高中物理动量定理专题训练答案
- 格式:doc
- 大小:449.50 KB
- 文档页数:10
【物理】物理动量定理练习题及答案一、高考物理精讲专题动量定理1.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
(g取10m/s2)【答案】1.5xl03N;方向向上【解析】【详解】设运动员从人处下落,刚触网的速度为匕=,2ghi=8m/s运动员反弹到达高度生,,网时速度为v2=q2gh2=10m/s在接触网的过程中,运动员受到向上的弹力F和向下的重力mg,设向上方向为正,由动量定理有(F-)得F=1.5xlO3N方向向上2. 一质量为0.5kg的小物块放在水平地面上的八点,距离八点5m的位置B处是一面墙,如图所示,物块以vo=9m/s的初速度从人点沿方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.为质点)放在的木板左端,物块与木板间的动摩擦因数〃=0.4。
质量m°=0.005kg的子弹以速度%=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取3B⑴求物块与地面间的动摩擦因数〃;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)〃=0.32(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:代入数据解得:户032.(2)规定向左为正方向,对碰墙的过程运用动量定理得:Fat=mv—mv,代入数据解得:F=130N.3.如图所示,质量M=l.Okg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视10m/s2。
求:(1)物块的最大速度VI:(2)木板的最大速度(3)物块在木板上滑动的时间t%m【答案】(l)3m/s;(2)lm/s:(3)0.5s o【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:movo=(m+m。
高中物理动量定理常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。
现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。
已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。
求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t 【答案】(1) (2)【解析】 【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律: ;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。
求(1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。
【答案】(1)20N ∙s ,方向竖直向下(2)202kg m/s ⋅, 与水平方向的夹角为45° 【解析】 【详解】(1)物体做平抛运动,则有:212h gt =解得:t =2s则物体从抛出到落到地面过程重力的冲量I=mgt =1×10×2=20N•s方向竖直向下。
(2)在竖直方向,根据动量定理得I=p y -0。
可得,物体落地时竖直方向的分动量p y =20kg•m/s物体落地时水平方向的分动量p x =mv 0=1×20=20kg•m/s故落地时物体的动量22202kg m/s x y p p p =+=⋅设落地时动量与水平方向的夹角为θ,则1y xp tan p θ==θ=45°3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.如图所示,两个小球A 和B 质量分别是m A =2.0kg,m B =1.6kg,球A 静止在光滑水平面上的M 点,球B 在水平面上从远处沿两球的中心连线向着球A 运动,假设两球相距L ≤18m 时存在着恒定的斥力F ,L >18m 时无相互作用力.当两球相距最近时,它们间的距离为d =2m,此时球B 的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
最新高中物理动量守恒定律专项训练100( 附答案 )一、高考物理精讲专题动量守恒定律1.如下图,在水平川面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰巧与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【分析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,以后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,所以两物体在这段时间均匀速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)依据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如下图,一小车置于圆滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg, AO 部分粗拙且长L=2m,动摩擦因数μ=0.3,OB部分圆滑.