AN AN AN ⋅==n n n ……12分【考点】空间线面间的平行关系,空间向量法求线面角.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.【2017新课标1】如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值.由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB为单位长,建立如图所示的空间直角坐标系F xyz -.【2017新课标2】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.【答案】(1)证明略;(2【考点】判定线面平行、面面角的向量求法【名师点睛】(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等,故有|cos θ|=|cos<m,n>|=m nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【2017新课标3】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.【答案】(1)证明略;(2)7【考点】二面角的平面角;二面角的向量求法【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,m n 互补或相等,故有cos cos ,||θ=⋅=m m n nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【3年高考试题比较】全国高考命题的一个显著变化是,由知识立意转为能力立意,往往遵循大纲又不拘泥于大纲.高考在考查空间想象能力的同时又考查空间想象能力、逻缉思维能力、推理论证能力、运算能力和分析问题以及解决问题的能力.通过比较近三年的高考试题,可发现,立体几何一般有两问,第一问均为考查线面的位置关系,平行和垂直均有涉及;第二问主要考查角的运算,异面所成角,线面角,二面角都有考查,利用空间直角坐标系计算的需要先证明再建系,对于空间位置关系要求较高.【必备基础知识融合】1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.3.(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.4.空间点、直线、平面之间的位置关系5.平行公理(平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 6.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). (2)范围:⎝⎛⎦⎤0,π2.7.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理8.(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理9.(1)a ⊥α,b ⊥α⇒a ∥b . (2)a ⊥α,a ⊥β⇒α∥β.10.直线与平面垂直 (1)直线和平面垂直的定义如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理11.(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理12.(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 13.空间位置关系的向量表示14.设a ,b 分别是两异面直线l 1,l 2的方向向量,则15.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. 16.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).【解题方法规律技巧】典例1:在如图所示的几何体中,四边形ABCD 为正方形, ABE ∆为直角三角形, 90BAE ∠= ,且AD AE ⊥.(1)证明:平面AEC ⊥平面BED ;(2)若AB=2AE ,求异面直线BE 与AC 所成角的余弦值.【答案】(1)详见解析;(2.所以DB ⊥平面AEC ,BD a 面BED 故有平面AEC ⊥平面BED.【规律方法】(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. (2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角. ②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.典例2:如图,在长方体1111ABCD A BC D -中, 1,2,,AB AD E F ==分别为1,AD AA 的中点, Q 是BC 上一个动点,且(0)BQ QC λλ=>.(1)当1λ=时,求证:平面//BEF 平面1A DQ ;(2)是否存在λ,使得BD FQ ⊥?若存在,请求出λ的值;若不存在,请说明理由. 【答案】(1)详见解析(2)13λ=(2)连接,AQ BD 与FQ ,因为1A A ⊥平面,ABCD BD ⊂平面ABCD ,所以1A A BD ⊥.若1,,BD FQ A A FQ ⊥⊂平面1A AQ ,所以BD ⊥平面1A AQ . 因为AQ ⊂平面1A AQ ,所以AQ BD ⊥.在矩形ABCD 中,由AQ BD ⊥,得~AQB DBA ∆∆,所以, 2AB AD BQ =⋅.【规律方法】(1)判断或证明线面平行的常用方法有: ①利用反证法(线面平行的定义);②利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); ③利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); ④利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线. (3)判定面面平行的主要方法 ①利用面面平行的判定定理.②线面垂直的性质(垂直于同一直线的两平面平行). (2)面面平行的性质定理①两平面平行,则一个平面内的直线平行于另一平面. ②若一平面与两平行平面相交,则交线平行. (4)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).典例3:如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB=BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.典例4:如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .【规律方法】 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.典例5:如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2.求: (1)△PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.解 (1)因为PA ⊥底面ABCD ,CD ⊂平面ABCD , 所以PA ⊥CD .又AD ⊥CD ,PA ∩AD =A , 所以CD ⊥平面PAD ,又PD ⊂平面PAD ,从而CD ⊥PD .因为PD =22+(22)2=23,CD =2, 所以△PCD 的面积为12×2×23=2 3.图1图2法二 如图2,建立空间直角坐标系,则B (2,0,0),C (2,22,0), E (1,2,1),AE →=(1, 2,1),BC →=(0,22,0). 设AE →与BC →的夹角为θ,则cos θ=AE →·BC →|AE →||BC →|=42×22=22,所以θ=π4.由此可知,异面直线BC 与AE 所成的角的大小是π4.【规律方法】(1)利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解. (2)两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.典例6:如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为等腰直角三角形,AB =AC =1,BB 1=2,∠ABB 1=60°. (1)证明:AB ⊥B 1C ;(2)若B 1C =2,求AC 1与平面BCB 1所成角的正弦值.∴AB⊥平面AB1C.又B1C⊂平面AB1C,∴AB⊥B1C.【规律方法】利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.典例7:如图,在三棱柱ABC -A 1B 1C 1中,B 1B =B 1A =AB =BC ,∠B 1BC =90°,D 为AC 的中点,AB ⊥B 1D . (1)求证:平面ABB 1A 1⊥平面ABC ;(2)求直线B 1D 与平面ACC 1A 1所成角的正弦值; (3)求二面角B -B 1D -C 的余弦值.