2019届高三数学备考冲刺140分问题41统计图表的应用Word版含解析
- 格式:doc
- 大小:483.50 KB
- 文档页数:8
问题42实际应用中的统计解答题一、考情分析概率统计在高考中扮演着很重要的角色,概率统计解答题是全国卷及多数省市高考数学必考内容,内容主要涉及古典概型、相互独立事件的概率、条件概率、二项分布、正态分布、频率分布直方图、回归分析、离散型随机变量的分布列、期望与方差的实际应用等.回顾近几年的高考试题,可以看出概率统计解答题,大多紧密结合社会实际,以现实生活为背景设置试题,注重知识的综合应用与实际应用,作为考查实践能力的重要载体,命题者要求考生会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,建立数学模型,再应用数学原理和数学工具解决实际问题.该类问题阅读量一般比较大,但难度多为中等或中等偏易. 二、经验分享(1)明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1. 利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.(2)随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.(3)解决正态分布问题有三个关键点:(1)对称轴x =μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x =0. (4)判定两个变量正、负相关性的方法①画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.②相关系数:r >0时,正相关;r <0时,负相关.③线性回归方程中:b ^>0时,正相关;b ^<0时,负相关.(5) 回归分析是处理变量相关关系的一种数学方法.主要解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;② 根据一组观测值,预测变量的取值及判断变量取值的变化趋势;③ 求出线性回归方程.线性回归分析问题的类型及解题方法 ①求线性回归方程利用公式,求出回归系数b ^,或待定系数法:利用回归直线过样本点的中心求系数.②利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.③利用回归直线判断正、负相关;决定正相关还是负相关的是系数b ^.(6)回归方程的拟合效果,可以利用相关系数判断,当|r |越趋近于1时,两变量的线性相关性越强. (7)比较几个分类变量有关联的可能性大小的方法①通过计算K 2的大小判断:K 2越大,两变量有关联的可能性越大.②通过计算|ad -bc |的大小判断:|ad -bc |越大,两变量有关联的可能性越大. (8)独立性检验的一般步骤 ①根据样本数据制成2×2列联表. ②根据公式计算K 2的观测值k .③比较k 与临界值的大小关系,作统计推断. 三、知识拓展 四、题型分析(一) 期望与方差的应用数学期望反应的是随机变量取值的平均水平,而方差则是反应随机变量取值在其平均值附近的离散程度.现代实际生活中,越来越多的决策需要应用数学期望与方差这思想来对事件发生大小的可能性进行评估,通过计算分析可以比较科学地得出各个方案的预期效果及出现偏差的大小,从而决定要选择的最佳方案.品种的优劣、仪器的好坏、预报的准确与否等很多问题都与这两个特征两量有关.(1)若我们希望实际的平均水平较理想,则先求随机变量12ξξ,的期望,当12E E ξξ=时,不应认为它们一定一样好,需要用12,D D ξξ来比较这两个随机变量的方差,确定它们的偏离程度. (2)若我们希望比较稳定性,应先考虑方差,再考虑均值是否相等或接近.【例1】例3.7(2018新课标I 卷理20)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【分析】利用独立重复实验成功次数对应的概率,求得,之后对其求导,利用导数确定其单调性,再求最大值点,注意;(2)先根据第一问的条件,确定出,在解(i)的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii)的时候,就通过比较两个期望的大小,得到结果.【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.【点评】随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.【小试牛刀】【广东省江门市2019届第一次模拟】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪元,每单提成元;乙公司无底薪,单以内(含单)的部分每单提成元,大于单的部分每单提成元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)若将大于单的工作日称为“繁忙日”,根据以上频数表能否在犯错误的概率不超过的前提下认为“繁忙日”与公司有关?(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;②小王打算到甲、乙两家公司中的一家应聘,你会推荐小王去哪家?为什么?参考公式和数据:【解析】(1)依题意得,公司与“繁忙日”列联表,,所以,能在犯错误的概率不超过的前提下认为“繁忙日”与公司有关 .(2)①设乙公司送餐员送餐单数为,则当时,,当时,,当时,,当时,,当时, . 所以,的所有可能取值为、、、、,的分布列为:.②依题意,甲公司送餐员日平均送餐单数为,所以甲公司送餐员日平均工资为(元),因为,故从更高收入角度考虑推荐小王去乙公司应聘;因为乙公司比甲公司繁忙,故从工作闲适角度考虑推荐小王去甲公司应聘. (二)正态分布的应用正态分布随处可见,处处显现着他神秘的身影.对于某一件事或者某个要达到的目标,很多很多的个体发挥出来的水平大致上服从正态分布.也就是说,对于大量个体的发挥统计,常常能看到正态分布“冥冥之中”束缚着整体的状态. 对于某个单独的单位,一般来说,对于“发挥出来的水平”这件事,也往往有波动的效果,不管是机器、工具还是我们人本身:有的时候,超水平发挥了;有的时候正常发挥;有的时候又会发挥失常.这种东西应该也可以抽象为围绕期望水平的正态分布. 而对于若干数据,包括发挥水平、排位情况,但是没有整体数据的时候,如果能推测是正态分布的情形,就可以近似计算出分布函数来,然后去估计其他的分布情况.这是反向推导的过程. 生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述.例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等.【例2】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在()–3,3μσμσ+之外的零件数,求()1P X …及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在()–3,3μσμσ+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.929.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,0.212s ===,其中i x 为抽取的第i 个零件的尺寸,1216i =⋯,,,. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除()ˆˆˆˆ3,3μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布()2,N μσ,则()–330.9974P Z μσμσ<<+=,160.99740.9592≈0.09≈.【分析】 (1)先确定()~160.0026X B ,,再利用EX np =求期望;(2)(i )判断监控生产过程的方法是否合理,可通过一天内抽取的16个零件中,尺寸落()33μσμσ-+,之外概率的大小判断,(ii )剔除异常数据,在利用公式求μ和σ.