另一小物块a.放在车的最左端,和车一同以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬时速度变成零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧一直处于弹性限度内. a、 b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一同向右运动.(取 g=10m/s2)求:(1)物块 a 与 b 碰后的速度大小;(2)当物块 a 相对小车静止时小车右端 B 到挡板的距离;(3)当物块 a 相对小车静止时在小车上的地点到O 点的距离.【答案】 (1)1m/s (2)(3) x=0.125m【分析】试题剖析:(1)对物块 a,由动能定理得:代入数据解得 a 与 b 碰前速度:;a、 b 碰撞过程系统动量守恒,以 a 的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分别, a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车 B 端距挡板的距离:;(3)由能量守恒得:,解得滑块 a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。
高二物理动量定理试题答案及解析1.如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以A.减小球的动量的变化量B.减小球对手作用力的冲量C.减小球的动量变化率D.延长接球过程的时间来减小动量的变化量【答案】C【解析】由动量定理,而接球时先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前为了延长时间,减小受力,即,也就是减小了球的动量变化率,故C正确。
【考点】动量定理2.在光滑的水平桌面上有等大的质量分别为M="0.6" kg,m="0.2" kg的两个小球,中间夹着一个被压缩的具有E="10.8" J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然p释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R="0.425" m的竖直放置的光滑半圆形轨道,如图所示.g取10 m/s2.则下列说法正确的是:A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4 N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8 N·s【答案】AD【解析】据题意,由动量守恒定律可知:,即,又据能量守恒定律有:,求得,则弹簧对小球冲量为:,故选项B错误而选项D正确;球从A到B速度为:,计算得到:,则从A到B过程合外力冲量为:,故选项A正确;半径越大,飞行时间越长,而小球的速度越小,水平距离不一定越小,故选项C错误。
【考点】本题考查动量守恒定律、能量守恒定律和动量定理。
距离的B处放有一3.(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:(1)释放小物体,第一次与滑板A壁碰前小物体的速度v多大?1(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?【答案】(1) (2) (3)【解析】(1)对物体,根据动能定理,有,得′;滑板的速度为v,(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1则.若,则,因为,不符合实际,故应取,则.(3)在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.∴即.对整个过程运用动能定理得;电场力做功.【考点】考查动量守恒定律和动能定理在碰撞问题中的综合应用.4.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。
高中物理动量守恒定律专项训练100(附答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--= (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.3.如图,质量分别为、的两个小球A 、B 静止在地面上方,B 球距地面的高度h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为,忽略空气阻力及碰撞中的动能损失.(i )B 球第一次到达地面时的速度; (ii )P 点距离地面的高度. 