--学上期期中考试测验
- 格式:doc
- 大小:33.50 KB
- 文档页数:6
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。
山东省临沂市2024-2025学年高三上学期11月期中考试语文试题一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
和所有人一样,爱因斯坦也犯过错误。
和大多数物理学家一样,他有时也会把这些错误写入论文发表出来。
通过这些错误,我们可以看到爱因斯坦的科学思想经历了怎样的发展过程,以及他关于宇宙的科学观念发生了怎样的变化。
同时,爱因斯坦的错误也给前沿科学发现带来了挑战。
在推进人类知识的极限之时,我们很难知道他写在纸上的理论与真实现象是否相符,也很难知道他那激进的新想法究竟是给后人带来对科学更为深刻的认识,还是阻碍后人对科学的深入探讨。
爱因斯坦最著名的错误是他为了确保宇宙不膨胀观点的正确性而修改了自己的广义相对论。
这个错误广为人知,是因为他自己都称其为一个“大错”。
1915年当他完成广义相对论时,学术界普遍认为,我们的银河系被一个静态、永恒且无穷大的虚空环绕。
爱因斯坦意识到,在广义相对论中,物质产生的引力无处不在地互相吸引,会导致物质向内塌缩,因而宇宙的静态解是不可能成立的。
在1917年的一篇文章《使用广义相对论的宇宙学思考》中,爱因斯坦在广义相对论方程中引入了一个额外的常数项,以保证宇宙是静态的说法是成立的。
他设想这个宇宙学常数项可以在整个空间中提供抵抗引力的排斥作用,避免物质向内塌缩,而这一想法没有任何物理依据。
引入宇宙学常数后的十年间,出现了很多宇宙并非静态的证据。
起先,爱因斯坦是抗拒这些结果的。
1927年比利时物理学家乔治·勒梅特建立了一种类似大爆炸的膨胀宇宙模型,两年后,埃德温·哈勃又发表了关于星系退行的里程碑式的文章。
后来,爱因斯坦拜访了哈勃并且观摩了哈勃在威尔逊山天文台的望远镜,最终转过弯来,接受了宇宙非静态的学说。
1933年,爱因斯坦赞扬勒梅特的宇宙学理论:“这是我听过的最优美和令人满意的对自然的解释。
”在一个膨胀宇宙中,不再需要宇宙学常数来保持静态,这对爱因斯坦来说不算损失,他甚至在1919年就指出这个常数“严重损害了这个理论的形式美”。
高一语文考生注意:1.本试卷满分150分,考试时间150分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:人教版必修上册第一单元至第三单元。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1-5题。
材料一:回顾经典,总有一种力量让人热血沸腾,很大一部分原因就在于经典文艺形象跨越时空传递着精神力量。
何为经典文艺形象?经典文艺形象指的是,文学艺术创作深为受众喜爱、经过一定时间检验、具有经典意义的艺术形象。
经典文艺形象不局限于某一艺术门类,以不同的审美知觉形式使人们获得不断强化的美好审美经验。
一个人物形象能够成为经典,必须具备传世性和普适性,也就是说,既经得起时间考验,又能得到多数人的认可和喜欢。
经典文艺形象何以具有如此魅力?一方面,作品立得住,故事足够精彩,经得起反复品味和时间考验,其中的文艺形象往往也会深入人心,流传久远。
古往今来,那些被广泛接受和传诵的文艺作品,从《红楼梦》《水浒传》等四大名著到《茶馆》《骆驼祥子》等舞台经典,无不因为其反映生活本质,使人们为之动容、动情、动心。
这样的文艺作品温润心灵、陶冶人生,其中的文艺形象也会启迪人们发现生活之美、自然之美、心灵之美,进而产生强大的精神力量。
另一方面,经典文艺形象身上浓缩着家国历史、时代印记和人性光辉,即便经历时代变迁,艺术魅力也不会因此削减。
“经典之所以能够成为经典,其中必然含有隽永的美、永恒的情、浩荡的气。
经典具有思想的穿透力、审美的洞察力、形式的创造力,因此才能成为不会过时的作品。
”习近平总书记对经典作品的这一评价,同样适用于经典人物形象,尤其是“隽永的美、永恒的情、浩荡的气”三大要素。
四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷一、单选题1.在一条东西方向的跑道上,小亮先向西走了20米,记作“20-米”,接着又向东走了8米,此时小亮的位置可记作()A .12+米B .12-米C . 8+米D .28-米2.老师在黑板上用粉笔写字,可用下面()的数学知识点来解释.A .点动成线B .线动成面C .面动成体D .线线相交3.“世界陶瓷看中国,中国陶瓷看佛山”,中国陶瓷官方协会的官方数据,仅佛山产区的瓷砖2018年就高达1090000000平方米,将1090000000平方米用科学记数法表示应为()A .100.10910⨯平方米B .91.0910⨯平方米C .810.910⨯平方米D .710910⨯平方米4.下列计算正确的是()A .2222m n mn mn -=-B .22523y y -=C .277a a a +=D .325ab ab ab+=5.下列说法中正确的是()A .单项式2x 的系数是2B .21xy x +-是三次二项式C .23π2x y -的系数是12-D .322xy 的次数是66.如图,数轴上点P ,Q ,M ,N 表示的数绝对值最小的是()A .点PB .点QC .点MD .点N7.某几何体从三个不同方向看到的形状图如图所示,则该几何体的体积是()A .2πB .3πC .6πD .12π8.按照如图所示的操作步骤,若输入的值为4,则输出的值为()A .30B .20-C .90D .28二、填空题9.比较大小:34-45-,415⎛⎫-- ⎪⎝⎭1.86--(填“<”,“>”或“=”).10.十棱柱有条棱,有个面.11.如果单项式167m x y -与335n x y +-是同类项,那mn =.12.若()2530m n -++=,则m n +=.13.在数轴上与表示数7的点距离3个单位长度的点表示的数是.三、解答题14.把下列各数的对应序号填在相应的横线上:①3.14,②10%,③219-,④0,⑤0.27,⑥()2--,⑦3π,⑧ 3.5--正分数集合:_________________;负有理数集合:_________________;自然数集合:_________________;非负数集合:___________________.15.计算(1)()()17278242-++-+;(2)()()()5.57.1 4.57---+--;(3)()215126326⎛⎫⎛⎫-⨯+-÷ ⎪ ⎪⎝⎭⎝⎭;(4)()()202414326-+⨯-÷-.16.先化简,再求值:2x 2+(x 2-2xy +2y 2)-3(x 2-xy +2y 2),其中x =2,y =12-.17.在平整的地面上,有一个由7个完全相同的小立方块搭成的几何体,每个小正方体的棱长均为10cm ,如图所示.(1)请画出这个几何体的主视图和左视图;(2)如果在这个几何体上再摆放一个相同的小正方体,并保持这个几何体从正面看和从上面看到的形状图不变,最多添加_______小正方体;(3)将原几何体露出的表面部分(不含底面)涂成红色,那么红色部分的面积为多少?18.“日啖荔枝三百颗,不辞长作岭南人”.每年六月正是荔枝集中上市的时间,下表是六月某周内水果批发市场每天的荔枝批发价格与前一天价格相比的涨跌情况.(前一个周日的批发价是6元/kg )星期一二三四五六日与前一天价格相比的涨跌情况/元0.2+0.15-0.25+0.1+0.3-0.2+0.1-注:正号表示价格比前一天上升,负号表示价格比前一天下降.(1)本周内荔枝的批发价格最高是__________元/kg .批发价格最低是__________元/kg .(2)对比前一个周日,本周日的荔枝批发价格是上升了还是下降了?上升或下降了多少元?(3)某水果商店周一从批发市场购进荔枝100kg ,以8元/kg 的售价销售,很快脱销,于是周三再次从批发市场购进荔枝100kg ,按原售价销售了40kg 后,剩下的按七折出售,全部售完,问水果商店销售这200kg 荔枝共盈利了多少元?四、填空题19.若23x y -=,则代数式249x y --的值等于.20.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是.21.将如图的直角三角形分别绕两条直角边所在的直线旋转一周,得到不同的立体图形,其中体积最大的立体图形的体积是立方厘米.(结果保留π)22.已知有理数a ,b ,c 的位置如图所示,化简式子:b c b a c a ++--+=.23.规定:符号[x ]叫做取整符号,它表示不超过x 的最大整数.例如:[]55=,[]2.62=,[]0.20=.现在有一列非负数123,,,a a a ⋯,已知110a =,当2n ≥时,1121555n n n n a a -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,则2024a 的值为.五、解答题24.我们在分析解决某些数学问题时经常要比较两个数或整式的大小.而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形、并利用差的符号来确定它们的大小,即要比较代数式a 、b 的大小,只要求出它们的差a b -,若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.请你用“作差法”解决以下问题:(1)制作某产品有两种用料方案:方案一:用3块A 型钢板,用7块B 型钢板;方案二:用2块A 型钢板,用8块B 型钢板;A 型钢板的面积比B 型钢板的面积大,设每块A 型钢板的面积为x ,每块B 型钢板的面积为y ,从省料角度考虑,应选哪种方案?(2)试比较图1和图2中两个矩形周长的大小.25.定义:已知M ,N 为关于x 的多项式,若M N k -=,其中k 为大于0的常数,则称M 是N 的“友好式”,k 叫做M 关于N 的“友好值”.例如:223M x x =++,222N x x =+-,22(23)(22)5M N x x x x -=++-+-=,则称M 是N 的“友好式”,M 关于N 的“友好值”为5.又如,233M x x =++,223N x x =++,()()223323M N x x x x x -=++-++=,x 不是大于0的常数,则称M 不是N 的“友好式”.(1)已知223M x x =+-,221N x x =++,则M 是N 的“友好式”吗?若是,请证明并求出M 关于N 的“友好值”;若不是,请说明理由;(2)已知2244M x m xm =+-,246N x x n =-+,若M 是N 的“友好式”,且“友好值”为14,求m ,n 的值.26.如图,将等边ABC V 放在数轴上,点B 与数轴上表示6-的点重合,点C 与数轴上表示2的点重合,将数轴上表示2以后的正半轴沿C A B →→进行折叠.经过折叠后,(1)点A 、点B 分别与正半轴上表示哪个数的点重合?(2)若点D 为AC 的中点,点E 表示5-.折叠数轴上,记___EA 为数轴拉直后点E 到点A 的距离,即___A EA EC C =+,其中,EC CA 代表线段长度.若动点P 从点D 出发,沿D CB →→方向运动,动点Q 从点E 出发,沿EC →方向运动,当动点Q 运动到点C 时,P 、Q 同时停止运动.已知动点P 在DC 上运动速度为1单位秒,在CB 上运动速度为2单位/秒;动点Q的运动速度为1单位/秒,设运动时间为t(秒).①当t为何值时,动点P、Q表示同一个数.②当t为何值时,______1 PQ QC-=.。
山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。
