初三数学总复习资料_分专题试题及答案
- 格式:docx
- 大小:1.30 MB
- 文档页数:97
初三数学总复习资料_分专题试题及答案(90页)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学总复习资料_分专题试题及答案(90页)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学总复习资料_分专题试题及答案(90页)(word版可编辑修改)的全部内容。
《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________.3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解.无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
初三数学总复习题及答案
一、选择题
1. 下列哪个选项是二次函数的一般形式?
A. y = ax^2 + bx + c
B. y = ax + bx + c
C. y = ax^2 + bx
D. y = ax + c
答案:A
2. 计算下列哪个表达式的值等于1?
A. (-2)^2
B. (-2)^3
C. (-2)^4
D. (-2)^5
答案:C
3. 一个圆的半径是5厘米,那么它的周长是多少?
A. 10π厘米
B. 20π厘米
C. 30π厘米
D. 40π厘米
答案:B
二、填空题
4. 如果一个三角形的两边长分别为3和4,且这两边夹角为90度,则
第三边的长度为______。
答案:5
5. 已知函数y = 2x + 3,当x = 2时,y的值为______。
答案:7
三、解答题
6. 一个长方体的长、宽、高分别为a、b、c,求其体积。
答案:体积 V = abc
7. 已知一个二次方程ax^2 + bx + c = 0,其中a ≠ 0,求其根的判别式。
答案:判别式Δ = b^2 - 4ac
8. 计算以下表达式的值:(3x - 2)(x + 1)。
答案:3x^2 + x - 2
9. 一个等腰三角形的底边长为6,两腰长为5,求其面积。
答案:面积S = 6√3
10. 已知一个函数y = kx + b,其中k和b是常数,且该函数的图像经过点(1, 2)和(2, 4),求k和b的值。
答案:k = 2,b = 0。
初三数学总复习资料_分专题试题及答案(90页)(3)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学总复习资料_分专题试题及答案(90页)(3)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学总复习资料_分专题试题及答案(90页)(3)(word版可编辑修改)的全部内容。
《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______.0的相反数是________.2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. √9D. 0.1010010001…2. 若a > b,则下列不等式中错误的是()A. a + 2 > b + 2B. a - 3 < b - 3C. 2a > 2bD. -a < -b3. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2 + 2x + 1D. y = 2x^2 - 4x + 34. 下列各式中,能被4整除的是()A. 32B. 36C. 40D. 425. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°6. 已知一元二次方程x^2 - 4x + 3 = 0,则它的两个根分别是()A. 1和3B. 2和2C. 1和2D. 3和17. 若平行四边形ABCD的对角线AC和BD相交于点O,则下列结论正确的是()A. OA = OCB. OB = ODC. OA = OBD. OC = OD8. 下列图形中,中心对称图形是()A. 等腰三角形B. 平行四边形C. 矩形D. 菱形9. 若x + y = 5,xy = 6,则x^2 + y^2的值为()A. 19B. 21C. 23D. 2510. 下列函数中,是偶函数的是()A. y = x^2 - 1B. y = x^3C. y = |x|D. y = x^2 + x二、填空题(每题5分,共20分)11. 若a + b = 5,ab = 6,则a^2 + b^2的值为________。
12. 若等腰三角形底边长为6,腰长为8,则其周长为________。
13. 若x = -2,则代数式x^2 - 4x + 4的值为________。
14. 若a、b、c是等差数列,且a + b + c = 18,则a + c的值为________。