(2)解 由(1)知,OB ,OD ,OB 1两两垂直.②以O 为坐标原点,OB →的方向为x 轴的方向,|OB →|为单位长度1,建立如图所示的空间直角坐标系O -xyz . 由题设知B 1(0,0,3),D (0,1,0), A (-1,0,0),C (1,2,0),C 1(0,2,3).则B 1D →=(0,1,-3),AC →=(2,2,0),CC 1→=(-1,0,3).设平面ACC 1A 1的一个法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧m ·AC →=0,m ·CC 1→=0,得⎩⎨⎧x +y =0,-x +3z =0,取m =(3,-3,1).∴cos 〈B 1D →,m 〉=B 1D →·m |B 1D →||m |=0×3+1×(-3)+(-3)×102+12+(-3)2×(3)2+(-3)2+12=-217, ∴直线B 1D 与平面ACC 1A 1所成角的正弦值为217.③ (3)解 由题设知B (1,0,0),则BD →=(-1,1,0),B 1D →=(0,1,-3),DC →=(1,1,0). 设平面BB 1D 的一个法向量为n 1=(x 1,y 1,z 1),则由 ⎩⎪⎨⎪⎧BD →·n 1=0,B 1D →·n 1=0,得⎩⎨⎧-x 1+y 1=0,y 1-3z 1=0,可取n 1=(3,3,1). 同理可得平面B 1DC 的一个法向量为n 2=(-3,3,1), ∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=3×(-3)+3×3+1×1(3)2+(3)2+12×(-3)2+(3)2+12=17. ∴二面角B -B 1D -C 的余弦值为17.④【规律方法】(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(3)利用向量计算二面角大小的常用方法:①找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.②找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.易错警示 对于①:用线面垂直的判定定理易忽视面内两直线相交; 对于②:建立空间直角坐标系,若垂直关系不明确时,应先给出证明;对于③:线面角θ的正弦sin θ=|cos 〈B 1D →,m 〉|,易误认为cos θ=|cos 〈B 1D →,m 〉|;对于④:求出法向量夹角的余弦值后,不清楚二面角的余弦值取正值还是负值,确定二面角余弦值正负有两种方法:1°通过观察二面角是锐角还是钝角来确定其余弦值的正负;2°当不易观察二面角是锐角还是钝角时可判断两半平面的法向量与二面角的位置关系来确定.典例8:如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由.(3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱PA 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14. 【规律方法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.典例9:如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,A D =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.所以B ⎝⎛⎭⎫22,0,0,E ⎝⎛⎭⎫-22,0,0,A 1⎝⎛⎭⎫0,0,22,C ⎝⎛⎭⎫0,22,0, 得BC →=⎝⎛⎭⎫-22,22,0,A 1C →=⎝⎛⎭⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);【规律方法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【归纳常用万能模板】 如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.满分解答 (1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB.2分又PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O ,∴CO ⊥平面PAB ,即CO ⊥平面PDB.4分又CO ⊂平面COD ,∴平面PDB ⊥平面COD.6分(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).8分设平面BDC 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎪⎨⎪⎧2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3).10分设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.❷得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO ⊥平面PDB ”.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(2)问中求法向量n ,计算线面角正弦值sin θ.利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【易错易混温馨提醒】一、利用空间向量求解线面角时,得到是线面角的正弦值,注意不是余弦值.易错1:如图,三棱柱111ABC A B C -中, 01111160,4B A A C A A AA AC ∠=∠===,2AB =, ,P Q 分别为棱1,AA AC 的中点.(1)在平面ABC 内过点A 作//AM 平面1PQB 交BC 于点M ,并写出作图步骤,但不要求证明.(2)若侧面11ACC A ⊥侧面11ABB A ,求直线11AC与平面1PQB 所成角的正弦值.【答案】(1)见解析(2).试题解析:(1)如图,在平面11ABB A 内,过点A 作1//ANB P 交1BB 于点N ,连结BQ ,在1BBQ ∆中,作1//NH B Q 交BQ 于点H ,连结AH 并延长交BC 于点M ,则AM 为所求作直线.∵Q 为AC 的中点,∴点Q 的坐标为(0,-,∴((110,,0,AC PQ =-=- .∵011112,60A B AB B A A ==∠=,∴)1B ,∴)1PB = , 设平面1PQB 的法向量为(),,m x y z =,二、不能直接建立空间直角坐标系时,要利用条件先证再建系.易错2:如图,在三棱柱111ABC A B C -中, D 为BC 的中点, 00190,60BAC A AC ∠=∠=,12AB AC AA ===.(1)求证: 1//A B 平面1ADC ;(2)当14BC =时,求直线1B C 与平面1ADC 所成角的正弦值.【答案】(1)见解析;(2. 【解析】【试题分析】(1)依据题设条件运用直线与平面平行的判定定理进行分析推证;(2)依据题设条件建立空间直角坐标系,借助向量的有关知识与数量积公式分析求解:(1)证明:连结1AC 与1AC 相交于点E ,连结ED . ∵,D E 为中点,∴1//A B ED , 又∵1A B ⊄平面1,ADC ED ⊂平面1ADC , ∴1//A B 平面1ADC .三、在空间中点的坐标不好确定时,可以先设出来,再根据条件列方程求解确定即可.易错3:如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , 2AB BC ==, 30ACB ∠= , 1120C CB ∠= , 11BC AC ⊥,E 为AC 的中点.(1)求证: 1AC ⊥平面1C EB ; (2)求二面角1A AB C --的余弦值.【答案】(1)见解析;(2)13.则由余弦定理得2221122412AC x x x x =+-⋅=-+.22213223C E x x x x ⎛=+-⋅=++ ⎝⎭,设1AC 与1C E 交于点H ,则 1123A H AC =, 1123C H C E =,而1AC ⊥ 1C E ,则2221111A H C H AC +=.于是()()(222444122399x x x x -++++=,即260x x --=,∴3x =或2-(舍)容易求得: 1A E =22211AE AE AA +=. 故1A E AC ⊥,由面11A ACC ⊥面ABC ,则1A E ⊥面ABC ,过E 作EF AB ⊥于F ,连1A F ,则1AF E ∠为二面角1A AB C --的平面角,由平面几何知识易得2EF =, 1A F =∴111cos 3AE A FE A F ∠===.方法二:以A 点为原点, AC 为y 轴,过点A 与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系,设1A A x =, 1A AC θ∠=,则()13,0B ,()C ,()E ,()10,cos ,sin C x x θθ.