2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知z =1−i ,则z (1−z )=( )A. −1−iB. −1+iC. 1−iD. 1+i2.已知椭圆方程为x 236+y 264=1,则该椭圆的长轴长为( )A. 6B. 12C. 8D. 163.已知椭圆C:x 23+y 22=1的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 于A 、B 两点,则△AF 1B 的周长为( )A. 2B. 4C. 23 D. 434.已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2,则渐近线方程是( )A. y =±12xB. y =±2xC. y =±3xD. y =±33x 5.已知抛物线的焦点在直线x−2y−4=0上,则此抛物线的标准方程是( )A. y 2=16xB. x 2=−8yC. y 2=16x 或x 2=−8yD. y 2=16x 或x 2=8y6.“a =3”是“直线l 1:ax−2y +3=0与直线l 2:(a−1)x +3y−5=0垂直”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知动圆C 与圆C 1:(x−3)2+y 2=4外切,与圆C 2:(x +3)2+y 2=4内切,则动圆圆心C 的轨迹方程为( )A. 圆B. 椭圆C. 双曲线D. 双曲线一支8.一个工业凹槽的截面是一条抛物线的一部分,它的方程是x 2=4y,y ∈[0,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A. 12B. 1C. 2D. 52二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
2024-2025学年度第一学期期中试卷高二数学(答案在最后)2024年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题,共40分)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角是23π,则斜率是()A.33-B.33C.D.【答案】C 【解析】【分析】由直线的倾斜角与斜率的关系即得.【详解】∵直线的倾斜角是23π,∴直线的斜率为2tan tan()tan 333ππππ=-=-=故选:C.2.已知点P 在椭圆22132x y +=上,点()11,0F ,()21,0F -,则12PF PF +=()A.2B.C.D.【答案】C 【解析】【分析】根据题意由椭圆标准方程以及椭圆定义即可得出结果.【详解】由椭圆方程为22132x y +=可知1a c ==,则()11,0F ,()21,0F -即为椭圆的左、右焦点,由椭圆定义可得122PF PF a +==.故选:C3.已知圆222610x y x y +-++=关于直线0x y m ++=对称,则实数m =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据圆关于直线对称即圆心在直线上得到答案.【详解】将222610x y x y +-++=化成标准方程为()()22139x y -++=,圆心为()1,3-,半径为3,因为圆222610x y x y +-++=关于直线0x y m ++=对称,所以圆心()1,3-在直线上,即130m -+=,解得2m =.故选:D.4.以点()2,1A 为圆心,且与x 轴相切的圆的标准方程为()A.()()22211x y -+-= B.()()22214x y -+-=C.()()22211x y +++= D.()()22214x y +++=【答案】A 【解析】【分析】根据圆心和半径可得圆的方程.【详解】以点()2,1A 为圆心,且与x 轴相切的圆的半径为1.故圆的标准方程是()()22211x y -+-=.故选:A .5.已知Q 为直线:210l x y ++=上的动点,点P 满足()1,3QP =-,记P 的轨迹为E ,则()A.E的圆 B.E 是一条与l 相交的直线C.E 上的点到l D.E 是两条平行直线【答案】C 【解析】【分析】设(),P x y ,由()1,3QP =-可得Q 点坐标,由Q 在直线上,故可将点代入坐标,即可得P 轨迹E ,结合选项即可得出正确答案.【详解】设(),P x y ,由()1,3QP =-,则()1,3Q x y -+,由Q 在直线:210l x y ++=上,故()12310x y -+++=,化简得260x y ++=,即P 的轨迹为E 为直线且与直线l 平行,E 上的点到l的距离d ==,故A 、B 、D 错误,C 正确.故选:C .6.如图,三棱锥D-ABC 中,DC ⊥平面ABC ,DC=1,且 为边长等于2的正三角形,则DA 与平面DBC所成角的正弦值为A.5B.5C.5D.25【答案】B 【解析】【分析】先过A 点作出高线,利用等体积法先求高线,再计算线面角.【详解】过点A 作垂直于平面BCD 的直线,垂足为O ,利用等体积法求解AO .011131V DC S 60221V AO S 33233D ABC ABC A BCD BCD sin --=⨯=⨯⨯⨯⨯===⨯,由此解得AO =,DA 与平面DBC 所成角为ADO ∠,所以15sin ADO 5AO AD ∠==,故选B 【点睛】本题考查了等体积法和线面角的基本求法,综合性强,在三棱锥中求高线,利用等体积法是一种常见处理手段,计算线面角,先找线面角,要找线面角必找垂线,而求解垂线的基本方法为等体积法或者点到平面的距离公式.7.点M 是直线250x y -+=上的动点,O 是坐标原点,则以OM 为直径的圆经过定点().A.(0,0)和(1,1)-B.(0,0)和(2,2)-C.(0,0)和(1,2)-D.(0,0)和(2,1)-【答案】D 【解析】【分析】过点O 作OP 垂直于直线250x y -+=,根据圆的性质可得以OM 为直径的圆过定点O 和P ,得解.【详解】如图,过点O 作OP 垂直于直线250x y -+=,垂足为P ,则以OM 为直径的圆过定点O 和P ,易知直线OP 的方程为12y x =-,联立25012x y y x -+=⎧⎪⎨=-⎪⎩,解得21x y =-⎧⎨=⎩,即()2,1P -.所以以OM 为直径的圆经过定点()0,0和()2,1-.故选:D.8.“3m =”是“椭圆2214x y m+=的离心率为12”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据椭圆2214x y m+=的离心率为12求出m ,进而求得答案.【详解】椭圆2214x y m +=的离心率为12,当04m <<时,4122=,得3m =;当4m >时,12=,得163m =.即“3m =”是“椭圆2214x y m+=的离心率为12”的充分不必要条件.故选:A.9.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的棱长为1,则点P 到平面QGC 的距离是()A.12B.22C.32D.1【答案】B 【解析】【分析】根据题意,建立空间直角坐标系,结合向量法求解点到面的距离,即可得到结果.【详解】建立如图所示空间直角坐标系,则()()()()0,2,0,0,0,2,1,0,2,2,0,1C G Q P ,则()()()1,0,0,0,2,2,2,2,1GQ GC CP ==-=-,设平面QGC 的一个法向量为(),,n x y z =,则0220GQ n x GC n y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,取1z =,得()0,1,1n = ,所以点P 到平面QGC 的距离是22n CP n ⋅== .故选:B10.如图,已知正方体1111ABCD A B C D -的棱长为1,点M 为棱AB 的中点,点P 在正方形11BCC B 的边界及其内部运动.以下四个结论中错误的是()A.存在点P满足1PM PD +=B.存在点P 满足1π2D PM ∠=C.满足1AP D M ⊥的点P 的轨迹长度为π4D.满足1MP D M ⊥的点P的轨迹长度为4【答案】C 【解析】【分析】建立空间直角坐标系,利用空间向量解决此题,对于A ,利用两个特殊点求出1PM PD +的值,在此范围内即可;对于B ,利用向量垂直数量积等于零解方程即可求P 点坐标;对于C ,D 利用向量垂直数量积等于零可求P 点的轨迹方程,根据图形找到P 点的轨迹求长度即可.【详解】如图所示,建立空间直角坐标系,则(1A ,0,0),1(0D ,0,1),1(1,,0)2M ,1(0C ,1,1),动点P 设为(P x ,1,)z ,对于A ,点M 关于平面11BCB C 的对称点为13(1,,0)2M ,当动点P 在点1M时,此时1min 11()2PM PD D M +===<,当动点P 在点1C时,此时111135122PM PD C D C M +=+=+=>,所以存在点P满足1PM PD +=,所以A 正确;对于B ,1(1,,)2PM x z =--- ,1(,1,1)PD x z =--- ,若1π2D PM ∠=,则11(1)(1)02PM PD x x z z ⋅=--+--= ,化简得:2211()(022x z -+-=,解得1212x z ⎧=⎪⎪⎨⎪=⎪⎩,即11(,1,)22P ,满足题意,所以B 正确;对于C ,(1,1,)AP x z =- ,11(1,,1)2D M =- ,若1AP D M ⊥,则11102AP D M x z ⋅=-+-= ,即12z x =-,取BC 中点E ,1BB 中点F ,则点P 的轨迹为线段EF ,长度为22,所以C 错误;对于D ,1(1,,)2MP x z =- ,11(1,,1)2D M =- ,若1MP D M ⊥,则11104MP D M x z ⋅=-+-= ,即34z x =-,取BF 中点H ,BE 中点K ,则点P 的轨迹为线段HK ,长度为24,所以D 正确.故选:C .第二部分(非选择题,共110分)二、填空题共5小题,每小题5分,共25分.11.椭圆22194x y +=的离心率是_________.【答案】53【解析】【分析】利用标准方程,求出a ,b ,然后求解c ,即可求解离心率.【详解】椭圆22194x y +=的长半轴为a =3,短半轴为b =2,则半焦距为c ==.所以椭圆的离心率为:e 53c a ==.故答案为53.【点睛】本题考查椭圆的简单性质的应用,离心率的求法,是基础题.12.已知直线1l :()210m x y +++=,2l :()5210x m y +-+=.若12l l ∥,则实数m 的值为______.【答案】-3【解析】【分析】根据两直线平行的条件列式求解即可.【详解】若12l l ∥,则()()2250m m +--=,解得3m =或3m =-,当3m =时,直线1l :510x y ++=与2l :5310x y ++=重合,不符合题意;当3m =-时,直线1l :10x y -++=与2l :5510x y -+=,符合题意,综上,3m =-故答案为:-3.13.在正三棱柱111ABC A B C -中,2AB =,1AA =,则异面直线1AB 与1BC 所成角的大小为______.【答案】π2【解析】【分析】利用异面直线夹角的向量求法建立空间直角坐标系计算可得结果.【详解】分别取11,BC B C 的中点1,O O ,连接1,AO OO ,由正三柱性质可知11,,AO BC OO BC AO OO ⊥⊥⊥,以O 为坐标原点,1,,OA OB OO 所在直线分别为,,x y z 轴建立空间直角坐标系,如下图所示:由2AB =,12AA =可得)()((113,0,0,0,1,0,0,1,2,0,1,2AB BC -,所以((113,1,2,0,2AB BC ==-,又111111022cos ,066AB BC AB BC AB BC ⋅===⨯,且[]11,0,πAB BC ∈ ;所以11π,2AB BC = .