【解析】 (1)由题可知尺寸落在()33μσμσ-+,之内的概率为0.9974,落在()33μσμσ-+,之外的概率为0.0026.()()016160C 10.99740.99740.9592P X ==-≈,()()11010.95920.0408P X P X =-=≈-=…,由题可知()~160.0026X B ,,所以()160.00260.0416E X =⨯=. (2)(i )尺寸落在()33μσμσ-+,之外的概率为0.0026,由正态分布知尺寸落()33μσμσ-+,之外为小概率事件,因此上述监控生产过程的方法合理.(ii )39.9730.2129.334μσ-=-⨯=,39.9730.21210.606μσ+=+⨯=,()()339.33410.606μσμσ-+=,,,因为()9.229.33410.606∉,, 所以需对当天的生产过程检查. 因此剔除9.22,剔除数据之后:9.97169.2210.0215μ⨯-==.()()()()()222222[9.9510.0210.1210.029.9610.029.9610.0210.0110.02σ=-+-+-+-+-+()()()()()222229.9210.029.9810.0210.0410.0210.2610.029.9110.02-+-+-+-+-+()()()()()22222110.1310.0210.0210.0210.0410.0210.0510.029.9510.02]0.00815-+-+-+-+-⨯≈.所以0.09σ=.【点评】正态分布是概率统计中相对较独立的一个考点,且已经从冷点转化为热点,求解此类问题,一般从,μσ入手,对于应用问题,要注意从较大的阅读量中提取有用的信息.以下两类问题是正态分布中的基本问题:(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,及曲线与x轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.【小试牛刀】【山东省济宁市2019届高三第一次模拟】某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…,第六组[70,75),得到如下图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率.(I)求频率分布直方图中的值;(II)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的概率分布列和数学期望;(III)由频率分布直方图可以认为,该校学生的体重近似服从正态分布,其中若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.【解析】解:(Ⅰ)由图(2)知,100名样本中体重低于50公斤的有2人,用样本的频率估计总体的概率,可得体重低于50公斤的概率为,则,在上有13人,该组的频率为0.13,则,所以,即c=0.07.(Ⅱ)用样本的频率估计总体的概率,可知从全体学生中随机抽取一人,体重在的概率为0.07×10=0.7,随机抽取3人,相当于三次独立重复试验,随机变量X服从二项分布,则,,,,所以,X的概率分布列为:X 0 1 2 3P 0.027 0.189 0.441 0.343E(X)=3×0.7=2.1(Ⅲ)由N(60,25)得由图(2)知.所以可以认为该校学生的体重是正常的.(三) 用样本估计总体频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.【例3】2018年9月的台风“山竹”对我国多个省市的财产造成重大损害,据统计直接经济损失达亿元.某青年志愿者组织调查了某地区的个农户在该次台风中造成的直接经济损失,将收集的损失数据分成五组:,,,,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的损失(同一组中的数据用该区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这户损失超过元的农户中随机抽取户进行重点帮扶,设抽出损失超过元的农户数为,求的分布列和数学期望. 【分析】(1)根据频率分布直方图计算每个农户的平均损失;(2)根据频率分布直方图计算随机变量X的可能取值,再求X的分布列和数学期望值.【解析】(1)记每个农户的平均损失为元,则;(2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)×2000×50=15(户),损失超过8000元的农户共有0.00003×2000×50=3(户),随机抽取2户,则X的可能取值为0,1,2;计算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列为;X 0 1 2P数学期望为E(X)=0×+1×+2×=.【点评】用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.【小试牛刀】中国农业银行开始为全国农行ATM机安装刷脸取款系统.某农行营业点为调查居民对刷脸取款知识的了解情况,制作了刷脸取款知识有奖调查问卷,发放给2018年度该行的所有客户,并从参与调查且年龄(单位:岁)在[25,55]内的客户中随机抽取100名给予物质奖励,再从中选出一名客户参加幸运大抽奖.调查结果按年龄分成6组,制作成如下的频数分布表和女客户的年龄茎叶图,其中a∶b∶c=2∶4∶5.年龄/岁[25,30) [30,35) [35,40) [40,45) [45,50) [50,55]频数/人5 a b c 15 25女客户的年龄茎叶图幸运大抽奖方案如下:客户最多有两次抽奖机会,每次抽奖的中奖率均为,第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛掷一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:抛出的硬币,若反面朝上,则客户获得5000元奖金,不进行第二次抽奖;若正面朝上,客户需进行第二次抽奖,且在第二次抽奖中,如果中奖,则获得奖金10000元,如果未中奖,则所获得的奖金为0元.(1)求a,b,c的值,若分别从男、女客户中随机选取1人,求这2人的年龄均在[40,45)内的概率;(2)若参加幸运大抽奖的客户所获奖金(单位:元)用X表示,求X的分布列与数学期望E(X).【解析】(1)由频数分布表知,a+b+c=100-45=55.因为a∶b∶c=2∶4∶5,所以a=×55=10,b=×55=20,c=×55=25,由茎叶图可知年龄在[25,30)内的女客户有2人,年龄在[30,35)内的女客户有4人,年龄在[35,40)内的女客户有8人,年龄在[40,45)内的女客户有10人,年龄在[45,50)内的女客户有6人,年龄在[50,55]内的女客户有10人,故年龄在[40,45)内的男客户有15人,在100名客户中,男客户有60人,女客户有40人,所以从男客户中随机选取1人,年龄恰在[40,45)内的概率P 1=,从女客户中随机选取1人,年龄恰在[40,45)内的概率P 2=,则分别从男、女客户中随机选取1人,这2人的年龄均在[40,45)内的概率P =P 1×P 2=.(2)由题意可知,X 的所有可能取值为0,5000,10000,则P (X =0)=,P (X =5000)=,P (X =10000)=.X 的分布列为 X5 00010 000PE (X )=0×+5000×+10000×=5200(元).(四) 回归分析回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则无意义.根据回归方程进行的估计仅是一个预测值,而不是真实发生的值. 用最小二乘法求回归方程,关键在于正确求出系数a ^,b ^,由于a ^,b ^的计算量较大,计算应仔细小心. 【例4】【湖北省黄冈市2019届模拟】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量(千克)与使用某种液体肥料的质量(千克)之间的关系如图所示.