∴()1,CB = , ()10,cos ,sin CC x x θθ= .由1111c o s ,2C B C C C BC C C B C C ⋅==- ,12=-,∴cos 3θ=,则1A x x ⎛⎫ ⎪ ⎪⎝⎭,10,C x x ⎛⎫ ⎪ ⎪⎝⎭,于是10,,A C x ⎛⎫= ⎪ ⎪⎝⎭ ,1,33BC x ⎛=- ⎝⎭ ,∵11AC BC ⊥ ,不妨设平面ABC 的法向量()20,0,1n =,则1212121cos ,3n n n n n n ⋅===- ,故二面角1A AB C --的余弦值为13.四、建立空间直角坐标系的原则是:让尽量多的点落在坐标轴或轴面上.易错4:如图,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将 AED DCF △,△分别沿DE ,DF 折起,使 A C ,两点重合于P .(Ⅰ)求证:平面PBD BFDE ⊥平面;(Ⅱ)求二面角P DE F --的余弦值.【答案】(Ⅰ)详见解析(Ⅱ)23所以 BE BF DE DF ==,,所以DEB DFB △≌△,所以在等腰DEF △中,O 是EF 的中点,且EF OD ⊥,因此在等腰PEF △中,EF OP ⊥,从而EF OPD ⊥平面,又EF BFDE ⊂平面,所以平面BFDE OPD ⊥平面,即平面PBD BFDE ⊥平面.…………………6分所以AF DE ⊥,于是,在翻折后的几何体中,PGF ∠为二面角P DE F --的平面角,在正方形ABCD 中,解得AG =,GF =,所以,在PGF △中,PG AG ==,GF =,1PF =, 由余弦定理得2222cos 23PG GF PF PGF PG GF +-∠==⋅, 所以,二面角P DE F --的余弦值为23.………………………………12分五、求二面角余弦值时,要正确判断二面角为钝角还是锐角.易错5:四棱锥P ABCD -中,底面ABCD 为矩形, 2AB BC PA PB ===,.侧面PAB ⊥底面ABCD .(1)证明: PC BD ⊥;(2)设BD 与平面PAD 所成的角为45︒,求二面角B PC D --的余弦值.【答案】(1)见解析(2)【试题解析】解:(1)证法一:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD以O 为原点, OP 为z 轴, OB 为y 轴,如图建立空间直角坐标系,并设PO h =,则()()))0,0,,0,1,0,,1,0P h B C D-所以)),2,0PC h BD =-=- 0PC BD ⋅= ,所以PC BD ⊥.证法二:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD ,从而BD PO ⊥ ①在矩形ABCD 中,连接CO ,设CO 与BD 交于M ,则由::CD CB BC BO =知BCD OBC ∆~∆,所以BCO CDB ∠=∠所以90BCM CBM CDB CBM ∠+∠=∠+∠=︒,故BD CO ⊥ ②由①②知BD ⊥平面PCO所以PC BD ⊥.六、多解问题的取舍.易错6:如图,在棱长为2的正方体1111ABCD A BC D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.(2)设平面EFPQ 的一个法向量为(),,n x y z = ,则 由0{0FE n FP n ⋅=⋅= ,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=- . 设平面MNPQ 的一个法向量为()',','m x y z = ,由0{0N M m N P m ⋅=⋅= ,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=-- .若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-= ,即()()2210λλλλ---+=,解得12λ=±,显然满足02λ<<.故存在12λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.【新题好题提升能力】1.如图,四棱锥P ABCD -的底面ABCD 是直角梯形, //AD BC , 36AD BC ==, PB =M 在线段AD 上,且4MD =, AD AB ⊥, PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P ABCD -的体积最大时,求平面PCM 与平面PCD 所成二面角的余弦值.【答案】(1)见解析;(2.。
2018年全国二卷立体几何(文理)详解各位铁子门,欢迎大家再次来到孙老师的鹏哥谈数学!上两节课带着大家分析了2018年全国一卷、三卷的立体几何解答题,大家有怎么样的感受?此时,你的内心有没有一点点涟漪浮起?……12分的解答题,简直是弱爆了,竟然只考……面面垂直、空间角……其实吧,所谓命题专家也就这点能耐了!……不信,你再看2018年的全国二卷之立体几何…………竟然……线面垂直、空间角……(据说葛大爷葛军退役后,江湖再无哭泣,人间宁静安详……)来看看二卷的这道题,心细的伙伴们有没有发现,我们二卷的立体几何经常考棱锥(文理科一样样),不信,你看………16年五棱锥(菱形对折)、17年四棱锥、18年三棱锥…….……额……19年要考谁?能考谁?来来来,孙老师偷偷告诉你……(哈哈,我总是低调不了,总是这么傲娇,我想总有一天会死得很惨,哈哈哈)我们先看18年二卷理科的这道题(孙老师忍不住想告诉你,18年理科这道题的题号发生了调整,干翻了解析几何老二的宝座,跑到了第20题,这是疏忽还是有意,各位童鞋们怎么看,哈哈哈!):(1)线面垂直……我不想多做解释了,实在记不起来,回头看我的前一篇帖子2018年全国一卷理科数学立体几何详解我还是忍不住想再说一遍,老师嘛,传道受业解惑也!……如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直……当然,我们需要先尝试找到边角关系,中点是突破口,等腰三角形是关键,勾股定理是核心,判定定理算锤子,于是乎……(2)空间角之线面角……还要再重复吗?no……你已成仙,再不晓得就自己挂掉吧!(童话里都是骗人的.......忽然想到了成龙大哥,金喜善.......年代久远,尔等可能不知道,历史人物......)建系……我们再看18年二卷文科的这道题:……立体几何,同样的三棱锥,长相神似理科,两个问题…………线面垂直、点面距……额,文科的特点来了,都说文科感性,理科理性,扯什么淡,有证据吗?我也会写诗,我也能抒情,原谅一个理工直男的表白吧!哈哈,我都说了些什么?嗯…….算了吧,不作践自己了!孙老师也是重情之人,脸皮薄,容易脸红,本来脸黑,一红就更黑了……(哈哈哈)点面距…..?什么东西?……垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离!那么,我们怎么解决点面距的问题?(三个方法,随便你爱那个,只要能放电就行!)(1)找点投影法求点面距(告诉你,这个基本帮不了什么你忙,所以,别多想……)(2)等体积法求点面距(学马克思的小伙伴们,注意啦!这个是需要你记住的,重要的事情孙老师历来只说一遍,这次孙老师说三遍三遍啊,什么概念?不想死就必须记下!)(3)空间向量法求点面距(哈哈哈,文科生不太能理解,专属理科生,万能的!重要性你懂得!)我们看这道题:(1)线面垂直……(2)点面距……等体积法(文科嘛!也只能这样了,局限性……)。
考点33:立体几何中的综合问题【考纲要求】1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题.2.了解向量方法在研究立体几何问题中的应用. 【命题规律】立体几何综合问题是高考的热点问题,选择、填空、解答题都有可能进行考查.预计2018年的高考对本知识的考查空间向量的应用,仍然是以简单几何体为载体.【典型高考试题变式】(一)构造函数在导数问题中的应用例1.【2015广东卷(理)】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.至多等于3 B.至多等于4 C.等于5 D.大于5【变式1】【改编例题条件】【2018届湖北省武汉市部分学校新高三起点调研】设点M 是棱长为2的正方体1111ABCD A B C D −的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )A. 255B. 22 C. 1 D. 63【变式2】【改编例题条件和问法】【2017届湖北武汉市蔡甸区汉阳一中高三第三次模拟】如图,直三棱柱111ABC A B C −中,12AA =, 1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB上的一个动点.有下列判断: ① 直线AC 与直线1C E是异面直线;②1A E一定不垂直1AC ;③ 三棱锥1E AA O−的体积为定值; ④1AE EC +的最小值为22.其中正确的个数是A. 1B. 2C. 3D. 4 (二)立体几何中的体积问题例2.