故答案为:π214.已知点P 是圆()2211x y -+=上的动点,直线1l :3470x y -+=,2l :340x y m -+=,记P 到直线1l ,2l 的距离分别为1d ,2d (若P 在直线上,则记距离为0),(1)1d 的最大值为______;(2)若当点P 在圆上运动时,12d d +为定值,则m 的取值范围是______.【答案】①.3②.(],8∞--【解析】【分析】(1)根据圆上点到直线的距离最大值为圆心到直线的距离加半径求解即可;(2)根据12d d +为定值,分析得到圆的位置,结合直线与圆的位置关系求解.【详解】(1)圆()2211x y -+=,圆心 th ,半径为1,圆心到直线1l 的距离()2231407234d ⨯-⨯+==+-,所以P 到直线1l 的距离1d 的最大值为13d +=;(2)当7m =时,两直线重合,不符题意;当7m ≠时,直线1l ,2l 平行,若当点P 在圆上运动时,12d d +为定值,所以圆在两平行线之间,此时直线2l 与圆相离,所以()223140134m d ⨯-⨯+=≥+-,解得2m ≥或8m ≤-,又因为当2m ≥时,直线1l ,2l 在圆同侧,不符合题意,所以8m ≤-,故答案为:3,(],8∞--.15.伯努利双纽线(简称双纽线)是瑞士数学家伯努利(1654-1705)在1694年提出的.伯努利将椭圆的定义作了类比处理,指出是到两个定点距离之积为定值的点的轨迹是双纽线.在平面直角坐标系xOy 中,到定点(),0A a -,(),0B a 的距离之积为()20a a >的点的轨迹C 就是伯努利双纽线,C 的方程为()()2222222x y a x y +=-,其形状类似于符号∞,若点()00,P x y 是轨迹C 上一点,给出下列四个结论:①曲线C 关于原点中心对称;②00y x ≤恒成立;③曲线C 2a ;④当0x a =时,0y 取得最大值或最小值.其中所有正确结论的序号是______.【答案】①②③【解析】【分析】根据曲线的方程,结合对称性的判定方法,联立方程组,以及不等式和三角形面积,逐项判定,即可求解.【详解】在曲线C 上任取一点(),M x y ,关于原点的对称点为(),M x y '--,代入曲线C 的方程,可知M '在曲线C 上,所以曲线C 关于原点中心对称,故①正确;因为点()00,P x y 是轨迹C 上一点,所以()()22222200002x y a x y +=-,因为()222000x y +≥,所以()()222222000020x y a x y +=-≥,即2200y x ≤,所以00y x ≤,故②正确;因为()()()22222222222x y a x x y y a +=-+≤,所以2222x y a +≤,≤,所以曲线C ,故③正确;因为()00,P x y ,所以12121212011||||sin ||||22PF F S PF PF F PF F F y =⋅⋅∠=⋅ ,又212||||PF PF a ⋅=,所以2120sin 2||a F PF a y ∠=⋅,即012||sin 22a a y F PF =∠≤,所以022a a y -≤≤,当12π2F PF ∠=时等号成立,故④错误,故答案为:①②③【点睛】方法点睛:本题考查曲线的轨迹及其性质的问题,同时需要结合解三角形的方法对所给信息进行辨析.三、解答题共6小题,共85分.解答题应写出文字说明、验算步骤或证明过程.16.已知直线l :()()211510x y λλλ++---=,R λ∈.(1)当直线l 与直线20x y +=垂直时,求λ的值;(2)设直线l 恒过定点P ,求P 的坐标;(3)若对任意的实数λ,直线l 与圆()2220x y r r +=>总有公共点,直接写出r 的取值范围.【答案】(1)14λ=(2)()2,1P(3)r ≥【解析】【分析】(1)根据直线与直线垂直关系列方程即可求得λ的值;(2)将直线方程转化为()1250x y x y λ--++-=,列方程组解得定点坐标即可;(3)根据直线与圆位置关系结合点与圆位置关系求解即可.【小问1详解】当直线l :()()211510x y λλλ++---=与直线20x y +=垂直时,可得()()21112410λλλ+⨯+-⨯=-=,解得14λ=;【小问2详解】直线l :()()211510x y λλλ++---=方程整理得()1250x y x y λ--++-=,令10,250x y x y --=⎧⎨+-=⎩,解得2,1,x y =⎧⎨=⎩即直线l 恒过定点()2,1P ;【小问3详解】对任意的实数λ,直线l 与圆()2220x y rr +=>总有公共点,则直线l 恒过定点()2,1P 在圆上或者圆内,则OP r =≤,即r ≥17.已知C 经过点()0,2A -,()3,1B ,并且圆心C 在直线28y x =-上,(1)求C 的方程;(2)设过点()2,0P 的直线l 与C 交于M ,N 两点,若MN =l 的方程.【答案】(1)()()22329x y -++=(2)2x =或3460x y +-=.【解析】【分析】(1)根据圆的几何性质确定线段AB 的垂直平分线方程,从而联立直线可得圆心坐标,根据圆的定义得半径,从而得圆的方程;(2)根据直线与圆相交弦长公式,分直线斜率存在与不存在两种情况验证求解直线方程即可.【小问1详解】因为()0,2A -,()3,1B ,则1AB k =,且线段AB 中点为31,22⎛⎫- ⎪⎝⎭,则线段AB 的垂直平分线的斜率为1-,故其方程为1322y x ⎛⎫+=-- ⎪⎝⎭,即10x y +-=,由圆的对称性知点C 在AB 的垂直平分线上,因此联立10,28,x y y x +-=⎧⎨=-⎩解得3,2,x y =⎧⎨=-⎩即点()3,2C -,又因为3r AC ==,所以圆C :()()22329x y -++=.【小问2详解】圆心()3,2C -,半径3r =当1l 的斜率不存在时,1l :2x =,则圆心C 到直线1l 的距离为1d =,此时相交弦长MN ==当1l 的斜率存在时,设1l :()2y k x =-,即20kx y k --=,因为相交弦长MN ==所以C 到1l的距离为1d ==,解得34k =-,此时,直线1l :3460x y +-=,综上,直线1l 的方程为2x =或3460x y +-=.18.已知椭圆C :()222210+=>>x y a b a b的左、右焦点分别为()1F和)2F ,长轴长为4.(1)求椭圆C 的方程;(2)设P 为椭圆C 上一点,()1,0M .若存在实数λ使得12PF PF PM λ+=,求λ的取值范围.【答案】(1)2214x y +=(2)4,3⎡⎢⎣.【解析】【分析】(1)根据椭圆,,a b c 的关系列方程组求得,,a b c 的值,即可得椭圆方程;(2)根据椭圆的定义可得124PF PF +=,再根据两点距离公式结合点在椭圆上求解PM 的取值范围,即可得所求.【小问1详解】由题知22224,,c a a b c ⎧=⎪=⎨⎪=+⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以,C 的方程为2214x y +=.【小问2详解】由椭圆的定义可知124PF PF +=,设点 h t h ,其中220014x y +=,则220014x y =-,所以()222020200033421224433PM x y x x x ⎛⎫=-+=-+=-+ ⎪⎝⎭,因为022x -≤≤,所以2293PM ≤≤,即633PM ≤≤当且仅当043x =时,63PM =,02x =-时,3PM =,因为12PF PF PM λ+=,则12PF PF PM λ+=,所以4,3λ⎡∈⎢⎣.综上所述,λ的取值范围是4,3⎡⎢⎣.19.如图,在三棱台111ABC A B C -中,若1A A ⊥平面1,,2ABC AB AC AB AC AA ⊥===,111,A C N =为AB 中点,M 为棱BC 上一动点(不包含端点).(1)若M 为BC 的中点,求证:1//A N 平面1C MA .(2)是否存在点M ,使得平面1C MA 与平面11ACC A 所成角的余弦值为66?若存在,求出BM 长度;若不存在,请说明理由.【答案】(1)证明见解析(2)23【解析】【分析】(1)利用三角形中位线定理,结合平行四边形的判定定理和性质、线面平行的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】连接NM ,因为N 为AB 中点,M 为BC 的中点,所以1//,2NM AC NM AC =,因为111ABC A B C -是正三棱台,111,2A C AC ==,所以11111//,2AC AC AC AC =,于是有11111//,2NM A C NM A C =,因此四边形11NMC A 是平行四边形,所以111//,A N C M A N ⊄平面1C MA ,1C M ⊂平面1C MA ,所以1//A N 平面1C MA【小问2详解】假设存在点M ,使得平面1C MA 与平面11ACC A 所成角的余弦值为66,因为1A A ⊥平面,,ABC AB AC ⊂平面ABC ,所以11,A A AB AA AC ⊥⊥,而AB AC ⊥,所以建立如图所示的空间直角坐标系,()()()()()10,0,0,0,1,2,2,0,0,0,2,0,,,A C B C M x y z ,设()()()()()0,12,,2,2,022,2,0BM BC x y z M λλλλλ=∈⇒-=-⇒-,设平面1C MA 的法向量为(),,m a b c =,()()1220,1,2,0,,2,AC AM λλ=-=,所以有()1202,2,112220m AC b c m m AM a b λλλλ⎧⋅=+=⎪⎛⎫⇒=-⎨ ⎪-⎝⎭⋅=-+=⎪⎩,因为1A A AB ⊥,AB AC ⊥,11,,AA AC A AA AC A == ,所以AB ⊥平面11ACC A ,所以平面11ACC A 的法向量为()2,0,0AB =,所以41cos ,66m AB m AB m ABλ⋅==⇒⋅ ,解得13λ=,1λ=-舍去,即42,,033M ⎛⎫ ⎪⎝⎭,223BM ==,即BM 长度为223.20.平面直角坐标系xOy 中,点M 到点()0,1F 的距离比它到x 轴的距离多1,记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点()1,0P ,若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.【答案】(1)24,00,0y y x y ≥⎧=⎨<⎩(2)[)0,1.【解析】【分析】(1)根据题意列出等量关系并整理即可得出轨迹C 的方程;(2)分情况将曲线C 与直线方程联立,根据方程根的个数求得实数k 的取值范围.【小问1详解】设点 t1y =+,两边平方,并整理得24,0220,0y y x y y y ≥⎧=+=⎨<⎩,所以轨迹C 的方程为24,00,0y y x y ≥⎧=⎨<⎩.【小问2详解】易知直线():1l y k x =-,当0y ≥时,如下图所示:联立()214y k x x y⎧=-⎨=⎩,消去y 得2440x kx k -+=,21616k k ∆=-,当0∆=,即0k =或1k =时,有且仅有一个公共点且满足题意;当0∆<,即01k <<时,无公共点;当0y <时,令0x =,yk =-,当0k ≤时,无公共点;当0k >时,有一个公共点;综合以上可知当01k ≤<时,有且仅有一个公共点,故k 的取值范围是[)0,1.21.