(1)依据上图,是否可用线性回归模型拟合与的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量限制,并有如下关系:周光照量(单位:小时)光照控制仪运行台数 3 2 1若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式,参考数据:,.【分析】(1)根据公式得到相关系数的值,通过比较得到判断;(2)分别求出安装一台,两台,三台时的利润均值,得到结果.【解析】(1)由已知数据可得,.∵,,.∴相关系数.∵,∴可用线性回归模型拟合与的关系.(2)记商家周总利润为元,由条件可知至少需安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元.②安装2台光照控制仪的情形:当时,只有1台光照控制仪运行,此时周总利润(元),,当时,2台光照控制仪都运行,此时周总利润(元),,故的分布列为2000 60000.2 0.8∴(元).③安装3台光照控制仪的情形:当时,只有1台光照控制仪运行,此时周总利润(元),,当时,有2台光照控制仪运行,此时周总利润(元),,当时,3台光照控制仪都运行,周总利润(元),,故的分布列为1000 5000 90000.2 0.7 0.1∴(元).综上可知,为使商家周总利润的均值达到最大,应该安装2台光照控制仪.【点评】判断两个变量是否具有相关关系的常用方法:(1)利用散点图进行判断;(2)利用相关系数r进行判断.【小试牛刀】【江西省临川第一中学等九校2019届高三3月联考】某商场营销人员进行某商品市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:反馈点数 1 2 3 4 5销量(百件)/天0.5 0.6 1 1.4 1.7(1)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品当天销量;(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:返还点数预期值区间(百分比)频数20 60 60 30 20 10(i)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);(ii)将对返点点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望膨胀型”消费者的人数为随机变量,求的分布列及数学期望.参考公式及数据:①,;②.【解析】(1)易知,,,,.则关于的线性回归方程为,当时,,即返回6个点时该商品每天销量约为2百件.(2)(i)根据题意,这200位拟购买该商品的消费者对返回点数的心里预期值的平均值,及中位数的估计值分别为:,中位数的估计值为.(ii)抽取6名消费者中“欲望紧缩型”消费者人数为,“欲望膨胀型”消费者人数为.,,,故随机变量的分布列为1 2 3.(五) 独立性检验独立性检验的一般步骤(1)假设两个分类变量x与y没有关系;(2)计算出K2的观测值,其中K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d);(3)把K2的值与临界值比较,作出合理的判断.【例5】【福建省莆田市2019届高三下学期教学质量检测】为推进“千村百镇计划”,年月某新能源公司开展“电动莆田绿色出行”活动,首批投放台型新能源车到莆田多个村镇,供当地村民免费试用三个月。
哈尔滨市第六中学2019届高考冲刺押题卷(二)数学试卷(理工类)考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟 1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.做答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.做答第Ⅱ卷时,请按题号顺序在各题目规定的答题区域内做答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持答题卡面清洁,不得折叠、不要弄破、弄皱,不准用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知向量,满足)2,1(2m =+,),1(m =,且在方向上的投影是552,则实数=m ( ) A .5 B .5± C .2 D .2±2.已知等差数列}{n a 中,11=a ,前10项的和等于前5的和,若06=+a a m ,则=m ( ) A .10 B .9 C .8 D .2 3.若z 为复数,0:=+z z p ,2:z q 为实数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x 的素数个数大约可以表示为xxx n ln )(≈的结论(素数即质数,43429.0lg =e ).根据欧拉得出的结论,如下流程图中若输入n 的值为100,则输出k 的值应属于区间( )A .)20,15(B .)25,20(C .)30,25(D .)35,30(5.函数||3x ex y =的大致图像为( )A B C D6.已知33log=x,67log=y,717=z,则实数zyx,,的大小关系是()A.yzx<< B.yxz<< C.zyx<< D.xyz<<7.已知不等式组⎪⎩⎪⎨⎧≤--≥+-≥-+2211yxyxyx表示的平面区域为D,若对任意的Dyx∈),(,不等式02≥--tyx恒成立,则实数t的最大值为()A.1 B.1- C.5- D.4-8.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为122≤+yx,若将军从点)0,2(A处出发,河岸线所在直线方程为3=+yx,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为()A.110- B.122- C.22 D.109.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体外接球的体积为()A.316πB.29πC.π18 D.π3610.如图,已知椭圆)0(12222>>=+babyax的左,右焦点分别为21,FF,10||21=FF,P是y轴正半轴上一点,1PF交椭圆于A,若12PFAF⊥,且2APF∆的内切圆半径为22,则椭圆的离心率为()A.45B.410C.35D.41511.双曲线2222:1(0,0)x yC a ba b-=>>的左、右焦点分别为21,FF,过1F的直线与圆222ayx=+相切,与C的左、右两支分别交于点BA,,若||||2BFAB=,则C的离心率为()A .325+B .325+C .3D .512.已知函数53)(2+-=x x x f ,x ax x g ln )(-=,若对),0(e x ∈∀,),0(,21e x x ∈∃,且21x x ≠,使得)2,1)(()(==i x g x f i ,则实数a 的取值范围是( )A .)6,1(ee B .),1[43e e C .),6[)1,0(43e e e ⋃ D .),6[43e e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为 18sin 2=m ,若42=+n m ,则=+63sin nm _________ 14.若0,0>>b a ,二项式6)(b ax +的展开式中3x 项的系数为20,则定积分⎰⎰+abxdx xdx 022的最小值为_________15.如图,长为4,宽为2的矩形纸片ABCD 中,E 为边AB 的中点,将A ∠沿直线DE 翻转DE A 1∆(∉1A 平面ABCD ),若M 为线段C A 1的中点,则在ADE ∆翻转过程中,下列正确的命题序号是__________①//MB 平面DE A 1; ②异面直线BM 与E A 1所成角是定值;③三棱锥1A ADE -体积的最大值是322; ④一定存在某个位置,使C A DE 1⊥16.