【2014江西卷(理)】如图,四棱锥ABCD P −中,ABCD 为矩形,平面⊥PAD 平面ABCD . (1)求证:;PD AB ⊥(2)若,2,2,90===∠PC PB BPC问AB 为何值时,四棱锥ABCD P −的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.【变式1】【改编例题的条件】【2018届湖北省部分重点中学高三上学期第一次联考】如图(1)所示,已知四边形SBCD 是由Rt SAB ∆和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点, 21AD DC ==, 2AB =.现将SAB ∆沿AB 进行翻折,使得二面角S AB C −−的大小为90°,得到图形如图(2)所示,连接SC ,点,E F 分别在线段,SB SC 上.(Ⅰ)证明: BD AF ⊥;(Ⅱ)若三棱锥B AEC −的体积为四棱锥S ABCD −体积的25,求点E 到平面ABCD 的距离.【变式2】【改编例题的条件,依据函数零点个数证明不等式】【2018届安徽省合肥市高三调研性检测】如图,多面体ABCDEF 中, //,AD BC AB AD ⊥, FA ⊥平面,//ABCD FA DE ,且222AB AD AF BC DE =====.(Ⅰ)M 为线段EF 中点,求证: //CM 平面ABF ; (Ⅱ)求多面体ABCDEF 的体积.【数学思想】 分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的. 【处理立体几何问题注意点】用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. 【典例试题演练】1.【2018届云南省昆明一中高三第二次月考】正三棱锥S ABC −中,若三条侧棱两两垂直,且3SA =,则正三棱锥S ABC −的高为( ) A.2 B. 2 C.3 D. 32.【2017年浙江省源清中学9月高三上学期第一次月考】如图,矩形ADFE ,矩形CDFG ,正方形ABCD 两两垂直,且2AB =,若线段DE 上存在点P 使得GP BP ⊥,则边CG 长度的最小值为( )A. 4B. 43C.D. 233.【2017届云南省师范大学附属中学高三高考适应性月考】在棱长为2的正方体1111ABCD A B C D −中任取一点M ,则满足90AMB ∠>︒的概率为( )A. 24πB. 12πC. 8πD. 6π4.【2017届湖南省长沙市雅礼中学高考模拟】如图,动点P 在正方体1111ABCD A B C D −的对角线1BD 上.过点P 作垂直于平面11BB D D的直线,与正方体表面相交于,M N .设,BP x MN y ==,则函数()y f x =的图象大致是( )A. B. C. D.5.【2017届浙江省杭州市高三4月教学质量检测】在等腰直角ABC ∆中, AB AC ⊥, 2BC =, M 为BC 中点, N 为AC 中点, D 为BC 边上一个动点, ABD ∆沿AD 翻折使BD DC ⊥,点A 在面BCD上的投影为点O ,当点D 在BC 上运动时,以下说法错误的是( )A. 线段NO 为定长B. )1,2CO ⎡∈⎣C. 180AMO ADB ∠+∠>︒D. 点O 的轨迹是圆弧 6.【2017届河北省唐山市高三年级第二次模拟】正方体1111ABCD A B C D −棱长为6, O 点在棱BC 上,且2BO OC =,过O 点的直线l 与直线1AA ,11C D 分别交于M , N 两点,则MN =( )A. 313B. 95C. 14D. 217.【2018届河北省邢台市高三上学期第一次月考】在Rt ABC ∆中, AC BC ⊥, 3BC =, 5AB =,点D E 、分别在AC AB 、边上,且//DE BC ,沿着DE 将ADE ∆折起至'A DE ∆的位置,使得平面'A DE ∆⊥平面BCDE ,其中点'A 为点A 翻折后对应的点,则当四棱锥'A BCDE −的体积取得最大值时, AD 的长为__________.8.【2017届福建省泉州市高三3月质量检测】如图,一张4A 纸的长、宽分别为22,2a a . ,,,A B C D 分别是其四条边的中点.现将其沿图中虚线掀折起,使得1234,,,P P P P 四点重合为一点P ,从而得到一个多面体.关于该多面体的下列命题,正确的是__________.(写出所有正确命题的序号) ①该多面体是三棱锥; ②平面BAD ⊥平面BCD ; ③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为25a π9.【2017届辽宁省沈阳市东北育才学校高三第九次模拟】如图,在正方体1111ABCD A B C D −中,棱长为1 ,点P 为线段1A C上的动点(包含线段端点),则下列结论正确的______. ①当113AC A P =时, 1//D P 平面1BDC ;②当113AC A P =时,1AC ⊥平面1D AP;③1APD ∠的最大值为90;④1AP PD +的最小值为263.10.【2017届昭通市高三复习备考统一检测】在棱长为1的正方体1111ABCD A B C D −中, BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111A B C D 于点N ,则点N 到点A 的距离最小值是___________.11.【2017届江西师范大学附属中学高三3月月考】如右图所示,在棱长为2的正方体1111ABCD A B C D −中,E 为棱1CC 的中点,点,P Q 分别为面1111A B C D 和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.12.【2018届江西省临川第二中学高三上学期第四次月考】如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:平面;(2)若为的中点时,,求点到平面的距离.13.【2018届重庆市巴蜀中学高三9月高考适应月考】如图,梯形中,,矩形所在的平面与平面垂直,且.(Ⅰ)求证:平面平面;(Ⅱ)若为线段上一点,直线与平面所成的角为,求的最大值.。
2018高考理科数学立体几何总复习题(附答案)
5 c [A组基础演练能力提升]
一、选择题
1.(2018年临沂模拟 )如图是一个物体的三视图,则此三视图所描述物体的直观图是( )
解析由题意知应为D
答案D
2如图△A′B′c′是△ABc的直观图,那么△ABc是( )
A.等腰三角形
B.直角三角形
c.等腰直角三角形
D.钝角三角形
解析根据斜二测画法知△ABc为直角三角形,B正确.
答案 B
3.(2018年高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )
A32 B.1 c2+12 D2
解析由题意可知该正方体的放置如图所示,侧视图的方向垂直于面BDD1B1,正视图的方向垂直于面A1c1cA,且正视图是长为2,宽为1的矩形,故正视图的面积为2,因此选D
答案D
4(2018年江西九校联考)如图,三棱锥V-ABc的底面为正三角形,侧面VAc与底面垂直且VA=Vc,已知其正视图的面积为23,则其俯视图的面积为( )
A32 B33
c34 D36。
5 ⎧⎪n ⋅ ⎨ 2018 高考数学立体几何答案1.(本小题 14 分)如图,在三棱柱 ABC − A 1B 1C 1 中, CC 1 ⊥ 平面 ABC ,D ,E ,F ,G 分别为 AA 1 ,AC , A 1C 1 , BB 1 的中点,AB=BC = ,AC = AA 1 =2.(Ⅰ)求证:AC ⊥平面 BEF ;(Ⅱ)求二面角 B−CD −C 1 的余弦值;(Ⅲ)证明:直线 FG 与平面 BCD 相交.【解析】(1)在三棱柱 ABC - A 1B 1C 1 中, Q CC 1 ⊥ 平面 ABC ,∴ 四边形 A 1 ACC 1 为矩形.又 E , F 分别为 AC , A 1C 1 的中点,∴ AC ⊥ EF , Q AB = BC ,∴ AC ⊥ BE ,∴ AC ⊥ 平面 BEF .(2)由(1)知 AC ⊥ EF , AC ⊥ BE ,EF ∥CC 1 . 又CC 1 ⊥ 平面 ABC ,∴ EF ⊥ 平面 ABC .Q BE ⊂ 平面 ABC ,∴ EF ⊥ BE .如图建立空间直角坐称系 E - xyz .由题意得 B (0, 2, 0) , C (-1, 0, 0) , D (1, 0,1) , F (0, 0, 2) , G (0, 2,1) , ∴CD =(2, 0,1) , CB =(1, 2, 0) ,设平面 BCD 的法向量为 n = (a , b , c ) , u u u r CD = 0 ∴⎨ uur n ⋅ ,∴⎧2a + c = 0 , a + 2b = 0 ⎩⎪ CB = 0 ⎩ 令 a = 2 ,则b = -1 , c = -4 ,∴ 平面 BCD 的法向量 n = (2, - 1,, - 4) ,又Q 平面CDC 的法向量为EB=(0, 2, 0),∴cos <n ⋅uur>=n ⋅EB= -21.1EB uurn EB 21由图可得二面角B -CD -C1为钝角,所以二面角B -CD -C1的余弦值为-21.21(3)平面BCD 的法向量为n =(2, - 1, - 4),Q G (0, 2,1),F (0, 0, 2),∴GF =(0, - 2,1),∴n ⋅GF =-2 ,∴n 与GF 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交2.