用一个矩形铁皮制作成一个直角圆形弯管(如图1):将该矩形铁皮围成一个圆柱体(如图2),再用一个与圆柱底面所成45︒的平面截圆柱,将圆柱截成两段,再将这两段重新拼接就可以得到直角圆形弯管.现使用长为2π,宽为π的矩形铁皮制作一个直角圆形弯管,当得到的直角圆形弯管的体积最大时(不计拼接损耗部分),解答下列问题.(1)求该直角圆形弯管的体积;(2)已知在制造直角圆形弯管时截得的截口是一个椭圆,求该椭圆的离心率;(3)如图3,若将圆柱被截开的一段的侧面沿着圆柱的一条母线剪开,并展成平面图形(如图4),证明:该截口展开形成的图形恰好是某正弦型函数的部分图象,并指出该正弦型函数的最小正周期与振幅.【答案】(1)2π(2)22(3)证明见解析,最小正周期为2π,振幅为1【解析】【分析】(1)易知直角圆形弯管的体积即为切割前圆管体积,且当矩形的长或宽作为圆柱的高时,体积最大,分别求两种情况的体积;(2)根据圆柱截面的性质可得a =,即可得离心率;(3)以椭圆的短轴所在直线在底面的投影为x 轴建立平面直角坐标系,设对于底面圆上一点()cos ,sin P αα,则()1,0与P 所连接的弧长为α,假设短轴对应的高度为0,可得点P 对应到椭圆上的点的高度,即可得截口展开形成的图形的函数,进而可得最小正周期与振幅.【小问1详解】易知直角圆形弯管的体积即为切割前圆管体积,且当矩形的长或宽作为圆柱的高时,体积最大,当矩形的长作为圆柱的高时,圆柱体的底面圆周长为π,则底面半径为12,高为2π,体积为221π2ππ22⎛⎫⨯= ⎪⎝⎭;当矩形的宽作为圆柱的高时,圆柱体的底面圆周长为2π,则底面半径为1,高为π,体积为222ππ1ππ2⨯=>;所以体积为2π;【小问2详解】设该椭圆为()222210+=>>x y a b a b,因此22a b =,即a =,所以22c e a ===;【小问3详解】以椭圆的短轴所在直线在底面的投影为x 轴建立平面直角坐标系,设对于底面圆上一点()cos ,sin P αα,则()1,0与P 所连接的弧长为α,假设短轴对应的高度为0,则点P 对应到椭圆上的点的高度为sin tan 45sin αα︒=,所以,截口展开形成的图形的函数解析式为sin y x =,最小正周期为2π,振幅为1.。
盐城市2025届高三年级第一学期期中考试化学试题注意事项:1.本试卷考试时间为75分钟,试卷满分100分,考试形式闭卷;2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分;3.答题前,务必将自己的学校、班级、姓名用0.5毫米黑色墨水的签字笔填写在答题卡上。
可能用到的相对原子质量:H 1 O 16 Cl 35.5 K 39 Cr 52 Fe 56 Cu 64一、单项选择题:共13题,每题3分,共39分。
每题只有一个选项最符合题意。
1.我国探月工程取得重大进展。
月壤中含有、、,下列关于三种微粒说法正确的是( )A .是同一种核素B .是同一种原子C .互为同位素D .是不同种元素2.反应,可用于吸收溴。
下列说法正确的是( )A .基态Br 原子的价电子排布式B .中既含离子键又含共价键C .的结构示意图为D .的空间构型为直线形3.实验室利用以下装置制备。
下列相关原理、装置及操作正确的是( )A .制取B .C .分离D .制取4.铝铵矾是一种重要的工业原料。
下列说法正确的是( )A .键角:B .半径:C .沸点:D .电负性:阅读下列材料,完成5~7题:20Ne 21Ne 22Ne 22224Br SO 2H O H SO 2HBr ++=+254s 4p24H SO 2S -2H O 33Al O 2CO ()3Al OH ()3Al OH 23Al O ()4422NH Al SO 12H O ⎡⎤⋅⎣⎦43NH NH +>()()32AlO r r +->22H S H O >()()Al H χχ>氯及其化合物应用广泛。
在化学工业上用于生产、、等化工产品,实验室可由与㳖盐酸共热得到;NaCl 是制备氯气、纯碱的主要原料;HCl 是“洁厕灵”的主要成分,也可与反应制备[ ];溶液可用于刻蚀覆钢板;、次氯酸盐可用于自来水消毒,在稀硫酸和的混合溶液中通入气体可制得。
2024—2025学年度第一学期期中学业水平检测初三数学试题一、选择题(本题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上)1.下列是分式的是( )A .B .C .D .2.下列各等式从左到右的变形是因式分解的是( )A .B .C .D .3.下列分式变形从左到右一定成立的是( )A .B .C .D .4.某班级10名同学的身高数据如表所示:编号12345678910身高(cm )165158168162174168162165168170下列统计量中,不能够描述这组数据集中趋势的是( )A .方差B .平均数C .中位数D .众数5.计算正确的是( )A .B .C .D .6.解分式方程时,去分母正确的是( )A .B .C .D .7.已知,,则整式的值为( )A .B .C .D .38.某学校篮球社团要购买一定数量的篮球,现有甲、乙两个商店销售某品牌篮球(篮球标价相同),国庆期间同时搞品牌促销活动,甲商店:购买篮球消费满699元,送两个篮球;乙商店:篮球单价打七折.如果到甲商店购买,正好能用720元经费买够数量;如果到乙商店购买,不仅能买购数量,还能剩48元,两位同学分别就两种方案给出了两个方程:①,②.其中表示πxy 12y +31x -4y 2(1)(1)1x x x +-=-23238222a b c a b c=⋅⋅111x x x ⎛⎫+=+⎪⎝⎭2244(2)x x x ++=+a a m b b m+=+am abm b=a am b bm=a a m b b m-=-2b a aa b b⎛⎫-÷÷ ⎪⎝⎭44b a-33b a -22b a-1-11222xx x+-=--12(2)1x x --=+12(2)1x x --=--12(2)1x x--=-+12(2)1x x-+-=+3a b -=4b c -=-2()a ac b a c ---12-4-3-720720480.72x x -⨯=-7202720480.7x x x+-=x的意义是( )A .均为篮球的数量B .均为篮球的单价C .方程①中的x 表示篮球的数量,方程②中的x 表示篮球的单价D .方程①中的x 表示篮球的单价,方程②中的x 表示篮球的数量9.体育课上老师组织了跳远测试(单位:米),小明6次成绩的平均数为7.8,方差为.如果小明再跳两次,成绩分别为7.7,7.9,则小明8次跳远成绩的方差为( )A .B .C .D .10.若关于的一元一次不等式组的解集是,且关于的分式方程有非负整数解,求符合条件的整数的和( )A .0B .1C .4D .5二、填空题(本大题共5小题,每小题4分,共计20分.不需写出解答过程,请把最后结果直接填写在答题纸的相应位置上)11.若分式无意义,则的值为___________.12.分解因式:___________.13.若,则分式的值为___________.14.小明等五位同学参加某次数学测验的成绩如下:100,100,x ,x ,80.已知这组数据的中位数和平均数相同,那么整数的值为___________.15.若关于的分式方程无解,则的值为___________.三、解答题(本题共8小题,共90分.请把解答过程写在答题纸上)16.先化简,再求值:,其中是不等式组的整数解.17.解方程:(1)(2)18.某公司办公室欲招聘一名秘书,现有甲、乙两名应试者,考试包含笔试和面试两个环节,两位应试者的成绩(满分100分)如下表:应试者面试成绩笔试成绩甲86901601801603253200x 11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩x a ≤y 24111y a y y y---=--a 11x x -+x 344a a -=132x y +=6223x xy yx y-+--x x 225242mx x x x +=--+m 222111x x x x -⎛⎫÷- ⎪+-⎝⎭x 2(1)1532x x x x-<+⎧⎨+≥⎩221522x x x x+=- 1.5211221x x x --=--乙9283(1)如果公司认为面试和笔试同等重要,那么谁将被录取?说明理由;(2)如果公司认为面试比笔试更重要,并分别赋予它们6和4的权,那么谁将被录取?请说明理由.19.【阅读材料】如果一个多项式不是完全平方式,我们常做如下的变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,利用配方法可以将多项式进行因式分解,还能解决一些与非负数有关的问题或求式子的最大值、最小值.例如:请仿照上例解决以下问题:(1)因式分解:___________=___________.(2)证明:对于任意实数x 、y ,多项式的值总为正数.20.已知:,.(1)当时,比较与的大小,并说明理由;(2)设,若是整数,求的整数值.21.某中学计划招聘一批广播员,有19名学生报名参加选拔.报名的学生需参加普通话、情境表达、个人才艺三项测试,每项测试均由五位评委打分(满分100分),取平均分作为该项的测试成绩,再按普通话占50%,情境表达占30%,个人才艺占20%计算出每人的总评成绩.根据以下图表解答相关问题.表1:1号和2号选手的三项测试成绩和总评成绩统计表:测试成绩/分选手普通话情景表达个人才艺总评成绩/分1号80758579.52号8680★★表2:1号和2号选手的个人才艺测试评委评分、平均数和方差统计表:选手评委评分平均数方差1号85,80,83,90,87852号85,84,84.5,84,87.5★(1)利用表2数据作答:①2号选手的中位数是___________分,众数是___________分,平均数是___________分;②求和的值,并比较大小.(2)计算2号的总评成绩;(3)如图是这19名学生总评成绩的频数分布直方图(不完整),学校决定根据总评成绩择优选拔9名广播员.(A :;B :;C :;D :)()22223214(1)4x x x x x +-=++-=+-245m m --=2261046x xy y y -+-+1P x =+41xQ x =+0x >P Q 32Qy P =-x y 21S 22S 21S 22S 6070x ≤<7080x ≤<8090x ≤<90100x ≤≤①补充完整总评成绩频数分布直方图;②试分析1号、2号是否入选,并说明理由.22.某商场分两次购进应季服装,第一次用4800元购进服装,由于服装特别畅销,很快全部售完.于是又用9000元购进第二批服装,第二次购进服装数量是第一次购进服装数量的,购进单价比第一次上涨了20元.(1)第一批和第二批服装的购进单价各是多少元?(2)该商场在销售第二批服装时,库存剩余40件,全部打八折出售,若想全部售完,第二批服装的利润不低于5200元,则第二批服装售价至少定为多少元?23.规定:正整数P 如果能写成(m 、n 均为正整数,且),则称为“平方差数”,其中m 、n 为的一个平方差变形,在的所有平方差变形中,若最大,则称m 、n 为的最佳平方差变形,此时.例如:,因为,所以9和7是32的最佳平方差变形,所以.(1)求;(2)若一个两位数q 的十位数字和个位数字分别为,,q 为“平方差数”且能被7整除,求的最小值.54()()P m n m n =+-m n ≠P P P 22m n +P 22()F P m n =+32(97)(97)(62)(62)=+-=+-22229762+>+(32)130F =(45)F x (17)y x y ≤≤≤x y +()F q参考答案:一、选择题:题号12345678910答案CDBAABCCDB二、填空题:11.12.13.14.60或11015.