高一数学指数函数与对数函数图象
- 格式:ppt
- 大小:782.00 KB
- 文档页数:13
指数函数对数函数与幂函数指数函数的性质与图像xx年xx月xx日CATALOGUE 目录•指数函数的定义与性质•对数函数的定义与性质•幂函数的定义与性质•指数函数、对数函数与幂函数的比较•指数函数、对数函数与幂函数的应用案例•总结与展望01指数函数的定义与性质指数函数的定义02指数函数:y=f(x)=a^x03a>0时,函数图像过一三象限;a<0时,函数图像过二四象限。
指数函数的性质函数图像恒过(0,1)点值域:R a>1时,函数为单调递增函数;0<a<1时,函数为单调递减函数奇偶性:当a>0时,为奇函数;当a=0时,既不是奇函数也不是偶函数;当a<0时,为偶函数指数函数的图像图像恒过(0,1)点当a>1时,函数的增长速度随着x的增大而逐渐加快;当0<a<1时,函数的增长速度随着x的增大而逐渐减慢。
a>1时,函数为单调递增函数,图像位于一三象限;0<a<1时,函数为单调递减函数,图像位于二四象限。
当a>1时,函数的最大值无限趋近于正无穷大;当0<a<1时,函数的最小值无限趋近于0。
02对数函数的定义与性质1 2 3自然对数:以数学常数e为底数的对数,记作ln(x)。
常用对数:以10为底数的对数,记作lg(x)。
底数为任意正数的对数,记作log(x)。
对数的运算性质log(a*b)=log(a)+log(b);log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数恒等式log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数的运算律如果a>0且a不等于1,M>0,N>0,那么log(a)(MN)=log(a)M +log(a)N;log(a)(M/N)=log(a)M -log(a)N;log(a)M^n=nlog(a)M。
•对数函数的图像与性质:图像与x轴交点为1,当x>1时,函数值大于0;当0<x<1时,函数值小于0。
指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。
即无论在轴的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②lo g 1aa =,③lo g Na a N =,④lo g N a aN =。