在平面直角坐标系xOy 中,点)0,1(A ,动点M 满足以MA 为直径的圆与y 轴相切,过A 作直线052)1(=-+-+m y m x 的垂线,垂足为B ,则||||MB MA +的最小值为__________.三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数23cos cos sin 3)(2-+=x x x x f . (Ⅰ)求函数)(x f 的最小正周期及在区间]2,0[π的最大值(Ⅱ)在ABC ∆中,21)(-=A f ,求ABC ∆周长的最大值. ABDEA 1CM18.(本小题满分12分)2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(Ⅰ)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?(Ⅱ)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(Ⅲ)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度x 线性相关,得到回归直线为^4a x y +=∧,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5=x )该读书APP 用户使用时长约为多少百万小时.附:))()()(()(22d b c a d c b a bd ac n K ++++-=,其中d c b a n +++=.19.(本小题满分12分)如图,四棱锥ABCD P -的底面ABCD 为直角梯形,AD BC //,且222===BC AB AD , 90=∠BAD ,PAD ∆为等边三角形,平面⊥ABCD 平面PAD ;点M E ,分别为PC PD ,的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线DM 与平面ABM 所成角的正弦值.20.(本小题满分12分)过抛物线)0(2:2>=p px y C 的焦点F 作倾斜角为45°的直线l ,直线l 与抛物线C 交于B A ,,若16||=AB .(Ⅰ)抛物线C 的方程;(Ⅱ)若经过)2,1(M 的直线交抛物线C 于Q P ,,)0,5(N ,若||||QN PN =,求直线PQ 的方程.21.(本小题满分12分)已知函数12)(2---=mx x m e x f x . (Ⅰ)当1=m 时,求证:若0≥x ,则0)(≥x f ; (Ⅱ)当1≤m 时,试讨论函数)(x f y =的零点个数.请考生在题(22)(23)中任选一题作答,如果多做,则按所做的的第一题计分.做题时用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并填写序号. 22.(本小题满分10分)选修4—4:坐标系与参数方程已知在平面直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧==t y t x 2321(t 为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为02cos 22=--θρρ,点P 的极坐标是)32,3152(π. (Ⅰ)求直线l 的极坐标方程及点P 到直线的距离;(2)若直线l 与曲线C 交于N M ,两点,求PMN ∆的面积.23.(本小题满分10分)选修4—5:不等式选讲 已知函数R a x a x x f ∈-+-=|,1||2|)(. (Ⅰ)若2-=a ,解不等式5)(≤x f ;(Ⅱ)当2<a 时,函数)(x f 的最小值为3,求实数a 的值.押题卷2理科数学参考答案1. D2. A3. A4. B5.C6. D7. C8. A9. B 10. C 11. A 12. D13. 14. 15. 16.17. 【答案】(1)最小正周期为,在区间上的最大值为;(2).【解析】(1),最小正周期为所以在区间的最大值是0(2),由余弦定理得,即,当且仅当时取等号.的周长的最大值是6法二:由,得,由正弦定理可得,所以,当时,L取最大值,且最大值为618.【详解】(1)由已知可得以下列联表:计算,所以有99.5%的把握认为用户是否活跃与所在城市有关.(2)由统计数据可知,城市M中活跃用户占,城市N中活跃用户占,设从M城市中任选的2名用户中活跃用户数为,则设从N城市中任选的1名用户中活跃用户数为,则服从两点分布,其中.故,;;;.故所求的分布列为.(3)由已知可得,又,可得,所以,所以.以代入可得(百万小时),即2019年第一季度该读书APP用户使用时长约为百万小时.19.【详解】(1)设的中点为,连接,为的中点,所以为的中位线,则可得,且;在梯形中,,且,,所以四边形是平行四边形,,又平面,平面,平面.法二:设为的中点,连接,为的中点,所以是的中位线,所以,又平面,平面,平面,又在梯形中,,且,所以四边形是平行四边形,,又平面,平面,平面,又,所以平面平面,又平面,平面.(2)设的中点为,又.因为平面平面,交线为,平面,平面,又由,,.即有两两垂直,如图,以点为原点,为轴,为轴,为轴建立坐标系.已知点,设平面的法向量为:.则有,可得平面的一个法向量为,,可得:,所以直线与平面所成角的正弦值为.20.【详解】(1)依题意:,则直线的方程为,由,消可得,设,则,∴,∴,故抛物线的方程为.(2)若经过的直线的斜率不存在,此时直线与抛物线交于,则关于轴对称,满足,即直线满足题意.若经过的直线的斜率存在,设它为,则.由,消可得设,则,∴,∴,∵,∴点在线段的中垂线上,即线段的中垂线为:,即,即所以直线的方程为即.故直线的方程为或.21.【解析】(1)当时,,则,令,则,当时,,即,所以函数在上为增函数,即当时,,所以当时,恒成立,所以函数在上为增函数,又因为,所以当时,对恒成立.(2)由(1)知,当时,,所以,所以函数的减区间为,增函数为.所以,所以对,,即.①当时,,又,,即,所以当时,函数为增函数,又,所以当时,,当时,,所以函数在区间上有且仅有一个零点,且为.②当时,(ⅰ)当时,,所以,所以函数在上递增,所以,且,故时,函数在区间上无零点.(ⅱ)当时,,令,则,所以函数在上单调递增,,当时,,又曲线在区间上不间断,所以,使,故当时,,当时,,所以函数的减区间为,增区间为,又,所以对,又当时,,又,曲线在区间上不间断.所以,且唯一实数,使得,综上,当时,函数有且仅有一个零点;当时,函数有个两零点.22.【解析】(1)由消去,得到,则,∴,所以直线的极坐标方程为.点到直线的距离为. (2)由,得,所以,,所以,则的面积为.23.【详解】(Ⅰ) 时,不等式为①当时,不等式化为,,此时②当时,不等式化为,③当时,不等式化为,,此时综上所述,不等式的解集为(Ⅱ)法一:函数f(x)=|2x-a|+|x-1|,当a<2,即时,所以f(x)min=f()=-+1=3,得a=-4<2(符合题意),故a=-4.法二:所以,又,所以.。
第19讲概率、统计、统计案例1.[2018·全国卷Ⅱ]我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.[试做]命题角度古典概型①求古典概型概率的方法:直接法:将所求事件的概率分解为一些彼此互斥的事件的概率,再运用互斥事件概率的加法公式计算.间接法:先求事件的对立事件的概率,再用公式P(A)=1-P()求概率,即运用逆向思维(正难则反),特别是对“至多”“至少”型题目,用间接法求解更简便.②易错点:当事件A,B为互斥事件时,有P(A+B)=P(A)+P(B),否则P(A+B)=P(A)+P(B)-P(A∩B).2.(1)[2018·全国卷Ⅰ]如图M6-19-1所示,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()图M6-19-1A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3(2)[2017·全国卷Ⅰ]如图M6-19-2所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()图M6-19-2A. B.C. D.[试做]命题角度几何概型①利用几何概型概率公式求解.