或3或10三、解答题:16.解:.,整数解为,0,1,2,解①得,,解②得,,所以,不等式解集为,又,1,,,原式.17.(1)解:原分式方程整理得,,,经检验:是方程的解,原分式方程的解为.(2)解:原分式方程整理得,,,,经检验:是方程的增解,原分式方程无解.18.(1)解:甲被录取.理由:甲的最终成绩为:,乙的最终成绩为:,,甲被录取.(2)解:乙被录取.理由:甲的最终成绩为:,乙的最终成绩为:,,乙被录取.19.(1)解:.(2)解:1x =-4(1)(1)a a a -+1-4-222111x x x x -⎛⎫÷- ⎪+-⎝⎭22111x x x ⎛⎫=÷- ⎪++⎝⎭21(1)x x x x+=⋅+22x =()()()21115322x x x x ⎧-<+⎪⎨+≥⎪⎩∴1-3x <1x ≥-13x -≤<0x ≠ 1-2x ∴=22122==221522x x x x+=-215(2)2x x x x+=-22(2)25(2)x x ⨯-+=-482510x x -+=-4x =4x =4x =1.5211221x x x --=-- 1.5211212x x x-+=-- 1.5212x x +-=-3 1.5x =0.5x =0.5x =8659058810⨯+⨯=92583587.510⨯+⨯=8887.5> ∴86690487.610⨯+⨯=92683488.410⨯+⨯=88.487.6> ∴()22245449(2)9m m m m m --=-+-=--222261046(3)(2)22x xy y y x y y -+-+-+-+≥2226946x xy y y y =-++-+,.多项式的值总为正数.20.(1)解:.理由:,,.(2)解:均为整数,的值为,,的整数值为3或或或.21.(1)解:①中位数84.5分,众数84分,平均分85分.②,,.(2)解:2号的总评成绩为:(分);(3)解:①C 组人数为:(人),补充完整总评成绩频数分布直方图如下:(2)由总评成绩频数分布直方图可得:选拔9名广播员应在C :;D :内,而1号的总评成绩79.5分不在C 、D 范围内,2号的总评成绩84分在C 、D 范围内,号不能入选,2号入选.22.(1)解:设第一次购进服装的单价为元,则第二次单价为元.由题意,得,解得,,经检验,为分式方程的解..答:第一批和第二批服装的购进单价分别为40元,60元.()()22269442x xy y y y =-++-++22(3)(2)2x y y =-+-+2(3)0x y -≥ 2(2)0y -≥22(3)(2)22x y y ∴-+-+≥∴2261046x xy y y -+-+P Q ≥411xP Q x x -=+-+2(1)41x x x +-=+2(1)1x x -=+0x > 2(1)01x x -∴≥+P Q ∴≥32Q y P =-3211x x x =-++2(1)51x x -++=+521x =-++,x y 1x ∴+1±5±y ∴7-1-3-22222211(8585)(8085)(8385)(9085)(8785)11.65S ⎡⎤=-+-+-+-+-=⎣⎦22222221(8585)(8485)(84.585)(8485)(87.585) 1.75S ⎡⎤=-+-+-+-+-=⎣⎦2212S S ∴>8650%8030%8520%84100%⨯+⨯+⨯=193736---=8090x ≤<90100x ≤≤1∴x (20)x +480059000420x x ⨯=+40x =40x =402060+=(2)解设第二批服装销售单价为y 元.第二批服装总量为:,,.答:第二批服装售价至少为100元.23.解:(1).,,(2)能被7整除,,或,或或或,当,时,,;当,时,,;当,时,,此时不是平方差数,不符合题意;当,时,,,.,的最小值为34.900015060=9000(60)4040(0.860)520060y y ⎛⎫-⨯-+⨯-≥ ⎪⎝⎭(60)1103224005200y y -⨯+-≥14214200y ≥100y ≥45(2322)(2322)(96)(96)(72)(72)=+-=+-=+-22222223229672+>+>+ 22(45)23221013F ∴=+=x y + 17x y ≤≤≤7x y ∴+=14x y +=16x y =⎧∴⎨=⎩25x y =⎧⎨=⎩34x y =⎧⎨=⎩77x y =⎧⎨=⎩1x =6y =16(53)(53)q ==+-22()5334F q =+=2x =5y =25(1312)(1312)q ==+-22()1312313F q =+=3x =4y =34q =q 7x =7y =77(3938)(3938)(92)(92)q ==+-=+-2222393892+>+ 22()39382965F q ∴=+=343132965<< ()F q ∴。
成都市高2022级高三11月月考数学试题(答案在最后)总分150分时间120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若命题p :20430x x x ∃>-+>,,则命题p ⌝为()A.20430,∃>-+≥x x xB.20430,∃≤-+≤x x xC.20430,∀>-+≤x x xD.20430,∀≤-+≤x x x 【答案】C 【解析】【分析】根据存在量词命题的否定为全称量词命题,写出结论即可.【详解】命题p 是一个存在性命题,说明存在使2430x x -+>的正数x ,则它的否定是:不存在使2430x x -+>的正数x ,即对任意的正数2430x x -+>都不能成立,由以上的分析,可得p ⌝为:20430,∀>-+≤x x x ,故选:C.2.在ABC V 中,“π6A >”是“1sin 2A >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】结合正弦函数的性质由1sin 2A >,可得π5π66A <<,再根据充分条件和必要条件的定义判断即可.【详解】在ABC V 中,()0,πA ∈,由1sin 2A >,可得π5π66A <<,所以“π6A >”是“1sin 2A >”的必要不充分条件.故选:B .3.已知向量,a b的夹角为2π3,且5,4a b == ,则a 在b 方向上的投影向量为()A.38b -B.58b -C.58bD.78b- 【答案】B 【解析】【分析】根据投影向量的计算公式,结合已知条件,直接求解即可.【详解】由题可知:12π54cos 523448a b a b b b b b bb bb⎛⎫⨯⨯- ⎪⋅⎝⎭⋅=⨯=⨯=-,故a在b 方向上的投影向量为58b - .故选:B.4.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,若342n n S n T n +=+,则62102a b b +()A.11113B.3713C.11126D.3726【答案】B 【解析】【分析】计算出11113713S T =,由等差数列的性质得611116a S T b =,6621062a a b b b =+,从而得到答案.【详解】因为等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,满足342n n S n T n +=+,所以111131143711213S T ⨯+==+,又11161116111111()211()2a a a Sb b T b +==+,故666210662322371a a a b b b b ===+,故选:B5.遗忘曲线由德国心理学家艾宾浩斯研究发现,描述了人类大脑对新事物遗忘的规律,某同学利用信息技术拟合了“艾宾浩斯遗忘曲线”,得到记忆率y 与初次记忆经过的时间x (小时)的大致关系:0.0610.6y x =-,则记忆率为20%时经过的时间约为()(参考数据:lg 20.30≈,lg 30.48≈)A.80小时B.90小时C.100小时D.120小时【答案】C 【解析】【分析】根据题设得到0.0643x =,两边取对数求解,即可得出结果.【详解】根据题意得0.06110.65x =-,整理得到0.0643x =,两边取以10为底的对数,得到4lg 0.06lg 3x =,即2lg 2lg 30.06lg x -=,又lg 20.30,lg 30.48≈≈,所以0.60.48lg 2lg1000.06x -≈==,得到100x ≈,故选:C.6.已知圆锥的侧面展开图是一个半径为43,面积为4π3的扇形,则该圆锥的外接球的表面积为()A.256π63B.4πC.9π2D.9π【答案】A 【解析】【分析】求出圆锥的底面圆半径和高,再求出外接球的半径,由此求得圆锥的外接球的面积.【详解】设圆锥的底面圆半径为r ,则该圆锥的侧面展开图扇形弧长为2πr ,于是144π2π233r ⋅⋅=,解得1r =,该圆锥的高为73h ==,设该圆锥的外接球的半径为R ,则球心到圆锥底面圆距离||d h R =-,由球的性质知,2227)13R R -+=,解得R =所以该圆锥的外接球的面积为22564ππ63S R ==.故选:A 7.若()*n n ∈N次多项式()()1212100nn nnn n P t a ta t a t a t a a --=++⋅⋅⋅+++≠满足()cos cos n P x nx =,则称这些多项式()n P t 为切比雪夫多项式.如,由2cos 22cos 1θθ=-可得切比雪夫多项式()2221P x x =-,同理可得()3343P x x x =-.利用上述信息计算sin 54︒=()A.14+ B.14C.48 D.48【答案】A 【解析】【分析】根据切比雪夫多项式得()33cos 4cos 3cos cos3P θθθθ=-=,即可取18θ= ,结合二倍角公式以及同角关系求解.【详解】由于()33cos 4cos 3cos cos3P θθθθ=-=,cos54sin 36︒=︒,即3cos544cos 183cos182sin18cos18︒=︒-︒=︒︒,变形可得24cos 1832sin18︒-=︒,即214sin 182sin18-=︒,解可得:51sin184︒=或514-(舍),则有21cos3612sin 184+︒=-=︒,即1sin 544+︒=,故选:A8.函数()2e 12e 21x x xh x -=++,不等式()()2222h ax h ax -+≤对x ∀∈R 恒成立,则实数a 的取值范围是()A.()2,-+∞ B.(),2-∞ C.()0,2 D.[]2,0-【答案】D 【解析】【分析】令()()1f x h x =-,根据奇偶性定义判断()f x 为奇函数,再应用导数研究()f x 的单调性,进而将目标式转化为2220ax ax +-≤在R 上恒成立,求参数范围.【详解】因为()2e 122e e e 2121x x xx x xh x --=+=-+++,所以()()22222e e e e 221212121x x x x xx x x x h x h x ---⋅+-=+-++-=+=++++,令()()1f x h x =-,则()()0f x f x +-=,得()f x 为奇函数,又()()()222ln41ln4e e e e e 121e 21222x x x x x xx x x x xf x --'⎛⎫=+-=+-=+- ⎪+⎝⎭+++'',1e 2e x x +≥,当且仅当1e e xx =,即0x =时等号成立;ln4ln4ln2142222x x ≤=++,当且仅当122xx=,即0x =时等号成立;所以()0f x '>,得()f x 在R 上为增函数,因为()()()()()()22222222022h ax h ax f ax f ax f ax f ax -+≤⇔-+≤⇔-≤-,所以2220ax ax +-≤在R 上恒成立,显然0a =时满足;当0a ≠,需满足20Δ480a a a <⎧⎨=+≤⎩,解得20a -≤<,综上,[]2,0a ∈-.