九年级总复习(配《教学指南》)数与式综合卷考试时间:60分钟 满分:120一、仔细选一选(本题有10小题,每题3分,共30分) 1. 计算 ()222-+-A.– 4B. – 2C. 0D. 4 2.下列算式中,正确的是( )A 、221x xx x =⨯÷ B 、x x x -=-3232 C 、2623)(y x y x = D 、1243)(x x =--3.在25,sin 60,,,0.3,927π中,有理数的个数为( )个 A.1 B. 2 C. 3 D. 44. 化简2224m m m --的结果是( )A.2m m +B. 2m m -+C. 2m m -D. 2mm -- 5. 要使代数式12-+x x 有意义,则x 应满足( ) A .x≠1 B .x >-2且x≠1 C .x≥-2 D .x≥-2且x≠16、若1++y x 与()22--y x 互为相反数,则3)3(y x -的值为 ( )A.1B.9C.–9D.277.如图所示实数a b ,在数轴上的位置,以下四个命题中是假命题的是( ) A.320a ab -< B.2()a b a b +=+C.11a b a<- D. 22a b < 8. 点A 1、 A 2、 A 3、…、 A n (n 为正整数)都在数轴上.点A 1在原点O 的左边,且A 1O =1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2012,A 2013所表示的数分别为( ). A.2012、-2013 B.-2012、 2013 C.1006、-1007 D.1006、 -1007 9. 已知,24+=+n b a ,1=ab ,若19a2+ 149ab+ 19b 2的值为2011,则n =( )A.2B.3C.-2和3D.2或-3b0 a10若},,,max{21n s s s 表示实数n s s s ,,,21 中的最大值.设),,(321a a a A =,⎪⎪⎪⎭⎫ ⎝⎛=321b b b B ,记}.,,max{332211b a b a b a B A =⊗设,1(-=x A )1,1+x ,⎪⎪⎪⎭⎫ ⎝⎛--=|1|21x x B ,若1-=⊗x B A ,则x 的取值范围为( )A.131≤≤-xB.211+≤≤x C.121≤≤-x D.311+≤≤x二、认真填一填(本题有6个小题,每小题4分,共24分)11. 2011年3月11日,日本发生9.0级强震。
中考数学总复习题及答案一、选择题1. 下列哪个选项是无理数?A. 2B. 0.5C. √2D. 0.33333...答案:C2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14答案:B3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),那么这个二次函数的解析式可能是:A. y = (x-1)^2 - 2B. y = -(x-1)^2 + 2C. y = (x-1)^2 + 2D. y = -(x-1)^2 - 2答案:D二、填空题1. 已知一个数的平方根是±2,那么这个数是______。
答案:42. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5 或 -53. 一个多项式除以x-2,余数为1,那么这个多项式可能是x^2 + 2x + ______。
答案:5三、解答题1. 解方程:2x - 3 = 7答案:2x - 3 = 72x = 10x = 52. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。
答案:根据勾股定理,斜边长度为√(6^2 + 8^2) = √(36 + 64) = √100 = 103. 一个工厂生产某种产品,每件产品的成本为50元,售价为70元。
如果工厂希望获得的利润不少于2000元,那么至少需要销售多少件产品?答案:设需要销售x件产品,则利润为(70-50)x = 20x。
要使利润不少于2000元,即20x ≥ 2000,解得x ≥ 100。
因此,至少需要销售100件产品。
《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73π- 有理数集{ },无理数集{ } 正实数集{ } 2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______ 4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________4、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab > A.1个 B.2个 C.3个 D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是-1 0图1•2 a 图2••c________。
《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。
考点1有理数、实数的概念 1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是 ___________ 对应的,每一个实数都可以用数轴上的 __________ 来表示,反过来,数轴上的点都表示一个 _________ 。
3、 ______________________ 叫做无理数。
一般说来,凡开方开不尽的数是无理数, 但要注意,用根号形式表示的数并不都是无理数 (如-.4),也不是所有的无理数都可以写成根号的形式(如 )。
1、把下列各数填入相应的集合内:7.5,,15,4, .8 ,-, 38, , 0.25, 0.15133有理数集{ } ,无理数集{}正实数集{ }J3 2、在实数 4,,0,2 1, 、64,327 1• 一中,共有个无理数2273、在J3, 3.14, -,si n4 5,J4中,无理数的个数是34、写出一个无理数 ,使它与<2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值3、一个数的绝对值就是数轴上表示这个数的点与 _________ 的距离11、 ___________ 的倒数是 1—;的相反数是 ____________ 。