(本小题14 分)如图,在四棱锥P-ABCD中,底面ABCD 为矩形,平面PAD⊥平面ABCD ,PA ⊥PD ,PA =PD , E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF∥平面PCD .【解析】(1)Q PA =PD ,且E 为AD 的中点,∴PE ⊥AD ,Q 底面ABCD 为矩形,∴BC∥AD ,∴PE ⊥BC .(2)Q 底面ABCD 为矩形,∴AB ⊥AD ,Q 平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD ,∴AB ⊥PD .又PA ⊥PD ,Q PD ⊥平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .Q F ,G 分别为PB 和PC 的中点,∴FG∥BC ,且FG =1 BC ,2Q 四边形ABCD 为矩形,且E 为AD 的中点,∴ED∥BC ,DE =1 BC ,2∴ED∥FG ,且ED =FG ,∴四边形EFGD 为平行四边形,∴EF∥GD ,又EF ⊄平面PCD ,GD ⊂平面PCD ,∴EF∥ 平面PCD .3 2 3 ⋅2 3 3.(12 分)如图,四边形 ABCD 为正方形, E , F 分别为 AD , BC 的中点,以 DF 为折痕把△DFC 折起,使点C 到达点 P 的位置,且 PF ⊥ BF .(1) 证明:平面 PEF ⊥ 平面 ABFD ;(2) 求 DP 与平面 ABFD 所成角的正弦值.解答:(1)E ,F 分别为 AD , BC 的中点,则 EF / / AB ,∴ EF ⊥ BF , 又 PF ⊥ BF , EF ⋂ PF = F ,∴ BF ⊥ 平面 PEF ,BE ⊂ 平面 ABFD ,∴平面 PEF ⊥ 平面 ABFD .(2) PF ⊥ BF , BF / / E D ,∴ PF ⊥ ED ,又 PF ⊥ PD , ED ⋂ DP = D ,∴ PF ⊥ 平面 PED ,∴ PF ⊥ PE ,设 AB = 4 ,则 EF = 4 , PF = 2 ,∴ PE = 2 ,过 P 作 PH ⊥ EF 交 EF 于 H 点,由平面 PEF ⊥ 平面 ABFD ,∴ PH ⊥ 平面 ABFD ,连结 DH ,则∠PDH 即为直线 DP 与平面 ABFD 所成的角,由 PE ⋅ PF = EF ⋅ PH ,∴ P H = = , 4而 PD = 4 ,∴ sin ∠PDH =PH = 3 ,PD 4 ∴ DP 与平面 ABFD 所成角的正弦值 3. 4 4.(12 分)如图,在三棱锥 P - ABC 中, AB = BC = 2 AC 的中点.(1) 证明: PO ⊥ 平面 ABC ;, PA = PB = PC = AC = 4 , O 为(2) 若点 M 在棱 BC 上,且二面角 M - PA - C 为30︒ ,求 PC 与平面 PAM 所成角的正弦值.2PO B M 3 3(a - 4)2 + 3a 2 + a 2 3 2 3 a - 42 3(a - 4)2 + 3a 2 + a 2u u u r ⎩AC【解析】(1)因为AP = CP = AC = 4 , O 为 AC 的中点,所以OP ⊥ AC ,且OP = 2 , 连结OB .因为 AB = BC =2 AC ,所以△ABC 为等腰直角三角形,2 且OB ⊥ AC , OB = 1 AC = 2 ,由OP 2 + OB 2 = PB 2 知 PO ⊥ OB , 2由OP ⊥ OB , OP ⊥ AC 知 PO ⊥ 平面 ABC .(2) 如图,以O 为坐标原点, OB 的方向为 x 轴正方向,建立空间直角坐标系O - xyz .由已知得O (0, 0, 0) , B (2, 0, 0) , A (0, -2, 0) , C (0, 2, 0) , P (0, 0, 2 3 ) , AP = (0, 2, 2 3 ), 取平面 PAC 的法向量OB = (2, 0, 0) ,设 M (a , 2 - a , 0)(0 < a ≤ 2) ,则 AM = (a , 4 - a , 0) ,设平面 PAM 的法向量为 n = (x , y , z ) .由 AP ⋅ n = 0 , AM ⋅ n = 0 , ⎧⎪2 y + 2 3z = 0 得⎨⎪a x + (4 - a ) y = 0 ,可取 n = ( 3 (a - 4), 3a , -a ) ,u u u r 2 3 (a - 4) u u u r ∴cos < OB , n >= ,由已知得 cos < OB , n > = , 2 2∴ = 3 ,解得 a = -4 (舍去), a = 4 , ⎛ 8 3 4 3 4 ⎫ 2u u u r 3 u u u r 3 cos < ∴ n = - 3 , 3 , - 3 ⎪ ,又Q PC = (0, 2, -2 3 ),所以 PC , n >= . 4 ⎝ ⎭ 3所以 PC 与平面 PAM 所成角的正弦值为 4. 5.(12 分)如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧CD 所在平面垂直, M 是1 5 = - -2 5 CD 上异于C , D 的点. (1) 证明:平面 AMD ⊥ 平面 BMC ;(2) 当三棱锥 M - ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.解答:(1)∵正方形 ABCD ⊥ 半圆面CMD ,∴ AD ⊥ 半圆面CMD ,∴ AD ⊥ 平面 MCD .∵ CM 在平面 MCD 内,∴ AD ⊥ CM ,又∵ M 是半圆弧CD 上异于C , D 的点,∴ CM ⊥ MD .又∵ AD I BCM ⊥ 平面 ADM .DM = D ,∴ CM ⊥ 平面 ADM ,∵ CM 在平面 BCM 内,∴平面(2)如图建立坐标系:∵ S ∆ABC 面积恒定,∴ MO ⊥ CD ,V M - ABC 最大.M (0, 0,1) , A (2, -1, 0) , B (2,1, 0) , C (0,1, 0) , D (0, -1, 0) ,设面 MAB 的法向量为 m = (x 1 , y 1 , z 1 ) ,设面 MCD 的法向量为 n = (x 2 , y 2 , z 2 ) , MA (2, 1, 1) , MB = (2,1, -1) ,MC = (0,1, -1) , MD = (0, -1, -1) ,⎧2x 1 - y 1 - z 1 = 0 ⇒ ⎨2x + y - z = 0 m= (1, 0, 2) , ⎩ 1 1 1同理 n = (1, 0, 0) ,∴c os = = 5 ,∴ sin = . 5 56.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)已知圆锥的顶点为 P ,底面圆心为 O ,半径为 2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.7.(本小题满分13 分)如图,AD∥BC 且AD=2BC,AD ⊥CD , EG∥AD 且EG=AD,CD∥FG 且CD=2FG,DG ⊥平面ABCD ,DA=DC=DG=2.(I)若M 为CF 的中点,N 为EG 的中点,求证:MN∥平面CDE ;(II)求二面角E -BC -F 的正弦值;(III)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,y z分别以DA ,DC ,DG 的方向为x 轴,轴,轴的正方向的空间直角坐标系(如图),可得D (0, 0, 0),A(2, 0, 0),B (1, 2, 0), C (0, 2, 0),m ⋅ n m n h 2 + 5h 2 + 52 0 ⋅ E (2, 0, 2) , F (0,1, 2) , G (0, 0, 2) , M ⎛ 0,3 ,1⎫ ,N (1, 0, 2) . 2 ⎪ ⎝ ⎭(1)依题意 DC = (0, 2, 0) , DE = (2, 0, 2) .⎧n ⋅ 设 n = ( x , y , z ) 为平面CDE 的法向量,则⎪ 0 DC = 0 ⎧ 即 2 y = 0 , 0⎨n ⋅ = 0 ⎨2x + 2z = 0不妨令 z = –1 ,可得 n 0 = (1, 0, -1) .⎩⎪ 0 DE ⎩ ⎛ 3 ⎫ 又 MN = 1,- ,1⎪ ,可得 MN ⋅ n = 0 , ⎝ ⎭又因为直线 MN ⊄ 平面CDE ,所以 MN ∥平面CDE .(2)依题意,可得 BC = (–1, 0, 0) , BE = (1, -2, 2) , CF = (0, -1, 2) .⎧n ⋅ 设 n = ( x , y , z ) 为平面 BCE 的法向量,则⎪ BC = 0 ⎧ 即 -x = 0 , ⎨n ⋅ = 0 ⎨x - 2 y + 2z = 0 不妨令 z = 1 ,可得 n = (0,1,1) .