②处理几何概型与非几何知识的综合问题的关键是,通过转化,将某一事件所包含的事件用“长度”“角度”“面积”“体积”等表示出来,如把这两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上一个区域,进而转化为面积的度量来解决.③易错点:利用几何概型的概率公式时,不要忽视事件是否等可能.3.[2018·全国卷Ⅲ]某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p= () A.0.7 B.0.6C.0.4D.0.3[试做]命题角度n次独立重复试验的期望与方差关键一:确定n的值;关键二:利用方差公式D(X)=np(1-p)求解.小题1用样本估计总体1 (1)某机构为了解“跑团”每月跑步的平均里程,收集并整理了2017年1月至2017年11月期间“跑团”每月跑步的平均里程(单位:km)的数据,得到如图M6-19-3所示的折线图.图M6-19-3根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程的峰值出现在9月份D.1月至5月的月跑步的平均里程相对于6月至11月,波动性较小,变化比较平稳(2)为了了解一批产品的长度(单位:mm)情况,现抽取容量为400的样本进行检测,如图M6-19-4所示是检测结果的频率分布直方图,根据产品标准,单件产品长度在[25,30)的为一等品,在[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为.图M6-19-4[听课笔记]【考场点拨】用频率分布直方图估计总体的数字特征应注意以下几点:(1)频率分布直方图的纵轴是,而不是频率;(2)在频率分布直方图中每个小长方形的面积才是相应区间的频率,在应用和作频率分布直方图时要注意;(3)最高的小长方形底边中点的横坐标是众数;(4)平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标是中位数;(5)频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和是中位数.【自我检测】1.甲、乙两名同学6次考试的成绩统计如图M6-19-5所示,甲、乙两组数据的平均数分别为,,标准差分别为σ甲,σ乙,则()图M6-19-5A.<,σ甲<σ乙B.<,σ甲>σ乙C.>,σ甲<σ乙D.>,σ甲>σ乙2.从某中学甲、乙两班中各随机抽取10名同学,测量他们的身高(单位:cm),所得数据用茎叶图表示,如图M6-19-6,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是()图M6-19-6A.甲班同学身高的方差较大B.甲班同学身高的平均值较大C.甲班同学身高的中位数较大D.甲班同学身高在175 cm以上的人数较多3.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则()A.=4,s2<2B.=4,s2>2C.>4,s2<2D.>4,s2>24.为了解某校一次期中考试数学成绩的情况,抽取100位学生的数学成绩(单位:分),得到如图M6-19-7所示的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则估计该次考试数学成绩的中位数是()图M6-19-7A.71.5B.71.8C.72D.75小题2变量间的相关关系、统计案例2 (1)随着国家“二孩政策”的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机附表:841 6.635由K2=算得,K的观测值k=≈9.616,参照附表,得到的正确结论是()A.在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别有关”B.有99%以上的把握认为“生育意愿与城市级别有关”C.在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别无关”D.有99%以上的把握认为“生育意愿与城市级别无关”(2)某公司在对一种新产品进行合理定价前,将该产品按事先拟定的价格进行试销,得到如下数由表中数据,求得线性回归方程为=-4x+,当产品的销量为76件时,产品的单价大致为元.[听课笔记]【考场点拨】(1)回归直线一定过样本点的中心(,).(2)随机变量K2的观测值k越大,说明“两个变量有关系”的可能性越大.【自我检测】1.某中学的兴趣小组将在某座山测得海拔高度、气压和沸点的六组数据绘制成散点图如图M6-19-8所示,则下列说法错误的是()①②图M6-19-8A.沸点与海拔高度呈正相关B.沸点与气压呈正相关C.沸点与海拔高度呈负相关D.沸点与海拔高度、沸点与气压的相关性都很强A.a=45,c=15B.a=40,c=20C.a=35,c=25D.a=30,c=301若y关于x的回归方程为=1.3x-1,则m=.小题3古典概型与几何概型3 (1)已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋,再从乙袋中随机取出1个球,则从乙袋中取出红球的概率为()A.B.C.D.(2)如图M6-19-9,E,F,G,H是平面四边形ABCD各边的中点,若在平面四边形ABCD内任取一点,则该点取自阴影部分的概率是()图M6-19-9A.B.C.D.[听课笔记]【考场点拨】求解概率题的几个失分点:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)古典概型问题中如涉及“至多”“至少”等事件的概率计算时,没有转化为求其对立事件的概率,来简化运算;(3)几何概型中,基本事件对应的区域测度把握不准导致错误;(4)利用概率公式时,忽视验证事件是否等可能导致错误.【自我检测】1.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是()A.0.3B.0.4C.0.6D.0.72.如图M6-19-10,半径为R的圆O内有四个半径相等的小圆,其圆心分别为A,B,C,D,这四个小圆都与圆O内切,且相邻两小圆外切,图M6-19-10则在圆O内任取一点,该点恰好取自阴影部分的概率为()A.12-8B.6-4C.9-6D.3-23.已知M是半径为R的圆上的一个定点,在圆上等可能地任取一点N,连接MN,则弦MN的长度超过R的概率是()A.B.C.D.4.连续2次抛掷一颗质地均匀的骰子,观察向上的点数,则事件“点数之积是3的倍数”的概率为.小题4条件概率、相互独立事件与独立重复试验4 (1)从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为,,.若从袋中随机摸出1个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白但没有黄的概率为()A.B.C.D.(2),其中A的各位数字中,a1=1,a k(k=2,3,4,5)出现0的概率为,出现1的概率为.若启动一次出现的数字为A=10101,则称这次试验成功,若成功一次得2分,失败一次得-1分,则100次重复试验的总得分X的方差为.[听课笔记]【考场点拨】求相互独立事件同时发生的概率的方法:(1)相互独立事件同时发生的概率等于他们各自发生的概率之积;(2)正面计算较复杂或难以入手时,可从其对立事件入手计算.特别提醒:利用独立重复试验的概率公式计算概率时,其计算量往往很大,计算时要小心谨慎,以确保计算的正确.【自我检测】1.某电视台“夏日水上闯关”节目中的前三关的过关率分别为0.8,0.7,0.6,只有通过前一关才能进入下一关,且是否通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为()A.0.56B.0.336C.0.32D.0.2242.据统计,连续熬夜48小时诱发心脏病的概率为0.055,连续熬夜72小时诱发心脏病的概率为0.19.现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为()A.B.C.D.0.193.