22、 如图1,数轴上的点M 所表示的数的相反数为 _____________M-1 0 1 2 3图13、 (1 m )1 2 |n 21 0,则 m n 的值为 _____________1 若a 0,则它的相反数是 _________ ,它的倒数是 ______ 。
0的相反数是 _________ 。
2 一个正实数的绝对值是 ________________ ;一个负实数的绝对值是 _______________ ; 0的绝对值《数与式》。
丨X|—(x 0) —(x0)1 x 4、 已知| x | 4,| y | —,且xy 0 ,则一的值等于 _________________2y5、 实数a,b,c 在数轴上对应点的位置如图 2所示,下列式子中正确的有()的两点A 和B 之间的距离是 ,如果|AB|=2,那么1、 若x 2 a (a 0),则x 叫a 做的____________ ,记作 ______ ;正数a 的 ___________ 叫做算术平方根,0的算术平方根是 ____ 。
当a 0时,a 的算术平方根记作 ______________ 。
2、 非负数是指 __________ ,常见的非负数有(1)绝对值|a|_0;( 2)实数的平方a 2—0 ;(3)算术平方根..a ____ 0(a 0)。
3、 如果a,b,c 是实数,且满足| a | b 2. c 0,则有a ________ , b ______ ,c ______1、 下列说法中,正确的是( )的平方根是 3的算术平方根是■■ 7C. 15的平方根是 V 15D. 2的算术平方根是%; 22、 9的算术平方根是 _______3、 38等于 _____4、 |x 2| .. y —3 0,则 xy _______考点4近似数和科学计数法2、关于绝对值的化简(1) 绝对值的化简,应先判断绝对值符号内的数或式的值是正、绝对值符号去掉。
负或0,然后再根据定义把(2) 已知| x | a (a 0),求x 时,要注意x a考点3 平方根与算术平方根1、若a,b 互为相反数,则a b 0 ;反之也成立。
若a,b 互为倒数,则ab 1 ;反之也成立。
c1 o ■bL OaiQ»■」-2:-1? ---1 2 3图 2①b c 0②a b a c ③ bc ac个 个个个6、①数轴上表示 -2 和-5 的两点之间的距离是 ④ ab ac数轴上表示1和-3的两点之间的距离是②数轴上表示x 和-1x1、精确位:四舍五入到哪一位。
2、有效数字:从左起 ______________ 到最后的所有数字。
3、科学计数法:正数:__________________负数: _________________1、据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为______________2、由四舍五入得到的近似数的有效数字的个数是 _______ ,精确度是_________3、用小数表示:7 10 5= __________________考点5 实数大小的比较1、正数>0>负数;2、两个负数绝对值大的反而小;3、在数轴上,右边的数总大于左边的数;4、作差法:若a b 0,则 a b;若a b 0,则a b;若 a b 0,则a b.1、比较大小:I 3| _______ ; 1迈 _________ 0。
2、应用计算器比较州与弱的大小是_________________1 1 13、比较丄,丄,1的大小关系:____________________2 3 44、已知0x1,那么在X, 丄X x2中,最大的数是_____________________X考点6 实数的运算1、当a 0时,a0 ______ ; a n ________ (n是正整数)。
2、今年我市二月份某一天的最低温度为 5 C,最高气温为13 C,那么这一天的最高气温比最低气温高_____________3、如图1,是一个简单的数值运算程序,当输入x的值为-1时,则输出的数值为 ______________4、计算A A(1) ( 2)2-(2004 、3)°| -I2 2厂1(2) (1 2)0(-)1 2 cos300);考点7乘法公式与整式的运算1、 判别同类项的标准,一是 ___________ ;二是 __________________ 。
2、 幂的运算法则:(以下的m,n 是正整数)(1) __________ a m a n ___________ ; (2)(a m )n _______ ; (3)(ab)n _________ ; (4)a m a n_____________ (a (5)(b )n ________a3、 乘法公式:2 2(1) _____________________ (a b)(a b) _________________ ; (2)(a b) ____________ ; (3)(ab) ____________________4、计算:(2x 2y 2)2( x 2y 4)考点8 因式分解因式分解的方法:1、 提公因式:2、公式法:a 2 b 2 ;a 2 2ab b 2a 2 2ab b 21、 分解因式mn mn 22 2,a 4ab 4b2、分解因式 x 21 ________考点9:分式4、 去括号、添括号的法则是 1、 F 列计算正确的是( A. x 2 x 3 x 5 B. x 2C. ( x 3)2D. x 6 x 32、 A. F 列不是同类项的是( 2与 - 2B. 2m 与 2nC.x 2y 2与丄x y23、 计算: (2a 1)2(2a 1)( 2a 1)1、 分式的判别:(1)分子分母都是整式,(2)分母含有字母;2、 分式的基本性质:b 虫乞』(m 0)a am am3、 分式的值为 0的条件: _____________________4、 分式有意义的条件: _______________________5、 最简分式的判定: _______________________6、 分式的运算:通分,约分2时,分式—x 26、计算:考点10 二次根式3、二次根式的乘除法1、 时,分式—_2有意义x 52、4-的值为零3、 F 列分式是最简分式的是( A. 2a 2 a 6xy ---------- B.ab3a C.x 2 1 x 14、下列各式是分式的是( A.