2014-2015学年河北省唐山市滦县七年级(下)期末数学试卷
- 格式:docx
- 大小:426.60 KB
- 文档页数:20
2014~2015学年度第二学期期末测试题(一)七年级数学第I 卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 下列各式计算正确的是( )A .8442x x x =+ B .()326x yx y = C .()325x x = D .()853x x x =-⋅-2. 下列各式中,不能用平方差公式计算的是( )A .)43)(34(x y y x ---B .)2)(2(2222y x y x +- C .))((a b c c b a +---+ D .))((y x y x -+-3. PM 2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .0.25×10-5B .0.25×10-6C .2.5×10-5D .2.5×10-64. 如图,∠1与∠2互补,∠3=135°,则∠4的度数是( ) A 、45° B 、55° C 、65° D 、75°5. 在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的关系式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个6. 如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别 是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( ) A 、5个 B 、4个 C 、3个 D 、2个7. 若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( ) A .12 B .34 C .13 D .14C第6题第4题第5题8. 如下图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于点E ,DF ⊥AC 交AC 于点F .若S △ABC =7,DE =2,AB =4, 则AC =( )A .4B .3C .6D .59. 如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于( )A . 25°B . 30°C . 35°D . 40°10. 如图,△ABC 的外角平分线CP 和内角平分线BP 相交于点P ,若∠BPC =35°,则∠CAP =( ) A .45° B .50° C .55° D .65°11. 如图,△ABC 中,∠ACB =90°,CD 是高,∠A =30°,AB =4,则BD 的值为( ) A .3 B .2 C .1.5 D .l12. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ; ⑤∠AOB =60°.其中正确的结论的个数是( ) A .2个 B .3个 C .4个 D .5个第Ⅱ卷(非选择题 共84分)2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)13. 长方形面积是a ab a 6332+-,一边长为3a ,则它的另一边长是 。
百度文库wjb005制作第2题图nmba70°70°110°第3题图CBA2112第六题图DCBADCBA DC B A F EDC B A EDCBA 2014-2015年度七年级数学(下)期末考试卷时间:120分钟 总分:120分一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是 。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。
5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。
6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=na 。
8、已知412+-kx x 是一个完全平方式,那么k 的值为 。
9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。
10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211a a a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61C. 51D. 31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③876954521第1页 共4页C.②③④D.①③④第2页共4页百度文库wjb005制作百度文库wjb005制作乙甲BA OEDCB A/时三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。
河北省唐山市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2015九上·沂水期末) 如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A . 3B . 2C . 3D . 22. (2分)(2019·宁波模拟) 下列各式正确的是()A . ﹣|﹣3|=3B . 2﹣3=﹣6C . ﹣(﹣3)=3D . (π﹣2)0=03. (2分)(-5)3×40000用科学记数法表示为()A . 125×105B . -125×105C . -500×105D . -5×1064. (2分) (2017七下·苏州期中) 下列运算正确的是()A . x3·x3=2x6B . (-2x2)2=-4x4C . (x3)2=x6D . x5÷x=x55. (2分) (2017八上·秀洲月考) 如果a>b,那么下列各式中错误的是()A . a+5>b+5B . 5a>5bC .D . -5a>-5b6. (2分)(2019·河北模拟) 如图,公园A在公园B的北偏东50°方向,公园C在公园B的北偏西25°方向,若A,B两公园到公园C的两直线的夹角∠C为35°,那么公园C在公园A的()A . 西北方向B . 北偏西60°方向C . 北偏西70°方向D . 南偏东75°方向7. (2分)下列命题是真命题的是()A . 内错角相等B . 