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则P(η≥2)的值为()A.B.C.D.4.设随机变量X~B,则P(X=3)=.第19讲概率、统计、统计案例典型真题研析1.C[解析] 不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中任取两个有种取法,其中和为30的有3种,即(7,23),(11,19),(13,17),所以所求概率P==.2.(1)A(2)B[解析] (1)设AB=a,AC=b,BC=c,则a2+b2=c2.记△ABC的面积为S1,黑色部分的面积为S2,则S2=π+π+ab-π=π(a2+b2-c2)+ab=ab=S1.根据几何概型的概率计算公式可知p1=p2.(2)根据对称性,图中黑色部分、白色部分的面积相等.设正方形的边长为2,则正方形的面积为4,图中圆的面积为π,故黑色部分的面积为,所以所求的概率为=.3.B[解析] 由DX=10p(1-p)=2.4,解得p=0.4或p=0.6.由P(X=4)=p4(1-p)6<P(X=6)=p6(1-p)4,可知p>0.5,故p=0.6.故选B.考点考法探究小题1例1(1)D(2)100[解析] (1)由折线图知,月跑步平均里程的中位数为5月份对应的里程数,月跑步平均里程不是逐月增加的,月跑步平均里程的峰值出现在10月份,故A,B,C中结论不正确,故选D.(2)由题意得,三等品的频率为(0.012 5+0.025 0+0.012 5)×5=0.25,∴样本中三等品的件数为400×0.25=100.【自我检测】1.C[解析] 由图可知,甲同学的平均成绩高于乙同学,且甲同学的成绩更稳定,即>,σ甲<σ乙,故选C.2.A[解析] 观察茎叶图可知甲班同学身高的数据波动大,所以甲班同学身高的方差较大,A中结论正确;甲班同学身高的平均值为=169.2,乙班同学身高的平均值为=171,所以乙班同学身高的平均值较大,B中结论错误;甲班同学身高的中位数为=168,乙班同学身高的中位数为=171.5,所以乙班同学身高的中位数较大,C中结论错误;甲班同学身高在175 cm以上的有3人,乙班同学身高在175 cm以上的有4人,所以乙班同学身高在175 cm以上的人数较多,D中结论错误.故选A.3.A[解析] ∵某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,∴==4,s2==<2,故选A.4.C[解析] 由题,0.04+10a+0.3+0.4+0.1+10a=1,得a=0.008.因为成绩在[40,50),[50,60),[60,70)的频率之和为0.04+0.08+0.3=0.42,所以中位数位于区间[70,80)内,由=0.2,得中位数约为70+0.2×10=72.故选C.小题2例2(1)B(2)7.5[解析] (1)根据K2的观测值k=≈9.616>6.635,可得有99%以上的把握认为“生育意愿与城市级别有关”,或在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别有关”,所以选B.(2)由表中数据得,=6.5,=80,∴=80+4×6.5=106,∴回归方程为=-4x+106.当y=76时,76=-4x+106,∴x=7.5.【自我检测】1.A[解析] 结合散点图可得,沸点与气压呈正相关,气压与海拔高度呈负相关,所以沸点与海拔高度呈负相关,且沸点与海拔高度、沸点与气压的相关性都很强.故选A.2.A[解析] 由题意易知,若|a-c|越大,则X与Y有关系的可能性越大,结合选项计算可得A选项符合题意.故选A.3.3.1[解析] 由题意得==2.5,代入到线性回归方程=1.3x-1,得=2.25.∴0.1+1.8+m+4=4×2.25=9,∴m=3.1.小题3例3(1)B(2)B[解析] (1)先从甲袋中取出1个球放入乙袋,再从乙袋中取出1个球的基本事件总数为=10,取出红球的基本事件总数为+=5,所以从乙袋中取出红球的概率P==.故选B.(2)连接AC,与HE,FG分别交于点M,N,如图所示,设点D到AC的距离为h,则S△ADC=AC·h,S四边形HGNM=HG××h=×AC·h,∴S四边形HGNM=S△ADC,∴S四边形HGFE=S四边形ABCD,∴所求概率是,故选B.【自我检测】1.D[解析] 春节和端午节至少有一个被选中的对立事件是春节和端午节都没有被选中,而春节和端午节都没有被选中的概率为=0.3,所以春节和端午节至少有一个被选中的概率为1-0.3=0.7.故选D.2.A[解析] 设小圆的半径为r,根据题意可知四边形ABDC为正方形,OA=r.由R-r=r,得r==(-1)R,所以大圆的面积为πR2,四个小圆的面积为4π(-1)2R2.由几何概型的概率计算公式可得,所求概率为=12-8.故选A.3.D[解析] 本题可利用几何概型求解.如图,O为圆心,NP为直径,且MO⊥NP.根据题意可得,该圆的周长为2πR,满足条件“弦MN的长度超过R”的点N所在的弧是,且其长度为πR,则弦MN的长度超过R的概率P=.故选D.4.[解析] 总事件数为6×6=36.当第1次掷骰子向上的点数为1,2,4,5时,满足条件的事件有(1,3),(1,6),(2,3),(2,6),(4,3),(4,6),(5,3),(5,6),共8个;当第1次掷骰子向上的点数为3,6时,满足条件的事件有2×6=12(个).所以所有满足条件的事件共20个,所求概率P==.小题4例4(1)C(2)[解析] (1)满足题意时,记下的颜色应是2个红1个白或者2个白1个红,据此可得,所求概率为××+××=.(2)启动一次出现数字为A=10101的概率P=×=.设100次独立重复试验中成功的次数为η,则η~B,∴D(η)=100××=.∵X=2η-1×(100-η)=3η-100,∴D(X)=D(3η-100)=9D(η)=.【自我检测】1.D[解析] 该选手只闯过前两关的概率为0.8×0.7×(1-0.6)=0.224,故选D.2.A[解析] 设事件A为连续熬夜48小时诱发心脏病,事件B为连续熬夜72小时诱发心脏病.由题意可知,P(A)=0.055,P(B)=0.19,则P()=0.945,P()=0.81,由条件概率计算公式可得,P(|)====.3.B[解析] 由P(ξ≥1)=,得p(1-p)+p2=2p-p2=,∴p=,∴P(η≥2)=p2(1-p)2+p3(1-p)+p4=6××+4××+=,故选B.4.[解析] 因为X~B,所以P(X=3)=××=.[备选理由] 例1主要考查条形图的识别以及应用;例2为高考试题,考查2×2列联表的应用;例3考查古典概型,需要在一定的排列组合计数的基础上完成;例4考查几何概型,涉及数学史,可以开拓学生的视野和应用意识;例5需要对所给的问题进行判断,属于二项分布问题,考查二项分布的方差.例1[配例1使用]下图是某企业在2008年—2017年企业产值的年增量(即当年产值比前一年产值增加的量)统计图(单位:万元),下列说法正确的是()A.2009年产值比2008年产值少B.从2011年到2015年,产值年增量逐年减少C.产值年增量的增量最大的是2017年D.2016年的产值年增长率可能比2012年的产值年增长率低[解析] D由图,2009年产值比2008年产值多29 565万元,故A中说法错误;2013年的产值年增量大于2012年的,故B中说法错误;产值年增量的增量最大的不是2017年,故C中说法错误;因为增长率等于增长量除以上一年产值,由于上一年产值不确定,所以2016年的产值年增长率可能比2012年的产值年增长率低,故D中说法正确.故选D.例2[配例2使用] [2014·江西卷]某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1A.成绩B.C.智商D.阅读量[解析] D根据独立性检验计算可知,阅读量与性别有关联的可能性较大.例3[配例3使用]若20件产品中有16件一级品,4件二级品,从中任取2件,则这2件中至少有1件二级品的概率是()A.B.C.D.[解析] C由题意,从20件产品中任取2件的情况总数为=190,其中至少有1件二级品的情况数为+=70,由古典概型的概率计算公式可得所求概率为=,故选C.例4[配例3使用]中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若cos 2∠BAE=,则在正方形ABCD内随机取一点,该点恰好在正方形EFGH内的概率为() A.B.C.D.[解析] D如图可知,正方形EFGH的边长为a-b,正方形ABCD的边长为.由题意知cos 2∠BAE=2cos2∠BAE-1=2×-1=,得9a2=16b2,即a= b.∴所求概率为==.故选D.例5[配例4使用] [2017·全国卷Ⅱ]一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=.[答案] 1.96[解析] X~B(100,0.02),故D(X)=100×0.02×0.98=1.96.。