【答案】4/B v m s =0.75p h m = 【解析】试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有212B B B m gh m v =可得B 球第一次到达地面时的速度24/B v gh m s ==(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s == 设B 球的速度为'B v , 则有碰撞过程动量守恒'''A A B B B B m v m v m v +=碰撞过程没有动能损失则有222111'''222A AB B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==所以P 点的高度220'0.752B p v v h m g-== 考点:动量守恒定律 能量守恒4.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】 【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u 表示,1u 等于1个12C 原子质量的十二分之一.取氢核和氦核的质量分别为1.0u 和14u .)【答案】m =1.2u 【解析】设构成铍“副射”的中性粒子的质量和速度分别为m 和v ,氢核的质量为m H .构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和v H ′.由动量守恒与能量守恒定律得 mv =mv′+m H v H ′ ①12mv 2=12mv′2+12m H v H ′2② 解得v H ′=2Hmvm m +③同理,对于质量为m N 的氮核,其碰后速度为V N ′=2Nmv m m +④由③④式可得m =''''N N H H H N m v m v v v --⑤根据题意可知 v H ′=7.0v N ′ ⑥将上式与题给数据代入⑤式得 m =1.2u ⑦7.如图所示,光滑水平面上依次放置两个质量均为m 的小物块A 和C 以及光滑曲面劈B ,B 的质量为M =3m ,劈B 的曲面下端与水平面相切,且劈B 足够高,现让小物块C 以水平速度v 0向右运动,与A 发生弹性碰撞,碰撞后小物块A 又滑上劈B ,求物块A 在B 上能够达到的最大高度.【答案】2038v h g=【解析】试题分析:选取A 、C 系统碰撞过程动量守恒,机械能守恒,应用动量守恒定律与机械能守恒定律求出A 的速度;A 、B 系统在水平方向动量守恒,由动量守恒定律与机械能守恒定律可以解题.小物块C 与A 发生弹性碰撞, 由动量守恒得:mv 0=mv C +mv A 由机械能守恒定律得:2220111222C A mv mv mv =+ 联立以上解得:v C =0,v A =v 0设小物块A 在劈B 上达到的最大高度为h ,此时小物块A 和B 的共同速度大小为v ,对小物块A 与B 组成的系统,由机械能守恒得:()221122A mv mgh m M v =++ 水平方向动量守恒()A mv m M v =+联立以上解得: 238v h g=点睛:本题主要考查了物块的碰撞问题,首先要分析清楚物体运动过程是正确解题的关键,应用动量守恒定律与机械能守恒定律可以解题.要注意A 、B 系统水平方向动量守恒,系统整体动量不守恒.8.光滑水平面上放着一质量为M 的槽,槽与水平面相切且光滑,如图所示,一质量为m 的小球以v 0向槽运动.(1)若槽固定不动,求小球上升的高度(槽足够高). (2)若槽不固定,则小球上升多高?【答案】(1)202v g (2)202()Mv M m g+【解析】(1)槽固定时,设球上升的高度为h 1,由机械能守恒得:21012mgh mv =解得:2012v h g=;(2)槽不固定时,设球上升的最大高度为2h ,此时两者速度为v ,由动量守恒定律得:()0mv m M v =+ 再由机械能守恒定律得:()22021122mv m M v mgh =++ 联立解得,上球上升的高度:()222Mv h m M g=+9.如图所示,用气垫导轨做“验证动量守恒”实验中,完成如下操作步骤:A .调节天平,称出两个碰撞端分别贴有尼龙扣滑块的质量m 1和m 2.B .安装好A 、B 光电门,使光电门之间的距离为50cm .导轨通气后,调节导轨水平,使滑块能够作_________运动.C .在碰撞前,将一个质量为m 2滑块放在两光电门中间,使它静止,将另一个质量为m 1滑块放在导轨的左端,向右轻推以下m 1,记录挡光片通过A 光电门的时间t 1.D .两滑块相碰后,它们粘在一起向右运动,记录挡光片通过_______________的时间t 2.E .得到验证实验的表达式__________________________.【答案】匀速直线运动 小车经过光电门的时间 ()12112m m m t t += 【解析】 【详解】为了让物块在水平方向上不受外力,因此当导轨通气后,调节导轨水平,使滑块能够作匀速直线运动;根据实验原理可知,题中通过光电门来测量速度,因此应测量小车经过光电门的时间 设光电门的宽度为l ,则有:经过光电门的速度为11l v t = 整体经过光电门的速度为:22l v t =由动量守恒定律可知,11122(+)m v m m v = 代入解得:11212()m m m t t +=。
动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。