故选:D【点睛】关键点点睛:注意构造()()1f x h x =-,判断其奇偶性、单调性,最后将问题化为2220ax ax +-≤在R 上恒成立为关键.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设1z ,2z 为复数,且120z z ≠,则下列结论正确的是()A.1212z z z z = B.1212z z z z +=+C.若12=z z ,则2212z z = D.1212z z z z ⋅=⋅【答案】ABD 【解析】【分析】根据题意,由复数的运算,代入计算,逐一判断,即可得到结果.【详解】设1i z a b =+,2i z c d =+(,,,)a b c d ∈R ,对于选项A ,因为12(i)(i)()()i z z a b c d ac bd ad bc =++=-++,所以12z z =且12z z 1212z z z z =,故A 正确;对于选项B ,因为12()()i z z a c b d +=+++,1i z a b =-,2i z c d =-,则12()()z z a c b d i +=+-+,12()()i z z a c b d +=+-+,所以1212z z z z +=+,故B 正确;对于选项C ,若12=z z ,例如11i z =+,21i z =-,满足12z z ==,但221(1i)2i z =+=,222(1i)2i z =-=-,即2212z z ≠,故C 错误;对于选项D ,因为21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,所以21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,所以1212z z z z ⋅=⋅,故D 正确.故选:ABD.10.下列关于概率统计的知识,其中说法正确的是()A.数据1-,0,2,4,5,6,8,9的第25百分位数是1B.已知随机变量(),X B n p ,若()40E X =,()30D X =,则160n =C.若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立D.若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =-+上,则这组样本数据的相关系数为12-【答案】ABC 【解析】【分析】根据百分位数的定义计算判断A ,由二项分布的数学期望与方差公式计算可判断B ,根据相互独立事件及条件概率的概率公式计算可判断C ,根据相关系数的定义可判断D.【详解】对于选项A ,8个数据从小到大排列,由于825%2⨯=,所以第25百分位数应该是第二个与第三个的平均数0+2=12,故A 正确;对于选项B ,因为(),X B n p ~,()40E X =,()30D X =,所以40(1)30np np p =⎧⎨-=⎩,解得1,1604p n ==,故B 正确;对于选项C ,由()()1P N M P N +=,可得()()1P N M P N =-,即()()()P NM P N P M =,即()()()P NM P N P M =,所以M 与N 相互独立,故C 正确;对于选项D ,因为样本点都在直线132y x =-+上,说明是负相关且线性相关性很强,所以相关系数为1-,故D 错误.故选:ABC.11.“曼哈顿距离”是十九世纪的赫尔曼•闵可夫斯省所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点()()1122,,,A x y B x y 的曼哈顿距离()1212,d A B x x y y =-+-,则下列结论正确的是()A.若点()()1,3,2,4P Q ,则(),2d P Q =B.若对于三点,,A B C ,则“()()(),,,d A B d A C d B C +=”当且仅当“点A 在线段BC 上”C.若点M 在圆224x y +=上,点P 在直线280x y -+=上,则(),d P M 的最小值是25-D.若点M 在圆224x y +=上,点P 在直线280x y -+=上,则(),d P M 的最小值是4【答案】AD 【解析】【分析】由定义即可判断A 选项,由数形结合即可判断出B 选项,C,D 选项是求点与点的“曼哈顿距离”距离,由基本不等式转化成点到点的平面距离,借助数形结合即可得出判断.【详解】对于A 选项:由定义可知(),21432d P Q =-+-=,故A 选项正确;对于B 选项:设点()()()112233,,,,,A x y B x y C x y 则()()()121213132323,,,,d A B d A C x x y y x x y y d B C x x y y +=-+-+-+-=-+-显然,当点A 在线段BC 上时,121323121323,x x x x x x y y y y y y -+-=--+-=-,()()(),,,d A B d A C d B C ∴+=成立,如图:过点B 作BE y ⊥轴,过点C 作EE x ⊥轴,且相交于点E ,过点A 作AD BE ⊥与D ,过点A 作AF CE ⊥与F ,由图可知121213132323x x y y x x y y BD AD AF CF BE CE x x y y -+-+-+-=+++=+=-+-,显然此时点A 不在线段BC 上,故B 选项不正确;对于C ,D 选项:当0,0a b >>a b ≥+≥∴想要(),d P M 最小,点M 到直线距离最小时取得,∴过原点O 作OM ⊥直线280x y -+=交圆于M ,如图:设(),M a b ,则25452,55OMbk M a ⎛⎫==-∴- ⎪ ⎪⎝⎭设点0,0,则()00,d P M x y =+-,又 当0,ab a b =+≥①当005x +=时,由()00544,25x y d P M =+=-+004x y =++-=-②当04505y -=时,由002885x y =-=-()00,8d P M x y =+-=-又48-<- ;(),d P M ∴的最小值为:4.故C 选项错误,D 选项正确.故选:AD【点睛】思路点睛:本题考查了新概念问题,解决新概念问题首先要确定新概念的定义或公式,将其当做一种规则和要求严格按照新概念的定义要求研究,再结合所学相关知识处理即可.三、填空题:本题共3小题,每小题5分,共15分.12.6(12)(13)x x -+的展开式中,含2x 的项的系数为________.(用数字作答)【答案】99【解析】【分析】先求二项式6(13)x +的展开式的通项,再由乘法法则求出6(12)(13)x x -+的展开式中含2x 的项即可得解.【详解】由题意得6(13)x +的展开式的通项为()166C 33C rr r r rr T x x +==,所以6(12)(13)x x -+的展开式中,含2x 的项为2221112663C 23C 99x x x x -⋅=,所以展开式中含2x 的项的系数为99.故答案为:99.13.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点和上顶点分别为F 和A ,连接AF 并延长交椭圆C 于B ,若32AOB AOF S S = ,则椭圆C 的离心率为_______.【答案】3【解析】【分析】先根据面积比例关系得出点B 的横坐标,点在直线AF 上得出B 的坐标,最后应用点B 在椭圆上得出2213c a =得出离心率.【详解】因为32AOB AOF S S = ,所以132122BAOB AOF OA x S S OA c ⨯==⨯ ,所以32B x c =,设()()0,,,0A b F c ,设直线():bAF y x c c =--,点B 在直线AF 上,所以2B by =-,点B 在椭圆上,可得22229441b ca b +=,所以2213c a =,即得3c a =.故答案为:3.14.设数列{}n a 的前n 项和为21212,1,1,23n nn n a a S a a a +++===.对任意()()*22221N ,21log log n n n n S a a λ+∈++>恒成立,则λ的取值范围为______.【答案】3,2∞⎛⎫-+ ⎪⎝⎭【解析】【分析】根据递推关系可得{}1n n a a +-为等比数列,即可结合累加法求解12n n a -=,由等比求和公式得21nn S =-,即可代入不等式化简得()22212n n n λ+>-⋅,构造()2212n nn b n =-⋅,作差得数列单调性,即可求解.【详解】由21213n nn a a a +++=,得()2112n n n n a a a a +++-=-,又211a a -=,所以数列{}1n n a a +-是以2为公比,1为首项的等比数列,所以112n n n a a -+-=,则()()()1231111221112222211212n n n n n n n n n a a a a a a a a --------=-+-++-+=+++++=+=- ,进而数列{}n a 是以2为公比,1为首项的等比数列,可得122112nn n S -==--,不等式()()2222121log log n n n S a a λ+++>恒成立,即()()()2222122212nnn n n n λλ-+>⇒+>-⋅.设()2212n n n b n =-⋅,则()()()()()223211112121221221212n n n n n n n n n b b n n n n ++++-+--=-=+⋅-⋅-⋅+⋅,当1n ≥时,10n n b b +-<,为递减数列,所以()1max 12n b b ==,所以122λ+>,解得32λ>-.故答案为:3,2∞⎛⎫-+ ⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.锐角ABC V 的内角,,A B C 所对的边分别为,,a b c ,若2cos 2b a B c +=,且a =,3b =.(1)求边c 的值;(2)求内角A 的角平分线AD 的长.【答案】(1)2c =(2)5AD =【解析】【分析】(1)根据正弦定理结合三角恒等变换运算求解可得1cos 2A =,即可利用余弦定理求解1c =或2c =,利用锐角三角形即可得2c =;(2)利用等面积法,结合三角形的面积公式即可求解.【小问1详解】因为2cos 2b a B c +=,由正弦定理可得:()sin 2sin cos 2sin 2sin 2sin cos 2cos sin B A B C A B A B A B +==+=+,即sin 2cos sin B A B =,又因为π02B <<,则sin 0B ≠,可得1cos 2A =,又因为π02A <<,所以π3A =.由余弦定理可得2222cos a b c bc A =+-,即227323cos60c c =+-⨯⨯⨯︒,则2320c c -+=,解得:1c =,或2c =,由于三角形为锐角三角形,故2220a c b +->,故220c ->,进而只取2c =,故2c =.【小问2详解】根据面积关系可得ABC ABD ACD S S S =+ ,即11123sin 602sin 303sin 30222AD AD ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得:5AD =.16.如图,在四棱锥P ABCD -中,2PD =,1AD =,PD DA ⊥,PD DC ⊥,底面ABCD 为正方形,M ,N 分别为AD ,PD 的中点.