3统计图表 4数字的特征(必修3北师版)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题5分,共30分) 1.下列叙述中正确的是( )A.从频率分布表可以看出样本数据对于平均数的波动大小B.频数是指落在各个小组内的数据C.每小组的频数与样本容量之比是这个小组的 频率D.组数是样本平均数除以组距2.如果五个数12345x x x x x ,,,,的平均数是7,那么1234511111x x x x x +++++,,,,这五个数的平均数是( )A.5 B.6 C.7 D.8 3.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31,如果该班有45名同学,那么根据提供的数据估计这周全班同学各家总共丢弃塑料袋的数量约为( ) A.900 B.1080 C.1260 D.18004.一组数据的方差为3,将这组数据中的每一个数据都扩大到原来的3倍,则所得到的一组数据的方差是( )A.1 B.27 C.9 D.3 5.已知两个样本,甲:2,4,6,8,10;乙:1,3,5,7,9.样本方差分别为2s 甲,2s 乙则二者的关系是( )A. 2s 甲>2s 乙 B. 2s 甲<2s 乙 C. 2s 甲=2s 乙D.无法确定6.已知样本:12,7,11,12,11,12,10,10,9,8,13,12,10,9,6,11,8,9,8,10,那么下列样本范围的频率为0.25的是( ) A.[5.5,7.5) B.[7.5,9.5) C.[9.5,11.5) D.[11.5,13.5) 二、填空题(每小题5分,共20分)7.一个容量为n 的样本分成若干组,已知某组的频数和频率分别为36和0.25,则n = . 8.一个容量为20的样本数据,分组后,组距和频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2.则样本数据在区间[50,+∞)上的频率为 .9.五个数1,2,3,4,a 的平均数是3,则这五个数的标准差是 .10.某人射击十次,得环数如下:18,20,19,22,20,21,19,19,20,21,则这组数据的平均数是 ,方差是 . 三、解答题(共50分) 11.(12分)下表是60名学生的数学成绩的分组情况表: 分组 0.5~20.5 20.5~40.540.5~60.560.5~80.580.5~100.5频数 3 6 12频率0.3 (1)在表中空格内填上相应数据;(2)画出频率分布直方图. 12.(12分)2007年是某省实施新课程改革后的第一次高考,经教育部批准该省自主命题,为慎重起见,该省于2005年制定了两套高考方案,且对这两套方案在全省14个地级市分别召集专家进行研讨,并对认为合理的方案进行了投票表决,统计结果如下:第一套方案:38,25,73,64,20,55,72,41,8,67,70,66,58,24.第二套方案:36,42,6,61,21,54,12,42,5,14,19,19,45,37.用茎叶图说明哪个方案比较稳妥. 13.(13分)为了了解中学生的身高情况,对某中学同龄的若干女生身高进行测量,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右五个小组的频率分别为0.017,0.050,0.100,0.133,0.300,第三小组的频数为6.(1)参加这次测试的学生数是多少?(2)如果本次测试身高在157cm以上(包括157cm)的为良好,试估计该校女生身高良好率是多少?14.(13分)要从甲、乙、丙三位射击运动员中选拔一名参加比赛,在预选赛中,他们每人各打10发子弹,命中的环数如下:甲:10,10,9,10,9,9,9,9,9,9;乙:10,10,10,9,10,8,8,10,10,8;丙:10,9,8,10,8,9,10,9,9,9. 根据这次成绩,应该派谁去参赛?3统计图表 4数字的特征答题纸得分:一、选择题题号 1 2 3 4 5 6答案二、填空题7. 8. 9. 10.三、解答题 11. 12. 13. 14.3统计图表 4数字的特征答案一、选择题1.C 解析:从频率分布表看不出样本数据对于平均数的波动大小,故A 错. 频数是指落在各个小组内的数据的个数,故B 错.每小组的频数与样本容量之比是这个小组的频率,故C 对. 组数是样本中的最大值减去最小值得到的差除以组距,故D 错.2.D 解析:1234512345735.x x x x x x x x x x ∴++++=Q ,,,,这五个数的平均数是,∴12345111114058x x x x x +++++++++=÷=.3.C 解析:由已知抽样数据可得平均数为=28(个),所以可以估计本周全班同学各家共丢弃塑料袋的数量约为28×45=l260(个).4.B 解析:设原来这组数据的平均数为,这组新数中的每个数据都扩大到原来的3倍,则这组新数的平均数为3,原来的方差==3,现在的方差====9=9×3=27,方差扩大9倍.5.C 解析:甲的平均数=(2+4+6+8+10)÷5=6,乙的平均数=(1+3+5+7+9)÷5=5, 所以2s 甲==8,2s 乙 ==8,所以2s 甲=2s 乙.6.D 解析:本题考查了频率的计算方法:频率=频数÷总数. 二、填空题7.120 解析:∵频数和频率分别为36和0.25,∴n==144.8.0.3 解析:由已知中样本在,+∞﹚上的频数为2+4=6,故样本在,+∞﹚上的频率为.9. 解析:12343123453 5.a a a ++++÷==因为,,,,的平均数是,所以(),解得 222222111323334353102 2.55s s ⎡⎤=-+-+-+-+-=⨯==⎣⎦所以()()()()(),所以 10.19.9,1.29三、解答题 11. 解:(1)分组 0.5~20.520.5~40.5 40.5~60.560.5~80.580.5~100.5频数 3 6 12 21 18 频率0.050.100.200.350.3(2)频率分布直方图如图所示:12. 解:作茎叶图如下:从茎叶图可以看出第一套方案比较稳妥. 13.解:(1)由于60.160÷=,故参加这次测试的学生有60名; (2)良好率为10.0170.0500.1000.1330.7----=.14. 解:经计算,甲、乙、丙三人命中的总环数分别为93,93,91,所以应先淘汰丙.设甲、乙平均成绩分别为12x x ,,方差分别为2212s s ,,则129.3x x ==,222211[(109.3)(109.3)(99.3)]0.2110s =-+-++-=L , 222221[(109.3)(109.3)(89.3)]0.8110s =-+-++-=L , 虽然甲、乙总成绩相同,但因为0.210.81<即2212s s <,故甲的发挥比较稳定,所以应派甲去参赛.。
问题41 统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
问题41 统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
按图尺的数字性质分类,有实数图、累积数图、百分数图、对数图、指数图等;其结构包括图名、图目(图中的标题)、图尺(坐标单位)、各种图线(基线、轮廓线、指导线等)、图注(图例说明、资料来源等)等。
折叠基本用途统计图一般由图形、图号、图目、图注等组成。
在行政职业能力测验中常见的有条形统计图、扇型统计图、折线统计图和网状统计图。