⎩⎪ BE⎩ ⎧m ⋅ 设 m = ( x , y , z ) 为平面 BCF 的法向量,则⎪ BC = 0 ⎧ 即 -x = 0 , ⎨m ⋅ = 0 ⎨- y + 2z = 0不妨令 z = 1 ,可得 m = (0, 2,1) .⎩⎪ BF ⎩ 因此有cos < m , n >= = 3 10 ,于是sin < m , n >= 10所以,二面角 E – BC – F 的正弦值为 10 .1010 .10 (3) 设线段 DP 的长为 h (h ∈[0, 2]),则点 P 的坐标为(0, 0, h ) , 可得= (-1, -2, h ) .易知, = (0, 2, 0) 为平面 ADGE 的一个法向量, BP DC BP DC 2故 cos < BP ⋅ DC > = =, BP DC 由题意,可得 2 = sin 60︒ = 3 ,解得 h = 2 3 ∈[0, 2] . 3 所以线段 DP 的长为 3 .32 (2 3)2 +12 13 5 2 8.(本题满分 15 分)如图,已知多面体 ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面 ABC ,∠ ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面 A 1B 1C 1;(Ⅱ)求直线 AC 1 与平面 ABB 1 所成的角的正弦值.解答:(1)∵ AB = B 1B = 2 ,且 B 1B ⊥ 平面 ABC ,∴ B 1B ⊥ AB ,∴ AB 1 = 2 .同理, AC 1 == =. 过点C 1 作 B 1B 的垂线段交 B 1B 于点G ,则C 1G = BC = 2 且 B 1G = 1,∴ B 1C 1 = . 在∆AB C 中, AB 2 + B C 2 = AC 2 , 1 1 1 1 1 1∴ AB 1 ⊥ B 1C 1 ,①过点 B 1 作 A 1 A 的垂线段交 A 1 A 于点 H .则 B 1H = AB = 2 , A 1H = 2 ,∴ A 1B 1 = 2 .在∆A B A 中, AA 2 = AB 2 + A B 2 , 1 1 1 1 1 1∴ AB 1 ⊥ A 1B 1 ,②综合①②,∵ A 1B 1 ⋂ B 1C 1 = B 1 , A 1B 1 ⊂ 平面 A 1B 1C 1 , B 1C 1 ⊂ 平面 A 1B 1C 1 , ∴ AB 1 ⊥ 平面 A 1B 1C 1 .(2)过点 B 作 AB 的垂线段交 AC 于点 I ,以 B 为原点,以 AB 所在直线为 x 轴, 以 BI 所在直线为 y 轴,以 B 1B 所在直线为z轴,建立空间直角坐标系B - xyz .AC 2 + C C 2 13 1⨯ 13 39 ⎩ 则 B (0, 0, 0) , A (-2, 0, 0) , B 1 (0, 0, 2) , C 1 (1, 3,1) , 设平面 ABB 的一个法向量 = (a , b , c ) ,1 n⎧⎪ 则 n ⋅ AB = 0 ⇒ ⎧2a = 0 ,令b = 1,则 n = (0,1, 0) , ⎨⎪⎩n ⋅ BB 1 = 0 ⎨2c = 039又∵ AC 1 = (3, 3,1) , cos < n , AC 1 >= = 13 .由图形可知,直线 AC 1 与平面 ABB 1 所成角为锐角,设 AC 1 与平面 ABB 1 夹角为. ∴ s in = . 139.(本小题满分 14 分)在平行六面体 ABCD - A 1B 1C 1D 1 中, AA 1 = AB , AB 1 ⊥B 1C 1 .求证:(1) AB ∥平面A 1B 1C ;(2) 平面ABB 1 A 1 ⊥ 平面A 1BC .【解析】(1)在平行六面体 ABCD - A 1B 1C 1D 1 中, AB ∥A 1B 1.因为 AB ⊄ 平面 A 1B 1C , A 1B 1 ⊂ 平面 A 1B 1C ,所以 AB ∥平面 A 1B 1C .(2)在平行六面体 ABCD - A 1B 1C 1D 1 中,四边形 ABB 1 A 1 为平行四边形. 又因为 AA 1 = AB ,所以四边形 ABB 1 A 1 为菱形, 因此 AB 1 ⊥ A 1B .又因为 AB 1 ⊥ B 1C 1 , BC ∥B 1C 1 ,所以 AB 1 ⊥ BC . 又因为 A 1B BC = B , A 1B ⊂ 平面 A 1BC , BC ⊂ 平面 A 1BC ,所以AB1 ⊥平面A1BC .因为AB1 ⊂平面ABB1 A1,所以平面ABB1 A1⊥平面A1BC .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D→=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D 的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ, 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
高考大题专攻练立体几何(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC.(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D -AE-C的余弦值.【解题导引】(1)若证明平面ACD⊥平面ABC可根据面面垂直的判定在平面ACD内找一条线垂直平面ABC,从而转化为线面垂直,再利用线线垂直确定线面垂直.(2)利用(1)中的垂直关系建立空间直角坐标系,求平面ADE和平面ACE的法向量,求法向量的余弦值得二面角的余弦值.【解析】(1)如图,取AC中点O,连接OD,OB.由∠ABD=∠CBD,AB=BC=BD知△ABD≌△CBD,所以CD=AD.由已知可得△ADC为等腰直角三角形,D为直角顶点,则OD⊥AC,设正△ABC边长为a,则OD=AC=a,OB=a,BD=a,所以OD2+OB2=BD2,即OD⊥OB.又OB∩AC=O,所以OD⊥平面ABC,又OD⊂平面ACD,所以平面ACD⊥平面ABC.(2)如图,以OA,OB,OD所在直线分别为x轴,y轴,z轴建立空间直角坐标系,当E为BD中点时,平面AEC把四面体ABCD分成体积相等的两部分,故可得A,D,C,E,则=,=.设平面ADE的一个法向量为n1=,则即令z1=1,则x1=1,y1=,所以n1=.同理可得平面AEC的一个法向量n2=,所以cos<n1,n2>===.因为二面角D -AE-C的平面角为锐角,所以二面角D -AE-C的余弦值为.2.如图,正方形ADEF与梯形ABCD所在平面互相垂直,已知AB∥CD,AD⊥CD,AB=AD=CD.(1)求证:BF∥平面CDE.(2)求平面BDF与平面CDE所成锐二面角的余弦值.【解析】(1)因为AF∥DE,AF⊄平面CDE,DE⊂平面CDE,所以AF∥平面CDE,同理,AB∥平面CDE,又AF∩AB=A,所以平面ABF∥平面CDE,又BF⊂平面ABF,所以BF∥平面CDE.(2)因为正方形ADEF与梯形ABCD所在平面互相垂直,正方形ADEF 与梯形ABCD交于AD,CD⊥AD,所以CD⊥平面ADEF,因为DE⊂平面ADEF,所以CD⊥ED,因为ADEF为正方形,所以AD⊥DE,因为AD⊥CD,所以以D为原点,DA,DC,DE所在直线分别为x,y,z轴,建立空间直角坐标系,则设AD=1,则D(0,0,0),B(1,1,0),F(1,0,1),A(1,0,0),=(1,1,0),=(1,0,1),取平面CDE的一个法向量=(1,0,0),设平面BDF的一个法向量为n=(x,y,z),则即取n=(1,-1,-1),cos<,n>=,所以平面BDF与平面CDE所成锐二面角的余弦值为.高考大题专攻练立体几何(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面PAB.(2)求直线CE与平面PBC所成角的正弦值.【解题导引】(1)取PA的中点F,连接EF,BF,证明四边形BCEF为平行四边形,证明CE∥BF,从而证明CE∥平面PAB.(2)取BC,AD的中点M,N.连接PN交EF于点Q,连接MQ,证明MQ∥CE,MQ与平面PBC所成的角,就等于CE与平面PBC所成的角.过Q作QH⊥PB,连接MH,证明MH就是MQ在平面PBC 内的射影,这样只要证明平面PBN⊥平面PBC即可.【解析】(1)如图,设PA中点为F,连接EF,FB.因为E,F分别为PD,PA中点,所以EF∥AD且EF=AD,又因为BC∥AD,BC=AD,所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC,AD的中点为M,N.连接PN交EF于点Q,连接MQ. 因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△PAD为等腰直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC∥AD得BC⊥平面PBN,那么,平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=得CE=,在△PBN中,由PN=BN=1,PB=得QH=,在Rt△MQH中,QH=,MQ=,所以sin∠QMH=,所以直线CE与平面PBC所成角的正弦值是.2.