(1)求点B 到平面MNC 的距离;(2)求直线MB 与平面BNC 所成角的余弦值.【答案】(1)63(2)5【解析】【分析】(1)建立空间直角坐标系,运用向量点到平面的距离公式计算即可;(2)先求出直线与平面所成的角,可通过向量法,求出平面的法向量,再根据向量的夹角公式求出直线与平面所成角的正弦值,最后根据三角函数关系求出余弦值.【小问1详解】因为2PD =,1AD =,PD DA ⊥,PD DC ⊥,底面ABCD 为正方形,以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴建立空间直角坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,2)P ,因为M ,N 分别为DA ,DP 中点,所以1(,0,0)2M ,(0,0,1)N ,则1(,0,1)2MN =- ,1(,1,0)2MC =- ,1(,1,0)2MB = ,设平面MNC 的法向量为(,,)n x y z =,由00n MN n MC ⎧⋅=⎪⎨⋅=⎪⎩ ,即102102x z x y ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令2x =,则1y =,1z =,所以(2,1,1)n = ,则12111022MB n ⋅=⨯+⨯+⨯=,||n == 根据点B 到平面MNC的距离公式|63|||MB n d n ==⋅=.【小问2详解】首先设平面BNC 的法向量(,,)m a b c =,(1,1,1)BN =-- ,(1,0,0)BC =- ,由00m BN m BC ⎧⋅=⎪⎨⋅=⎪⎩,即00a b c a --+=⎧⎨-=⎩,令1c =,则0a =,1b =,所以(0,1,1)m = ,设直线MB 与平面BNC 所成角为θ,则10111012MB m ⋅=⨯+⨯+⨯=,5||2MB ==,||m == ,所以||10sin 5||||MB m MB m θ⋅== ,因为22sin cos 1θθ+=,所以cos 5θ==,则直线MB 与平面BNC 所成角的余弦值155.17.某工厂生产某款电池,在满电状态下能够持续放电时间不低于10小时的为合格品,工程师选择某台生产电池的机器进行参数调试,在调试前后,分别在其产品中随机抽取样本数据进行统计,制作了如下的22⨯列联表:产品合格不合格合计调试前451560调试后35540合计8020100(1)根据表中数据,依据0.01α=的独立性检验,能否认为参数调试与产品质量有关联;(2)现从调试前的样本中按合格和不合格,用分层随机抽样法抽取8件产品重新做参数调试,再从这8件产品中随机抽取3件做对比分析,记抽取的3件中合格的件数为X ,求X 的分布列和数学期望;(3)用样本分布的频率估计总体分布的概率,若现在随机抽取调试后的产品1000件,记其中合格的件数为Y ,求使事件“Yk =”的概率最大时k 的取值.参考公式及数据:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.0250.010.0050.001x α5.0246.6357.87910.828【答案】(1)依据0.01α=的独立性检验,可认为参数调试与产品质量无关联(2)分布列见解析,数学期望为94(3)875【解析】【分析】(1)计算2χ的值,将其与0.01α=对应的小概率值比较即得;(2)先算出抽取的8件产品中的合格品与不合格品的数目,再从中抽取3件,根据合格品件数X 的可能值运用超几何分布概率计算出概率,列出分布列计算数学期望即得;(3)分析得出7(1000,8Y B ,利用二项分布概率公式得出1000100071()C ()(),0,1,,1000,88kk k P Y k k -=== 再利用作商法分析得875k =时,事件“Y k =”的概率最大.【小问1详解】零假设为0H :假设依据0.01α=的独立性检验,认为参数调试与产品质量无关联;则220.01100(4553515) 2.344 6.63580204060x χ⨯-⨯=≈<=⨯⨯⨯,故依据0.01α=的独立性检验,没有充分证据说明零假设0H 不成立,因此可认为0H 成立,即认为参数调试与产品质量无关联;【小问2详解】依题意,用分层随机抽样法抽取的8件产品中,合格产品有458660⨯=件,不合格产品有2件,而从这8件产品中随机抽取3件,其中的合格品件数X 的可能值有1,2,3.则126238C C 3(1),C 28P X ===216238C C 15(2),C 28P X ===363802C C 10(3)C 28P X ===.故X 的分布列为:X123P32815281028则15109()12328284328E X =⨯+⨯+⨯=;【小问3详解】依题意,因随机抽取调试后的产品的合格率为357408=,故7(1000,8Y B ,则1000100071()C ()(),0,1,,1000,88kkkP Y k k -=== 由1199910001000100071C (()(1)10007000788771()11C ()()88k k k kk k P Y k k k P Y k k k ++--=+--====++,故由7000711k k ->+可解得78748k <,因Z k ∈,故当0874k <≤时,()P Y k =单调递增;由7000700011k k -≤+可解得78748k ≥,即当875k ≥时,()P Y k =单调递减.故当事件“Y k =”的概率最大时,875k =.【点睛】方法点睛:(1)计算卡方值,并与小概率值比较得出结论;(2)求随机变量的分布列关键在于判断X 满足的概率模型;(3)对于二项分布中概率最大值问题,一般考虑作商后分析判断商与1的大小即得.18.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为4,渐近线方程为12y x =±.(1)求双曲线C 的标准方程;(2)双曲线的左、右顶点分别为12A A 、,过点()3,0B 作与x 轴不重合的直线l 与C 交于P Q 、两点,直线1A P 与2A Q 交于点S ,直线1AQ 与2A P 交于点T .(i )设直线1A P 的斜率为1k ,直线2A Q 的斜率为2k ,若12k k λ=,求λ的值;(ii )求2A ST 的面积的取值范围.【答案】(1)2214x y -=(2)(i )15-;(ii )2522,,933∞⎡⎫⎛⎫⋃+⎪⎢ ⎪⎪⎝⎭⎣⎭【解析】【分析】(1)根据双曲线性质计算即可;(2)设直线l 方程及P Q 、坐标,联立双曲线方程,根据韦达定理得出纵坐标和积关系,(i )利用两点斜率公式消元计算即可;(ii )联立直线方程求出S T 、坐标,并求出ST ,利用三角形面积公式及2t 范围计算即可.【小问1详解】由题意知:124,2b a a ==,解得2,1a b ==,双曲线方程为2214xy -=.【小问2详解】因为直线l 斜率不为0,设直线l 方程为3x ty =+,易知()()122,0,2,0A A -,设()()1122,,,P x y Q x y ,联立2214x y -=,得()224650t y ty -++=,则212212240Δ06454t t y y t y y t ⎧-≠⎪>⎪⎪⎨+=--⎪⎪=⎪-⎩,且()121256y y y y t =-+,(i )()()21121121212121223222325ty k y x y ty y y k x y ty y ty y y λ+--+==⋅=⋅=++++()()121121212255165525556y y y y y y y y y y -++-===--+-++;(ii )由题可得:()()2211:2,:2A Q y k x A P y k x =-=+.联立可得:()2112124410,333s k k x S k k k +⎛⎫==⇒ ⎪-⎝⎭,即()11104,332y S x ⎛⎫ ⎪ ⎪+⎝⎭,同理()22104,332y T x ⎛⎫ ⎪ ⎪+⎝⎭.()()()121212121212125101010532235535256y y y y y y ST x x ty ty t y y t y y -∴=-=-=++++-++++==,故2212A ST A S S ST x x =-= ,20t ≥且24t ≠,222,,933A STS ∞⎡⎫⎛⎫∴=∈⋃+⎪⎢ ⎪⎪⎝⎭⎣⎭ .【点睛】关键点点睛:反设直线线并设点,联立双曲线方程后得出P Q 、纵坐标的和积关系,为后面消元转化减轻计算量.19.已知定义:函数()f x 的导函数为()f x ',我们称函数()f x '的导函数()f x ''为函数()f x 的二阶导函数,如果一个连续函数()f x 在区间I 上的二阶导函数()0f x ''≥,则称()f x 为I 上的凹函数;二阶导函数()0f x ''≤,则称()f x 为I 上的凸函数.若()f x 是区间I 上的凹函数,则对任意的12,,x x n x I ∈,有不等式()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭恒成立(当且仅当12n x x x === 时等号成立).若()f x 是区间I 上的凸函数,则对任意的12,,n x x x I ∈ ,有不等式()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭恒成立(当且仅当12n x x x === 时等号成立).已知函数()1f x x x =+,π0,2x ⎛⎤∈ ⎥⎝⎦.(1)试判断()f x 在π0,2⎛⎤ ⎥⎝⎦为凹函数还是凸函数?(2)设12,x x ,L ,0n x >,2n ≥,且121n x x x +++= ,求1212111n nx x xW x x x =++++++ 的最大值;(3)已知*N a ∈,且当π0,2x ⎛⎤∈ ⎥⎝⎦,都有()()()sin sin 31cos 0x ax x f x x +-+>恒成立,求实数a 的所有可能取值.【答案】(1)凸函数(2)1n f n ⎛⎫⋅⎪⎝⎭(3){}2【解析】【分析】(1)根据凹凸函数的定义判断即可;(2)由(1)知()f x 在π0,2⎛⎤⎥⎝⎦为凸函数,根据凸函数的性质结合题意即可求解;(3)令()sin sin 3cos h x x ax x x =+-,π0,2x ⎛⎤∈ ⎥⎝⎦,则问题转化为ℎ>0在π0,2⎛⎤ ⎥⎝⎦上恒成立,对a 分类讨论,结合导数的运算研究函数的单调性即可求解.【小问1详解】()1x f x x =+,π0,2x ⎛⎤∈ ⎥⎝⎦,所以()()211f x x ='+,″()321x =-+,因为π0,2x ⎛⎤∈ ⎥⎝⎦,所以″0<,所以()f x 在π0,2⎛⎤ ⎥⎝⎦为凸函数.