基本类型(1)条形统计图:又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方。
(2)扇形统计图:描述百分比(构成比)的大小,用颜色或各种图形将不同比例表达出来。
(3)折线统计图:用线条的升降表示事物的发展变化趋势,主要用于计量资料,描述两个变量间关系。
(4)半对数线图:纵轴用对数尺度,描述一组连续性资料的变化速度及趋势。
(5)直方图:描述计量资料的频数分布。
(6)散点图:描述两种现象的相关关系。
(7)统计地图:描述某种现象的地域分布。
条形图用一个单位长度(如1厘米)表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。
条形统计图可以清楚地表明各种数量的多少。
条形图是统计图资料分析中最常用的图形。
按照排列方式的不同,可分为纵式条形图和横式条形图;按照分析作用的不同,可分为条形比较图和条形结构图。
条形统计图的特点:(1)能够使人们一眼看出各个数据的大小。
(2)易于比较数据之间的差别。
(3)能清楚的表示出数量的多少。
扇形图以一个圆的面积表示事物的总体,以扇形面积表示占总体的百分数的统计图,叫作扇形统计图。
也叫作百分数比较图。
扇形统计图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系。
扇形统计图的特点:(1)用扇形的面积表示部分在总体中所占的百分比。
(2)易于显示每组数据相对于总数的大小。
折线图折线统计图以折线的上升或下降来表示统计数量的增减变化的统计图,叫作折线统计图。
与条形统计图比较,折线统计图不仅可以表示数量的多少,而且可以反映同一事物在不同时间里的发展变化的情况。
折线图在生活中运用的非常普遍,虽然它不直接给出精确的数据,但只要掌握了一定的技巧,熟练运用"坐标法"也可以很快地确定某个具体的数据。
折线统计图的特点: (1)能够显示数据的变化趋势,反映事物的变化情况。
网状图网状统计图的特点是:母代表的意义,在具体的答题过程中就可以脱离字母,较简便找出答案。
统计图的意义:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
茎叶统计图茎叶图又称"枝叶图",它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
茎叶图有三列数:左边的一列数统计数,它是上(或下)向中心累积的值,中心的数(带括号)表示最多数组的个数;中间的一列表示茎,也就是变化不大的位数;右边的是数组中的变化位,它是按照一定的间隔将数组中的每个变化的数一一列出来,象一条枝上抽出的叶子一样,所以人们形象地叫它茎叶图。
茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。
将茎叶图茎和叶逆时针方向旋转90度,实际上就是一个直方图,可以从中统计出次数,计算出各数据段的频率或百分比。
从而可以看出分布是否与正态分布或单峰偏态分布逼近。
茎叶图在质量管理上用途与直方图差不多,但它通常是作为更细致的分析阶段使用。
由于它是用数字组成直方图,所以在做的时候比直方图时,通常我们常使用专业的软件进行绘制。
茎叶图的特征1、用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
2、茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观、清晰。
统计图的意义:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
网状统计图的特点是这类统计图中只有一些字母,字母所代表的意义都在题外,在答题前必弄清这些字母代表的意义,在具体的答题过程中就可以脱离字母,较简便地得出答案。
统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.根据《中国小学教民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A错;这半年中,网民对该关键词相关的信息关注度增减不确定,B错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11月份的搜索指数的稳定性,所以去年10月份的方差大于11月份的方差,C错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.17.【贵州省黔东南州2018届高三下学期第二次模拟】甲乙两名同学6次考试的成绩统计如下图,甲乙两组,标准差分别为σσ甲乙,,则【答案】C【解析】由图可知,甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C.18.【广西2018届高三下学期第二次模拟】某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于的产品为优质产品.现用两种新配方(分别称为 配方和 配方)做试验,各生产了件这种产品,并测量了每件产品的质量指标值(都在区间 内),将这些数据分成 组:, , , ,得到如下两个频率分布直方图:已知这种配方生产的产品利润(单位:百元)与其质量指标值的关系式均为.若以上面数据的频率作为概率,分别从用配方和配方生产的产品中随机抽取一件,且抽取的这件产品相互独立,则抽得的这两件产品利润之和为的概率为()A. B. C. D.【答案】B【解析】由图可知,A配方利润为-1,0,1的频率分别为0.2,0.3,0.2,B配方利润为-1,0,1的频率分别为0.1,0.35,0.35,故抽得的这两件产品利润之和为0的概率为0.2×0.35+0.3×0.35+0.2×0.1=0.07+0.105+0.02=0.195.本题选择B选项.19.【四川省2017-2018年度高三“联测促改】某中学的兴趣小组在某座山测得海拔高度、气压和沸点的六组数据绘制成散点图如图所示,则下列说法错误的是()A. 沸点与海拔高度呈正相关B. 沸点与气压呈正相关C. 沸点与海拔高度呈负相关D. 沸点与海拔高度、沸点与气压的相关性都很强【答案】A【解析】结合绘制的散点图可得:B.沸点与气压呈正相关C.沸点与海拔高度呈负相关结合BC选项的说法可知:A选项中:A.沸点与海拔高度呈负相关且:D.沸点与海拔高度、沸点与气压的相关性都很强.本题选择A选项.20.【四川省成都市第七中学2018届高三上学期模拟测试】某城市2017年12个月的PM2.5平均浓度指数如右图所示.根据图可以判断,四个季度中PM2.5的平均浓度指数方差最小的是()A. 第一季度B. 第二季度C. 第三季度D. 第四季度【答案】B【解析】方差最小的数据最稳定,所以选B.21.【2017届吉林省长春市普通高中高三下学期第二次模拟】如图是民航部门统计的2017年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A. 深圳的变化幅度最小,北京的平均价格最高B. 深圳和厦门的春运期间往返机票价格同去年相比有所下降C. 平均价格从高到低居于前三位的城市为北京、深圳、广州D. 平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门【答案】D【解析】变化幅度看在零附近的,越接近零的越小.所以A对;涨幅是负的,所以价格跌落.B对;平均价格看条形图,最高的是价格.所以C对;平均价格变化量,不应该看涨幅的绝对值还和它的价格有关.故D错.22.【安徽省示范高中(皖江八校)2018届第八联考】如下图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.B. 与去年同期相比,2017年第一季度的GDP总量实现了增长.C. 去年同期河南省的GDP总量不超过4000亿元 .D. 2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个.【答案】D【解析】由折线图可知A、B正确;,故C正确;2017年第一季度GDP总量和增速由高到低排位均居同一位的省有江苏均第一;河南均第四,共2个.故D错误.故选D.。