如图几何体是圆柱体的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G为的中点.(1)设P是上一点,AP⊥BE,求∠CBP的大小.(2)当AD=2,AB=3,求二面角E-AG-C的大小.【解题导引】(1)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH,可得四边形BEHC 为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM ⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E-AG-C的大小.方法二:以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z 轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E-AG-C的大小.【解析】(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)方法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==,取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.方法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.则∠EBP=90°,由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面AC G的一个法向量n=(3,-,-2).。
2018届高考数学第二轮立体几何综合复习检测题(含参考
答案)
5 c 2018年高考数学二轮复习综合检测
专题五立体几何
时间120分钟满分150分
一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出四个选项中,只有一项是符合题目要求的)
1.设有四个命题①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中假命题的序号是( )
A.① B.②③
c.①②③ D.③④
[答案] c
[解析] 底面是矩形的平行六面体的侧棱不一定与底面垂直,故①错;棱长相等的直四棱柱中若底面是菱形则不是正方体,故②错;如果两条平行的侧棱都垂直于底面一边显然不是直平行六面体,③错.故选c
2.已知A、B为球面上的两点,为球心,且AB=3,∠AB=120°,则球的体积为( )
A9π2 B.43π
c.36π D.323π
[答案] B
[解析] 设球的半径为R,由AB2=R2+R2-2R2cs120°=3R2=9,得R2=3,因此该球的体积是
4π3R3=4π3×(3)3=43π,故选B
3.(2018 北京市海淀区二模)在正四面体A-BcD中,棱长为4,是Bc的中点,点P在线段A上运动(P不与A,重合),过点P作直线。
立体几何一、选择题1.已知直线a ⊂平面α,直线b ⊂平面β,则“a ∥b ”是“α∥β ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2. 如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5, 若规定正视方向垂直平面ACC 1A 1,则此三棱柱的侧视图的面积为( )A.455B .2 5C .4D .23.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .64.在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四面体A ′BCD 的体积为135.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P -ABC 中,PA ⊥平面ABC ,AB ⊥BC ,且AP =AC =1,过A 点分别作AE ⊥PB 于点E ,AF ⊥PC 于点F ,连接EF .当△AEF 的面积最大时,tan ∠BPC 的值是( )A. 2B.22 C. 3 D.336.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A .2B .4C .6D .87.设A ,B ,C ,D 是半径为2的球面上的四点,且满足AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,则S △ABC +S △ABD +S △ACD 的最大值是( )A .6B .7C .8D .9 8.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,表面积的最大值是( )A .22πR 2 B.94πR 2 C.83πR 2D.52πR 29.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 边的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( )A .0个B .1个C .2个D .3个10.四棱锥M -ABCD 的底面ABCD 是边长为6的正方形,若|MA |+|MB |=10,则三棱锥A -BCM 的体积的最大值是( )A .16B .20C .24D .28 11.在一个棱长为4的正方体内,最多能放入的直径为1的球的个数( )A .64B .66C .68D .70 二、填空题12. 如图,在正方体ABCD -A 1B 1C 1D 1中,P 为棱DC 的中点,则D 1P 与BC 1所在直线所成角的余弦值等于________.13. 如图,已知球O的面上有四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.14.如图,有一圆柱开口容器(下表面封闭),其轴截面是边长为2的正方形,P是BC的中点,现有一只蚂蚁位于外壁A处,内壁P处有一粒米,则这只蚂蚁取得米粒的所经过的最短路程是________.15.棱长为a的正方体ABCD-A1B1C1D1中,若与D1B平行的平面截正方体所得的截面面积为S,则S的取值范围是________.三、解答题16.如图,六面体ABCD-EFGH中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD,若DA=DH=DB=4,AE=CG=3.(1)求证:EG⊥DF; (2)求BE与平面EFGH所成角的正弦值.17.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.(1)若点P为AA1的中点,求证:平面B1CP⊥平面B1C1P;(2)在棱AA1上是否存在一点P,使得二面角B1-CP-C1的大小为60°?若存在,求出AP的值;若不存在,说明理由.立体几何一、选择题1.已知直线a ⊂平面α,直线b ⊂平面β,则“a ∥b ”是“α∥β ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案D解析“a ∥b ”不能得出“α∥β”,反之由“α∥β”也得不出“a ∥b ”.故选D.2. 如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5, 若规定正视方向垂直平面ACC 1A 1,则此三棱柱的侧视图的面积为( )A.455B .2 5C .4D .2 答案 A解析 在△ABC 中,AC 2=AB 2+BC 2=5,∴AB ⊥BC .作BD ⊥AC 于D ,则BD 为侧视图的宽,且BD =2×15=255,∴侧视图的面积为S =2×255=455.3.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6答案 C解析 如图,既与AB 共面也与CC 1共面的棱有CD 、BC 、BB 1、AA 1、C 1D 1,共5条.4.在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四面体A ′BCD 的体积为13答案 B解析∵AB =AD =1,BD =2,∴AB ⊥AD .∴A ′B ⊥A ′D .∵平面A ′BD ⊥平面BCD ,CD ⊥BD , ∴CD ⊥平面A ′BD ,∴CD ⊥A ′B ,∴A ′B ⊥平面A ′CD , ∴A ′B ⊥A ′C ,即∠BA ′C =90°.5.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P -ABC 中,PA ⊥平面ABC ,AB ⊥BC ,且AP =AC =1,过A 点分别作AE ⊥PB 于点E ,AF ⊥PC 于点F ,连接EF .