同位角相等,两直线平行C . 互补的两个角必有一条公共边D . 相等的角是对顶角8. (2分)(2020·武汉模拟) 为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A .B .C .D .9. (2分) (2020八下·杭州月考) 某班30名学生的身高情况如下表关于身高的统计量中,不随x、y的变化而变化的有()A . 众数,中位数B . 中位数,方差C . 平均数,方差D . 平均数,众数10. (2分) (2017八下·容县期末) 把直线y=-x-3向上平移m个单位后,与直线y=2x+4的交点在第二象限,则m的取值范围是()A . 1<m<7B . 3<m<4C . m>1D . m<4二、填空题 (共8题;共8分)11. (1分) (2017七下·大同期末) 二元一次方程组的解是________.12. (1分)某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有________ 种.13. (1分)(2017·东城模拟) 分解因式:ab2﹣2ab+a=________.14. (1分)如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于________.15. (1分)现用甲、乙两种保温车将1800箱抗甲流疫苗运往灾区,每辆甲运输车最多可载250箱,每辆乙运输车最多可载150箱,并且安排车辆不超过10辆,那么甲运输车至少应安排________辆.16. (1分)(2019·泰安) 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重两,每枚白银重两,根据题意可列方程组为________.17. (1分)(2014·北海) 已知∠A=43°,则∠A的补角等于________度.18. (1分) (2017七下·丰台期中) 若不等式的解集为,则的取值范围是________.三、解答题 (共9题;共85分)19. (5分)计算:4×(﹣)×3﹣|﹣6|20. (10分) (2017七下·兴化期末) 已知关于x、y的方程组(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足条件x<0,且y<0,求m的取值范围.21. (5分) (2020七下·陈仓期末) 先化简,再求值:,其中,.22. (10分)(2019·徐州)(1)解方程:(2)解不等式组:23. (5分) (2015七下·深圳期中) 推理说明题已知:如图,AB∥CD,∠A=∠D,试说明AC∥DE成立的理由.下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.解:∵AB∥CD (已知)∴∠A=________(两直线平行,内错角相等)又∵∠A=∠D(________)∴∠________=∠________(等量代换)∴AC∥DE(________)24. (15分)(2016·双柏模拟) 某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1) B班参赛作品有多少件?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?25. (10分)某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.8万元,30秒广告每播1次收费1.5万元.若要求每种广告播放不少于2次.问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益较大?26. (15分) (2017七下·海安期中) 如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP 与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP 与∠BAC有何数量关系?直接写出猜想结论,不需说明理由.27. (10分) (2019七上·叙州期中) 下表记录的是今年我区长江段某周的水位变化情况,这一周的上周末的水位已达到警戒水位33米(正号表示水位比前一天上升,负号表示水位比前一天下降)星期一二三四五六日水位变化(米)+0.2+0.8-0.4+0.2+0.3-0.2-0.1(1)本周哪一天长江的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末长江的水位是上升了还是下降了?并通过计算说明理由。
滦平县2014—2015学年度第二学期期末考试七年级数学试卷(时间:90分钟;满分:100分)亲爱的同学们,经过一年的学习,大家一定感受到数学的魅力了吧!这份试卷将会记录你的自信、沉着、智慧和收获,相信你一定行!一、选择题:(每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,请将它的序号填在题后括号内.认真思考,相信你一定能选准!)1.下列运算正确的是( ) A .236a a a =÷ B .235(a )=aC .222(2a )=4aD .369a a =a ⋅2. 将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )A .45°B .60°C .75°D .90 3. 若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33b a >C . b a -<-D . bc ac < 4. 如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( ) A .2cm B .3cm C .4cm D .8cm 5. 下列多项式能分解因式的是( )A .22yx +B .22yx --C .222yxy x -+-D .22y xy x +-6. 如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB ,AC 上的点,且DE ∥BC ,则∠AED 的度数是( )A .40°B .60°C .80°D .120° 7. 不等式-3x ≤9的解集在数轴上表示正确的是( )第2题图A B C D8. 如图,下列条件中能判断BD∥AC的是()A.∠1=∠2 B.∠D=∠AC.∠3=∠4 D.∠ABD+∠D=18009.下列说法中,错误的是()A.不等式x<2的正整数解有一个B.