-aB.5、计算:a 31 1 xC.1、 二次根式:如..a (a 0)2、 二次根式的主要性质:(1)(.a)2 _ (a 0)__(a 0)(2)、a 2 |a|__(a 0) __(a 0)(3) ab______ (a 0,b 0) ___ (a 0,b 0)4、 分母有理化:5、 最简二次根式:6、 同类二次根式:化简到最简二次根式后,根号内的数或式子相同的二次根式7、 二次根式有意义,根号内的式子必须大于或等于零 1下列各式是最简二次根式的是( A. ,12 B. ,3x C. . 2x 32、下列根式与•一 8是同类二次根式的是 A. 口.;;2 B. ■. ?3 C. ■. 53、 二次根式J3x 4有意义,则x 的取值范围 ______________4、 若寸 3x J6,贝H x = __________5、 计算:3、2. 3 2.2 3.36、计算:5 . a 2.4a 2 (a 0)7、计算: 20 1 58、数a 、b 在数轴上的位置如图所示,化简:.(a 1)2 . (b 1)2 ..(a b)2 .扁 Jb __________ (a 0,b 0)______ (a 0, b 0)) D.卩\ 3)D. , 6数与式考点分析及复习研究(答案)考点1 有理数、实数的概念1、有理数集{7.5,4,2,3 8,0.25,0.15}3无理数集{一15,.. 8 , }\13正实数集{陌4,冷|,V8,2、23、24、答案不唯一。
如(2)考点2数轴、倒数、相反数、绝对值1、2,0.2832、 2.53、14、85、C6、3, 4 ;|x 1|,3或1考点3平方根与算术平方根1、B2、33、24、6考点4近似数和科学计数法1、4.2106个2、4,万分位3、考点5实数大小的比较1、<,<2、■-53、113、1 1 1——----- 2 3 44、1x考点6实数的运算1、18 C2、10.25, 0.15}6、1 1 3、 (1)解:原式=4+ ——22(2) 解:原式=1 + 2+ 2 —2=4考点7 乘法公式与整式的运算1、 C2、 B3、 (2a 1)2(2a 1)(2a 1)解:原式=(2a 1)(2a 1(2a 1)) = (2a 1)(2a 1 2a1)= 2(2a1)=4a 22 2\22 4\4、 ( 2x y )(x y )解:原式=4x 4y 4( x 2y 4)=4x 2考点8因式分解21、mn(1 n),(a 2b)2、 (x 1)(x 1) 考点9:分式 1、 x 5 2、 x 23、 D4、 A5、 丄丄1 x 1 x1 x 1 x (1 x)(1 x)2 (1 x)(1 x)解:原式=(1 x)(1 x) 1 X(1 x)(1 x)=3+32解:原式=上(a 1)a 1=丄(a 1)(a 1)a 1 a 12 2=a (a 1)a 1考点10 二次根式1、B2、A5、3.2 ,3 2.2 3.、3解:原式=3...2 2 23、. 3..2 2.36、5 . a2.4a2(a 0)解:原式=5a 2a=3a20 1 ’ 1 57、------ = .4——2 -,5 、5 5 8、, (a 1)2;(b 1)2 解:a1, b 1, b aa 1 0,b 1 0,a b 03、x原式= (a 1) (b 1) (a b)一、方程与方程组二、不等式与不等式组知识结构及内容:12 (一)方程与方程组45一元一次方程3 J 一元二次方程j方程组分式方程<6应用1、概念:方程、方程的解、解方程、方程组、方程组的解2、一元一次方程解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零)例题:.解方程:/、 1 x1x 2 x 1 小(1) x—(2) 2 x33 3 2解:(3)关于x的方程mx+4=3x+5的解是x=1,则m= ________________解:3、一兀二次方程:(1) 一般形式:ax2 bx c 0 a 0(2)解法:直接开平方法、因式分解法、配方法、公式法例题:①、解下列方程:2(1) x —2x= 0;(3) (1 —3"= 1;(5) (t —2) (t+1) =0;(7 )2 x2—6x —3= 0;2(2) 45—x = 0;(4) (2x + 3)2—25 = 0.(6) x2+ 8x —2= 0(8) 3 (x —5) 2= 2 (5—x)2求根公式ax bx c 0 a 0 x b •- b24ac , 2 b 2a4ac解: 方程与不等式几个概念②填空:(1) 2x + 6x +()=(x + )2; ⑵ 2x —8x +( )=(x — )2; (3) x 2+ 3x +(2)=(x +)(3)判别式△二b2-4ac 的三种情况与根的关系『当 0时 有两个不相等的实数根 ,当0时 V ------- 两个相等的实数根[当 0时 V ------------- 有实数根。