高中物理动量定理题20套(带答案)一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
质量m 0=0.005kg 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g 取10m/s 2。
求: (1)物块的最大速度v 1; (2)木板的最大速度v 2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。
【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=(m+m0)v1解得:v1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=(M+m+m0)v2。
高中物理动量定理专题训练答案一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.一个质量为60千克的蹦床运动员从距离水平蹦床网面上3.2米的高处自由下落,触网后沿竖直方向蹦回到离水平网面5米高处.已知运动员与网接触的时候为1.2秒。
求运动员和网接触的这段时间内,网对运动员的平均作用力F (g 取10 m /s 2)。
【答案】1500N ,方向竖直向上 【解析】 【详解】设运动员从h 1处下落,刚触网的速度为18m s v == (方向向下)运动员反弹到达高度h 2 ,离网时速度为210m s v ==(方向向上)在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有()()21 F mg t mv mv -=--解得=1500N F ,方向竖直向上。
3.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为t =所受合力对时间t 的平均值.【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π=. 【解析】 【详解】解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv = 解得:1 1.0 2.0N 1.0N 2.0t mv F t ⨯=== 物块在加速运动过程中,应用动能定理有:2212t F x mv =解得:222 1.0 2.0N 0.8N 22 2.5t mv F x ⨯===⨯(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()m v v F t-=物块在运动过程中,应用动能定理有:22201122F x mv mv =- 解得:2202()2m v v F x-=当12F F =时,由上两式得:02v v x v t +== (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:21122W kA A kA =-=-设物块的初速度为0v ',由动能定理得:20102W mv '=-解得:0kv A m'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:00Ft mv -=-' 由题已知条件:2m t kπ= 解得:2kAF π=4.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。
已知物体A的质量为m,物体B的质量为2m,求:(1)弹簧压缩到最短时物体B的速度大小;(2)弹簧压缩到最短时的弹性势能;(3)从A开始运动到弹簧压缩到最短的过程中,弹簧对A的冲量大小。
【答案】(1)(2)(3)【解析】【详解】(1)弹簧压缩到最短时,A和B共速,设速度大小为v,由动量守恒定律有①得②(2)对A、B和弹簧组成的系统,由功能关系有③得④(3)对A由动量定理得⑤得⑥5.以初速度v0=10m/s水平抛出一个质量为m=2kg的物体,若在抛出后3s过程中,它未与地面及其它物体相碰,g取l0m/s2。
求:(1)它在3s内所受重力的冲量大小;(2)3s内物体动量的变化量的大小和方向;(3)第3秒末的动量大小。
【答案】(1)60N·s(2)60kg·m/s,竖直向下(3)10kg m/s【解析】【详解】(1)3s内重力的冲量:I=Ft =mgt =2×10×3N·s=60N·s(2)3s内物体动量的变化量,根据动量定理:△P=mgt =20×3kg·m/s=60kg·m/s方向:竖直向下。