【小问2详解】由(1)知()1x f x x =+在π0,2⎛⎤⎥⎝⎦内为凸函数,又1212111n nx x xW x x x =++++++ ,且121n x x x +++= (12,x x ,L ,0n x >,2n ≥),所以()()()12121.nn x x x W f x f x f x n f n f n n +++⎛⎫⎛⎫=+++≤⋅=⋅ ⎪⎪⎝⎭⎝⎭所以max 1.W n f n ⎛⎫=⋅ ⎪⎝⎭【小问3详解】令()sin sin 3cos h x x ax x x =+-,π0,2x ⎛⎤∈ ⎥⎝⎦,则ℎ>0在π0,2⎛⎤ ⎥⎝⎦上恒成立,则()cos 2cos 3sin h x a ax x x x =+'-,且()02h a '=-,当1a =,πππ3ππ3πsin sin cos 204444424h ⎛⎫⎫=+-=-<⎪ ⎪⎝⎭⎝⎭,不合题意舍去;当2a =,则()sin sin23cos h x x x x x =+-,故()2cos22cos 3sin h x x x x x =-+',令()()k x h x =',则()4sin25sin 3cos 8sin cos 5sin 3cos k x x x x x x x x x x=-++=-++'5sin 5sin cos 3cos 3sin cos x x x x x x x =-+-()()5sin 1cos 3cos sin x x x x x =-+-,令()sin g x x x =-,π0,2x ⎛⎤∈ ⎥⎝⎦,则()1cos 0g x x ='->,所以()g x 在π0,2x ⎛⎤∈ ⎥⎝⎦上递增,所以sin x x >,所以()'0k x >,即()()'k x h x =在π0,2x ⎛⎤∈ ⎥⎝⎦上递增,又()020h a -'==,则ℎ′>0,所以ℎ在π0,2x ⎛⎤∈ ⎥⎝⎦上递增,又()00h =,即ℎ>0,π0,2x ⎛⎤∈ ⎥⎝⎦,符合题意;当3a ≥,令0ππ0,12x a ⎛⎤=∈ ⎥-⎝⎦,则()0001πax x x a -=-=,()00sin sin πax x =+,所以()()00000000000sin sin 3cos sin sin 3cos 3cos 0h x x ax x x x x x x x x π=+-=++-=-≤,不合题意舍去,综上,正整数a 的取值集合为{}2.【点睛】方法点睛:求解“新定义”题目,主要分如下几步:(1)对定义进行信息提取,明确新定义的名称和符号;(2)对新定义所提取的信息进行加工,探求解决方法和相近的知识点,明确它们的相同点和相似点;(3)对定义中提取的知识进行提取和转换,如果题目是新定义的运算、法则,直接按照法则计算即可;如果新定义是性质,一般要判断性质的适用性,能否利用定义的外延,可用特值排除.。
2011--2012学年上期期中考试试卷小六语文“山明水净夜来霜,数树深红出浅黄。
”秋天的景色真美。
在这橙黄橘绿的时节,让我们拿起手中的笔,做一次简单的测试吧。
只要你仔细审题,用心思考,认真答题,你一定会有出色的表现,因为你是最棒的!一、试试你的听力怎么样?(10分)1、请你给这则新闻加一个合适的题目:。
请从中选择连个成语写下来:、。
(4分)2、刘翔为什么能够赢得一片赞誉?(4分)3、你想对刘翔说些什么?想一想,写几句话。
(3分)二、语文知识积累和运用。
(23分)1、请把下面这首诗规范地抄写在方格里,把你认为写得最好的5个字下面画“V”。
(3分)银烛秋光冷画屏,轻罗小扇扑流萤。
天阶夜色凉如水,卧看牵牛织女星。
D 洋装虽然穿在身,我心依然是中国心。
5、按要求,写句子。
(4分)A春风吹得满山的桃树绽开了五颜六色的花,一片火红,漂亮极了。
(修改病句)B 蓝天衬着高矗的巨大雪峰,在太阳下,几块白云在雪峰间投下云影,就像白缎上绣了几多银灰的暗花。
(仿写句子)6、李欣最近经常在课堂上看《三国演义》,班长打算找她谈话,要达到既保护她课外阅读的积极性,又能引导她重视课堂学习的目的。
如果你是班长,你会怎样说?(2分)7、第四单元我们进行了关注自然生态及生活环境的综合性学习活动。
请结合本次活动完成下面试题。
(4分)A 你认为我们居住的地方就环境来说存在的主要问题是什么?选一条写下来。
B 就这个问题你有什么具体的建议?选一条写下来。
三、联系课文内容做题。
(22分)1、学完《仙人掌》,你知道了哪些知识?请选择一条写下来。
(2分)2、好的文章题目可以吸引读者,还能起到画龙点睛的作用。
请你、写出《中华星》这个题目的妙处。
(2分)3、读句做题。
(4分)(1)“把耳朵叫醒,注意倾听世界。
相信总有在、一种是属于成功的。
”这句话你是怎么理解的?(2)“湍急的江水,在曲折的河道中卷着浪花,打着漩涡,一路翻腾着奔向远方。
”从带点的词语对年轻母亲的出现有什么作用?4、首先把我征服的,是北京的树叶。
从机场进入市区,夹道的松树、柏树,高高的白杨树,全是绿的,就在这绿色中间,呈现出我在家乡所看不到的的黄,的金,的红。
一时辨认不清的乔木、灌木,把千百种奇妙的色彩纷繁而又和谐地展现在我的面前,使我又惊又喜。
(1)联系课文内容,在横线山填入合适的内容。
(2分)(2)这段话中第一句的作用是:。
“征服”在这里是指。
(2分)(3)看到沿途的美景,作者是“又惊又喜”。
他“惊”的是什么?“喜”的又是什么?(2分)5、一个偶然的机会,我从图书管理员口中听到了一个新鲜的名词——“数字图书馆”,这才知道,随着电子时代的到来,如今的图使馆已经有了很大的变化,出现了很多“数字图书馆”。
与传统的图书馆不同,“数字图书馆”收藏的是“电子图书”,就是利用现代信息技术对传统的文字、图像和声音进行压缩处理,使它转化成数字,然后通过计算机技术进行储存,通过网络通讯技术进行传播和接受。
如果把传统的图书转化为电子图书,就会得到更大范围的传播和更持久的保存。
这是图书馆业的一场革命,我们所在的图书馆也是数字图书馆的试点之一。
听到这些,我和伙伴们都渴望加入到新的图书馆中。
(1)这一段话主要介绍了数字图书馆的什么?(2分)(2)请用自己的话说说什么是“电子图书”。
(3分)(3)《数字图书馆》这篇文章采用了什么表达方法?这些写有什么好处?(3分)四、阅读短文《我的父亲母亲》,回答问题。
(15分)⑴有人说没有见过一辈子不吵架的夫妻。
我见过。
父亲母亲,一辈子没有吵过架。
⑵父亲长母亲六岁,巧的是父母的生日竟是同一天。
⑶打记事起,常见爱好京剧的父亲把一些票友带回家。
母亲每每笑脸相迎,端茶倒水伺候。
⑷那班男男女女有拉弦的、敲鼓的、打锣的,有唱花脸小生的、花旦青衣的、老生老旦的……有时一乐和就是一个下午,父亲还会热情留人吃晚饭。
⑸这边母亲似乎早就知道要吃饭,已擀好面条。
但母亲通常一边擀面条一边小声唠叨:“好歹有个星期天,让你爸弄得乱七八糟,连个清静也没有。
”⑹曲终人散,父亲是陪人喝过酒的,脸红扑扑的,酒后的父亲愈和蔼可亲。
母亲开始数落,大致是父亲不体谅她的辛苦,油瓶倒了也不扶,家里家外都是她操持云云。
她经常这样威胁父亲:“你再领着些狐朋狗友回来闹腾,我就掀桌子,回娘家,倒地方给你!”⑺父亲只是“嘿嘿”笑着,还会夸母亲今天的菜炒得好,面条擀得匀细。
母亲的埋怨渐渐平息下来。
⑻母亲那时候每天要到生产队出工,父亲已是当地受人尊敬的中学校长。
父亲体恤母亲体力不济,星期天和假期常替母亲出工。
母亲在家也不会闲着,父亲若说:“让你歇息你比出工还劳累,生就的劳碌命。
”母亲会一边嘴里抱怨着“我嫁到你们家没有过一天好日子”,一边手中忙着家务。
⑼父亲退休的时候身体不好,有胃病、气管炎、胸膜炎、颈椎病等等。
母亲一心一意照料回家的父亲,那些疾病居然一点点离开了父亲。
而母亲,老来患上了冠心病、高血压,曾经高挑的身材一年年下来,渐渐虚胖起来。
⑽我在城里买房后,父母每年都会来城里到我的家中住几个月。
父亲每天早晨六点钟准时起床,给自己和母亲每人冲一碗蜂蜜水或豆奶喝下,然后带着母亲到公园晨练。
有个下雪天,母亲看天气不好没有起来,父亲依然要出去。
我怕路滑,阻拦。
父亲说:“你妈那么胖,得的那些病都是缠人的。
她哪天中风、偏瘫什么的,我得有个好身体伺候她啊。
”顿时,我怔住了。
⑾父亲七十三岁那年春天,患胆管癌,发现时已经是晚期。
一向病恹恹的母亲在父亲病后,每日拖着虚胖的身子,忙忙碌碌围着父亲转。
父亲有时被病痛折磨得烦躁,冲母亲发脾气,母亲笑笑:“看你爸,老了长能耐了。
”好像父亲发脾气也是宠爱她的另一种方式似的。
⑿父亲坚忍地活着,病后撑了两年又二个月,平静地走了。
母亲没有大哭,她有条不紊地教给我们如何按着风俗送父亲。
只是,母亲的双眼空洞着,让人不忍对视。
⒀我常和母亲通电话,母亲说着说着就会说起父亲,于是哭泣。
母亲每每都是怨父亲,祥林嫂般地重复这几句:“你爸说话不算数,他说一辈子有他我就不会受半点委屈,他说要等着我不能动弹的时候照顾我,他说他要和我一起过一百岁的生日……”⒁忽然间我泪眼模糊,心头跳出几个挥之不去的字——爱可以怨。
想起父亲母亲。
1、从全文看,父亲母亲一辈子不吵架的真正原因是什么?(3分)2、第③段中的“常见”、“每每”在文中的作用是什么?(4分)3、本文围绕“我”的父亲母亲写了五件事,请用简洁的语言概括出其中的三件。
(3分)4、第⑽小节中,我听到父亲的话后怔住了,此时我会想些什么?请试着写几句话。
(2分)5、父亲母亲每年都来城里“我”的家中住几个月,这说明了什么?父亲去世后,“我”除了常和母亲通电话外,你认为“我”还应该做些什么?(3分)五、习作。
(30分)题目一:这就是我题目二:夸夸我们的(我的)XX要求:请从以上题目中任选其一,写一篇450字左右的习作,注意做到语句通顺,内容具体,还要写出自己的真情实感。
文中不要出现真实的人名和地名。
小六语文听力内容2011年的大邱世界田径锦标赛,既被视为2012年伦敦奥运会的预演,又是刘翔伤愈复出后证明实力的绝佳时机,它对刘翔的重要程度不言而喻。
决赛中身披红色战袍的刘翔就像一匹骏马,飞奔向110米栏终点线时,全然不知极富戏剧性的一幕即将上演。
最后几秒钟,原本已将所有对手都甩在身后的刘翔,意外地被邻道的罗伯斯多次拉拽,最终与金牌失之交臂。
赛后的新闻发布会上,刘翔面带微笑地接受罗伯斯的道歉,以优雅的举止和宽容的心态赢得了一片赞誉之声。
镜头面前刘翔的淡定、从容、幽默,给大家上了生动一课,教大家如何真正去享受体育的过程之美,也教大家如何领略超越的意义。
小六语文参考答案一、1、刘翔与金牌失之交臂,却赢得了一片赞誉不言而喻失之交臂2、因为刘翔虽然没能获得金牌,但在新闻发布会上,他能够面带微笑地接受罗伯斯的道歉,用优雅的举止和宽容的心态对待别人的过错。
3、略二、1、略2、A珊瑚B 椭镌C fēi xián D zhāo zhuó 3、D 4、A似曾相识燕归来B先天下之忧而忧C澄澄碧水,宵中寒映一天星D我的祖先早已把我的一切,烙上中国印5、A春风吹得满山的桃树绽开了红色的花,一片火红,漂亮极了。
B 略6、略如:《三国演义》确实是一本好书,但如果在课堂上偷偷地看,既影响课堂学习,又使阅读乐趣大打折扣,何不课后才看呢?7、略三、1、略2这个题目一语双关,既是一个小行星的名字,又是张钰爱国精神的体现。
3、(1)只要我们用一颗热爱生活的心曲去感受,用眼睛细细观察,用耳朵静静倾听,就能发现在平凡甚至是窘迫生活中的爱与美,获取成功的灵感。
(2)这几个动词突出了江水的湍急,交代了年轻母亲出现的艰难环境,反衬出年轻母亲的勇敢沉着、坚强奋进及对孩子的深爱。
4、(1)深深浅浅闪闪烁烁团团簇簇(2)总起句,概括了秋天的树叶给作者的感受北京的树叶令作者感到心旷神怡(3)“惊”的是居然在绿色中又呈现出千百种奇妙的色彩。
“喜”的是北京的色彩虽纷繁但有十分“和谐”。
5、(1)主要介绍了什么是电子图书和数字图使馆,二者之间是什么关系,以及数字图书馆的优点。
(2)电子图书就是利用现代信息技术对传统的文字、图像和声音进行压缩处理,使它转化成数字,然后通过网络通讯技术进行传播,让读者通过计算机上进行复制阅读的一种新型图书。
(3)作者采用了拟人化手法,用第一人称来叙述,用生动活泼、简明易懂的文字进行介绍,可以增加读者的兴趣,同时也便于理解文章的内容。
四、1、父亲母亲互相关心,互相体谅,互相宽容。
(意思相近即可得。
)2、“常见”说明爱好京剧的父亲把一些票友带回家中,不是一次,而是经常性的;“每每”说明母亲对父亲带回家来的朋友们每一次都是笑脸相迎,热情款待。
这两个词更加突出了父母关系的融洽。
(大意正确即可给。
)3、①母亲热情招待父亲的朋友;②父亲常替母亲出工;③母亲细心照料多病的父亲;④父亲照顾多病的母亲;⑤母亲细心照料病逝前的父亲。
说明:写对一件事给1分。
4、略5、儿女孝顺父母,父母关心儿女,儿女与父母关系融洽。
还可以常回家看看,经常接母亲来城玩,或将母亲接到城里来住等等。
说明:第一问给2分,第二问答对一种就给1分。
只要言之有理即可给分。
五、略。