-2是不等式2x-1<0的一个解C.不等式x<10的整数解有无数个D.不等式2x>-6的解集是x<-310.如图,宽为50 cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A. 400 cm2B. 500 cm2C. 600 cm2D. 4000 cm2二、填空题(每小题2分,共20分.多动脑筋,相信你一定能填对!)11. “x与y的和大于1”用不等式表示为_____ ______.12. 把多项式aa42-分解因式为 _.13.人体中成熟红细胞的平均直径为0.0000077m ,用科学记数法表示这个数为 . 14.2x≥的最小值是a,6x-≤的最大值是b,则a b+=________.15.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是.16.已知4+=yx,则代数式25222-+-yxyx的值为.17.已知18xy=⎧⎨=-⎩是方程31mx y-=-的解,则m=.18.不等式145->-xx的最大整数解是___________.19.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=_________度.20.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用第10题图第19题图第8题图不等式表示为____________.三、解答题(本大题共50分,请同学们认真解答,写出规范的解题过程.)21.(本题共9分,(1)题4分;(2)题5分)(1)先化简,再求值:)2()3)(3(---+x x x x ,其中x =4.(2)解不等式组⎪⎩⎪⎨⎧>+≤-0121132x x ,并把解集在数轴上表示出来.22.(本题满分5分)如图,在一块边长为a cm 的正方形纸板四角,各剪去一个边长为b cm )2(ab <的正方形,利用因式分解计算当2.13=a ,4.3=b 时剩余部分(阴影部分)的面积.23.(本题满分6分)如图,在△ABC 中,∠B =60°,∠C =20°,AD 为△ABC 的高,AE 为角平分线.求∠EAD 的度数.24.(本题满分10分)如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)猜想:△ABD 与△ADC 的面积有何关系?并简要说明理由; (2)在△BED 中作BD 边上的高;(3)若△ABC 的面积为40,BD =5,则△BDE 中BD 边上的高为多少?25.(本题满分10分)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120 元,售价138 元;乙种商品每件进价100 元,售价120 元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品.购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2 倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?26.(本题满分10分)如图1是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状,拼成一个正方形.(1)图2中的阴影部分面积为 ; (2)观察图2,请你写出三个代数式2)(n m +,2)(n m -,mn 之间的等量关系是 ;(3)若6-=+y x ,75.2=xy ,利用(2)提供的等量关系计算2)(y x -= ;(4)实际上有许多代数恒等式可以用图形的面积来表示,如图3,它表示了等式:))(2(3222n m n m n mn m ++=++.请你仿照上述做法,试画出一个几何图形,使它的面积是2234b ab a ++,并能利用这个图形将2234b ab a ++进行因式分解.图1图2图3。
2014-2015学年七年级下期末考试数学试卷及答案一、选择题(每小题3分、共30分)1.中国园林网4月22日消息: 为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8 210 000m 2.将8210 000用科学记数法表示应为(A )482110⨯ (B )582.110⨯ (C )68.2110⨯ (D )70.82110⨯ 2.下列各组长度的三条线段能组成三角形的是( ) A.1cm ,2cm ,3cm B.1cm ,1cm ,2cm C.1cm ,2cm ,2cm ; D.1cm ,3cm ,5cm ; 3.下列乘法中,不能运用平方差公式进行运算的是( )A 、(x+a)(x-a)B 、(b+m)(m-b)C 、(-x-b)(x-b)D 、(a+b)(-a-b) 4. 如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A=∠C B .AD=CB C .BE=DF D .AD ∥BC5、在△ABC 中,∠ABC 与∠ACB 的平分线相交于O ,则∠BOC 一定( )A、大于90° B、等于90° C、小于90° D、小于或等于90° 6、将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A . 502B . 503C . 504D . 5057、下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③44144m m -=; ④(xy 2) 3=x 3y 6,他做对的个数是( )A .0B .1C . 2D .3AO8、如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;A . 1B . 2C . 3D . 49、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)第40分钟时,汽车停下来了(4)在第30分钟时,汽车的速度是90千米/时;.A 1个B 2个C 3个D 4个10、如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )二、填空题(每小题2分,共20分) 11、已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为___________. 12、将 “定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为___________.13、计算: -22+20-|-3|×(-3)-1 =;14、 =⨯-200220035)2.0( 。