当△AEF 的面积最大时,tan ∠BPC 的值是( )A. 2B.22C. 3D.33答案B解析因为PA ⊥平面ABC ,所以PA ⊥BC ,又AB ⊥BC ,AB ∩PA =A ,所以BC ⊥平面PAB ,则BC ⊥AE ,又PB ⊥AE ,则AE ⊥平面PBC ,所以AE ⊥EF ,且AE ⊥PC ,又AF ⊥PC ,所以PC ⊥平面AEF ,所以△AEF ,△PEF 均为直角三角形,因为PA =AC =1,且PA ⊥AC ,所以AF =PF =22,而S △AEF =12AE ·EF ≤14(AE 2+EF 2)=14AF 2=18,当且仅当AE =EF 时等号成立,所以当AE =EF =12时,△AEF 的面积最大,此时tan ∠BPC =EF PF =1222=22,故选B.6.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG=2,AC =EF =1,则该多面体的体积为( )A .2B .4C .6D .8 答案B解析如图所示,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.7.设A ,B ,C ,D 是半径为2的球面上的四点,且满足AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,则S △ABC +S △ABD +S △ACD 的最大值是( )A .6B .7C .8D .9 答案C解析由题意知42=AB 2+AC 2+AD 2,S △ABC +S △ACD +S △ABD =12(AB ·AC +AC ·AD +AD ·AB )≤12⎣⎢⎡ 12AB 2+AC 2 +12 AC 2+AD 2+⎦⎥⎤12 AD 2+AB 2=12(AB 2+AC 2+AD 2)=8. 8.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,表面积的最大值是( )A .22πR 2 B.94πR 2 C.83πR 2D.52πR 2答案B解析如图所示,为组合体的轴截面,记BO 1的长度为x ,由相似三角形的比例关系,得PO 13R =xR,则PO 1=3x ,圆柱的高为3R -3x ,所以圆柱的表面积为S =2πx 2+2πx ·(3R -3x )=-4πx 2+6πRx ,则当x =34R 时,S取最大值,S max =94πR 2.9.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 边的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( )A .0个B .1个C .2个D .3个 答案C解析本题可以转化为在MN 上找点Q 使OQ 綊PD 1,可知只有Q 点与M ,N 重合时满足条件,所以选C.10.四棱锥M -ABCD 的底面ABCD 是边长为6的正方形,若|MA |+|MB |=10,则三棱锥A -BCM 的体积的最大值是( )A .16B .20C .24D .28 答案C解析∵三棱锥A -BCM 体积=三棱锥M -ABC 的体积,又正方形ABCD 的边长为6,S △ABC =12×6×6=18,又空间一动点M 满足|MA |+|MB |=10,M 点的轨迹是椭球,当|MA |=|MB |时,M 点到AB 距离最大,h =52-32=4,∴三棱锥M -ABC 的体积的最大值为V =13S △ABC h =13×18×4=24,∴三棱锥A -BCM 体积的最大值为24,故答案为C.11.在一个棱长为4的正方体内,最多能放入的直径为1的球的个数( )A .64B .66C .68D .70 答案B解析根据球体的特点,最多应该是放5层,第一层能放16个;第2层放在每4个小球中间的空隙,共放9个;第3层继续往空隙放,可放16个;第4层同第2层放9个;第5层同第1、3层能放16个,所以最多可以放入小球的个数:16+9+16+9+16=66(个),故答案为B. 二、填空题12.如图,在正方体ABCD -A 1B 1C 1D 1中,P 为棱DC 的中点,则D 1P 与BC 1所在直线所成角的余弦值等于________.答案105解析连接AD 1,AP ,则∠AD 1P 就是所求的角.设AB =2,则AP =D 1P =5,AD 1=22,∴cos ∠AD 1P =105. 13.如图,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.答案6π解析如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |= 2 2+ 2 2+ 2 2=2R ,所以R =62,故球O 的体积V =4πR33=6π.14.如图,有一圆柱开口容器(下表面封闭),其轴截面是边长为2的正方形,P 是BC 的中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一粒米,则这只蚂蚁取得米粒的所经过的最短路程是________.答案π2+9解析由于圆柱的侧面展开图为矩形(如图所示),则这只蚂蚁取得米粒所经过的最短路程应为AQ +PQ ,设点E 与点A 关于直线CD 对称,因为两点之间线段最短,所以Q 为PE 与CD 的交点时有最小值,即最小值为EP =π2+9.15.棱长为a 的正方体ABCD -A 1B 1C 1D 1中,若与D 1B 平行的平面截正方体所得的截面面积为S ,则S 的取值范围是________.答案⎝⎛⎭⎪⎫0,6a 22解析如图,过D 1B 的平面为BMD 1N ,其中M ,N 分别是AA 1,CC 1的中点,由于BD 1=3a ,MN =AC =2a ,AC ⊥BD 1,即MN ⊥D 1B ,所以过D 1B 与M ,N 的截面的面积为S =12AC ·BD =62a 2,因此S 的取值范围是⎝⎛⎭⎪⎫0,6a 22.三、解答题16.如图,六面体ABCD -EFGH 中,四边形ABCD 为菱形,AE ,BF ,CG ,DH 都垂直于平面ABCD ,若DA =DH =DB =4,AE =CG =3.(1)求证:EG ⊥DF ;(2)求BE 与平面EFGH 所成角的正弦值.解1)证明:连接AC ,由AE 綊CG 可得四边形AEGC 为平行四边形,所以EG ∥AC , 又AC ⊥BD ,AC ⊥BF ,所以EG ⊥BD ,EG ⊥BF , 因为BD ∩BF =B ,所以EG ⊥平面BDHF , 又DF ⊂平面BDHF ,所以EG ⊥DF .(2)设AC ∩BD =O ,EG ∩HF =P ,由已知可得平面ADHE ∥平面BCGF ,所以EH ∥FG ,同理可得EF ∥HG ,所以四边形EFGH 为平行四边形,所以P 为EG 的中点,又O 为AC 的中点,所以OP 綊AE ,从而OP ⊥平面ABCD .又OA ⊥OB ,所以OA ,OB ,OP 两两垂直,且由平面几何知识知BF =2.如图,建立空间直角坐标系,则B (0,2,0),E (23,0,3),F (0,2,2),P (0,0,3),BE →=(23,-2,3), PE →=(23,0,0),PF →=(0,2,-1).设平面EFGH 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧PE →·n =0,PF →·n =0可得⎩⎪⎨⎪⎧x =0,2y -z =0,令y =1,则z =2,得平面EFGH 的一个法向量为n =(0,1,2),设BE 与平面EFGH 所成角为θ,则sin θ=|BE →·n ||BE →|·|n |=4525.17.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =4.(1)若点P 为AA 1的中点,求证:平面B 1CP ⊥平面B 1C 1P ;(2)在棱AA 1上是否存在一点P ,使得二面角B 1-CP -C 1的大小为60°?若存在,求出AP 的值;若不存在,说明理由.解(1)证明:如图,以C 为原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (2,0,0),B 1(0,4,4),C 1(0,0,4),P (2,0,2),B (0,4,0),故C 1B 1→=(0,4,0),PC 1→=(-2,0,2),CP →=(2,0,2), 由C 1B 1→·CP →=(0,4,0)·(2,0,2)=0,得C 1B 1⊥CP , 由PC 1→·CP →=(-2,0,2)·(2,0,2)=0,得C 1P ⊥CP . 又∵C 1P ∩C 1B 1=C 1,∴CP ⊥平面B 1C 1P , 又∵CP ⊂平面B 1CP , ∴平面B 1CP ⊥平面B 1C 1P .(2)设AP =a ,则P 点坐标为P (2,0,a ),CP →=(2,0,a ),CB 1→=(0,4,4),设平面B 1CP 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CB 1→=0,m ·CP →=0⇒⎩⎪⎨⎪⎧4y +4z =0,2x +az =0.令z =-1,∴m =⎝ ⎛⎭⎪⎫a2,1,-1,而CB →=(0,4,0)为平面C 1CP 的一个法向量,∴cos60°=|m ·CB →||m |·|CB →|=1⎝ ⎛⎭⎪⎫a 22+2=12,解得a =2 2.∴在AA 1上存在一点P 满足题意,且AP =2 2.。