(3)第3s末的动量:220==yP mv m v v +末末=()222102010kg m /s gt +=⋅6.如图所示,光滑水平面上小球A 、B 分别以3.2 m/s 、2.0m/s 的速率相向运动,碰撞后A 球静止.已知碰撞时间为0. 05s ,A 、B 的质量均为0.5kg .求: (1)碰撞后B 球的速度大小;(2)碰撞过程A 对B 平均作用力的大小.【答案】(1)1.2m/s ,方向水平向右(2)32N 【解析】 【分析】 【详解】(1)A.B 系统动量守恒,设A 的运动方向为正方向 由动量守恒定律得mv A −mv B =0+mv ´B解得v´B =1.2m/s ,方向水平向右(2)对B ,由动量定理得F △t =△p B =mv ´B -(- mv B )解得F =32N 【点睛】根据动量守恒定律求碰撞后B 球的速度大小;对B ,利用动量定理求碰撞过程A 对B 平均作用力的大小.7.小物块电量为+q ,质量为m ,从倾角为θ的光滑斜面上由静止开始下滑,斜面高度为h ,空间中充满了垂直斜面匀强电场,强度为E ,重力加速度为g ,求小物块从斜面顶端滑到底端的过程中: (1)电场的冲量. (2)小物块动量的变化量.【答案】(1)q 2sin E hgθ 方向垂直于斜面向下(2)2m gh 方向沿斜面向下 【解析】(1)小物块沿斜面下滑,根据牛顿第二定律可知:sin mg ma θ=,则:sin a g θ= 根据位移与时间关系可以得到:21sin sin 2h g t θθ=,则:12sin ht gθ= 则电场的冲量为:2sin Eq hI Eqt gθ==,方向垂直于斜面向下 (2)根据速度与时间的关系,小物块到达斜面底端的速度为:gsin v at t θ==⋅ 则小物块动量的变化量为:12sin sin 2sin hp mv mg t mg m gh gθθθ∆===⋅=,方向沿斜面向下. 点睛:本题需要注意冲量以及动量变化量的矢量性的问题,同时需要掌握牛顿第二定律以及运动学公式的运用.8.一垒球手水平挥动球棒,迎面打击一以速度水平飞来的垒球,垒球随后在离打击点水平距离为的垒球场上落地。
设垒球质量为0.81kg ,打击点离地面高度为2.2m ,球棒与垒球的作用时间为0.010s ,重力加速度为,求球棒对垒球的平均作用力的大小。
【答案】900N 【解析】 【详解】由题意可知,垒球被击后做平抛运动,竖直方向:h=gt 2所以:水平方向:x=vt所以球被击后的速度:选取球被击出后的速度方向为正方向,则:v 0=-5m/s设平均作用力为F ,则:Ft 0=mv-mv 0代入数据得:F=900N 【点睛】此题主要考查平抛运动与动量定理的应用,其中正确判断出垒球被击后做平抛运动是解答的关键;应用动量定理解题时注意正方向.9.一个质量为2kg 的物体静止在水平桌面上,如图1所示,现在对物体施加一个水平向右的拉力F ,拉力F 随时间t 变化的图像如图2所示,已知物体在第1s 内保持静止状态,第2s 初开始做匀加速直线运动,第3s 末撤去拉力,第5s 末物体速度减小为0.求:(1)前3s 内拉力F 的冲量. (2)第2s 末拉力F 的功率. 【答案】(1)25N s ⋅ (2)50W 【解析】 【详解】(1)由动量定理有1122I Ft F t =+即前3s 内拉力F 的冲量为25N s I =⋅(2)设物体在运动过程中所受滑动摩擦力大小为f ,则在2s ~6s 内,由动量定理有2223()0F t f t t -+=设在1s ~3s 内物体的加速度大小为a ,则由牛顿第二定律有2F f ma -=第2s 末物体的速度为2v at =第2s 末拉力F 的功率为2P F v =联立以上方程可求出50W P =10.如图所示,小球A 系在细线的一端,细线的另一端固定在0点,0点到水平面的距离为h.物块B 的质量是小球A 的2倍,置于粗糙的水平面上且位于0点的正下方,物块与水平面之间的动摩擦因数为μ.现拉动小球使细线水平伸直,小球由静止开始释放,运动到最低点时与物块发生弹性正碰.小球与物块均视为质点,不计空气阻力,重力加速度为g.求:(1)碰撞后,小球A 反弹瞬间的速度大小; (2)物块B 在水平面上滑行的时间t. 【答案】(18gh(22gh 【解析】(1)设小球的质量为m ,运动到最低点与物块碰撞前的速度大小为1v ,碰后A 、B 速度分别为1v '和2v ',碰撞前后的动量和机械都守恒,则有:2112mgh mv =1122mv mv mv ''=+2221121112222mv mv mv ''=+⨯ 解得:12gh v '=222ghv '=, 所以碰后A 2gh; (2)物块在水平面上滑行所受摩擦力的大小2F mg μ=, 设物块在水平面上滑行的时间为t ,根据动量定量,有:202Ft mv '-=-解得:22ght =. 点睛:本题综合考查动量守恒定律、机械能守恒定律及动量定理,要注意正确分析物理过程,选择合适的物理规律求解,要明确碰撞的基本规律是系统的动量守恒.11.花样滑冰赛场上,男女运动员一起以速度v 0=2 m/s 沿直线匀速滑行,不计冰面的摩擦,某时刻男运动员将女运动员以v 1=6 m/s 的速度向前推出,已知男运动员的质量为M =60 kg ,女运动员的质量为m =40 kg ,求: (1)将女运动员推出后,男运动员的速度; (2)在此过程中,男运动员推力的冲量大小; 【答案】(1)22/3v m s =-;(2) I=160N·s 【解析】 【分析】 【详解】①设推出女运动员后,男运动员的速度为2v ,根据动量守恒定律()012M m v mv Mv +=+解得22/3v m s =-,“﹣”表示男运动员受到方向与其初速度方向相反. ②在此过程中,对运动员有:10I mv mv =-解得I =160N·s12.一位足球爱好者,做了一个有趣的实验:如图所示,将一个质量为m 、半径为R 的质量分布均匀的塑料弹性球框静止放在粗糙的足够大的水平台面上,质量为M (M >m )的足球(可视为质点)以某一水平速度v 0通过球框上的框口,正对球框中心射入框内,不计足球运动中的一切阻力。