2014--2015年度七年级数学期末考试试卷一.选择题1.已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有( ).A .1B .2C .3D .42.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适. A .18℃~20℃ B .20℃~22℃ C .18℃~21℃ D .18℃~22℃3.多项式3x 2-2xy 3-21y -1是( ).A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 4.下面不是同类项的是( ). A .-2与21 B .2m 与2n C .b a 22-与b a 2 D .22y x -与2221y x5.若x =3是方程a -x =7的解,则a 的值是( ).A .4 B .7 C .10 D .736.在解方程123123x x -+-=时,去分母正确的是( ). A .3(x -1)-2(2+3x )=1 B .3(x -1)+2(2x +3)=1C .3(x -1)+2(2+3x )=6D .3(x -1)-2(2x +3)=67.如图1,由两块长方体叠成的几何体,从正面看它所得到的平面图形是( ).A .B .C .D .8.把图2绕虚线旋转一周形成一个几何体,与它相似的物体是 ( ). A .课桌 B .灯泡 C .篮球 D .水桶9.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( ).A .98+x =x -3B .98-x =x -3C .(98-x )+3=xD .(98-x )+3=x -310. 以下3个说法中:①在同一直线上的4点A 、B 、C 、D 只能表示5条不同的线段;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.说法都正确的结论是( ).A .②③B .③C .①②D .①11.用一副三角板(两块)画角,不可能画出的角的度数是( ).A .1350 B .750 C .550 D .150 12.如图3,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN :PQ 等于( ).A .1 B .2 C .3 D .4二、填空题图1图213.请你写出一个解为x =2的一元一次方程 .14.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是. 15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是 .16计算:77°53′26"+33.3°=______________. 三、解答与证明题 17.计算: (1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12]18.(本题满分8分)先化简,再求值,222963()3y x y x -++-,其中12-==y x ,.(4分)19.解下列方程:(本题满分8分)(1)231x x -=+(4分) (2)13312x x --=-(4分)20.如图所示,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若ED =9,求线段AB 的长度.22.(本题9分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒). 问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(6分)(2)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么? (3分)23.(本题7分)如图,某轮船上午8时在A 处,测得灯塔S 在北偏东60°的方向上,向东行驶至中午12时,该轮船在B 处,测得灯塔S 在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB 的度数及AB 的长.24.(本题满分9分)如图所示已知90AOB ∠=︒,30BOC ∠=︒,OM 平分AOC ∠,ON 平分BOC ∠;(1)︒=∠_____MON ;(2)如图∠AOB =900,将OC 绕O 点向下旋转,使∠BOC =02x ,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.(3) AOB α∠=,BOC β∠=,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求MON ∠的度数;并从你的求解中看出什么什么规律吗?(3分)25.(10分)画图说明题 (1) 作∠AOB=90;(2) 在∠AOB 内部任意画一条射线OP ; (3) 画∠AOP 的平分线OM ,∠BOP 的平分线ON ; (4) 用量角器量得∠MON= . 试用几何方法说明你所得结果的正确性.参考答案一、选择题二、填空题13.2x =4(答案不唯一), 14.24, 15.82, 16.0'"1111126, 三、解答题17.(1)原式=(-2123-13)+(334-14) …… 2分 =-22+324 =-1812…… 4分(2)原式=4+2(9-3×2) …… 2分=4+6=10 ……4分18. )32(36922x y x y -++-, = 229632y x y x -++- ……4分 =-6y +4x 2; ……6分当12-==y x ,时,原式=-6y +4x 2=-6×(-1)+4×22=6+16=22.……8分 19.(1)231x x -=+;解:移项得,2x-x=1+3,……2分合并得,x=4.……4分(2)13312xx--=-解:去分母得,6-(x-1)=2(3x-1),……2分去括号得,6-x+1=6x-2,……3分移项得,-x-6x=-2-6-1,合并得,-7x=-9,化系数为1得,x=97.……4分20.因为C、D为线段AB的三等分点所以AC=CD=DB……1分又因为点E为AC的中点,则AE=EC=12AC……2分所以,CD+EC=DB+AE……3分因为ED=EC+CD=9……4分所以, DB+AE= EC+CD =ED=9则AB=2ED=18.……6分或者设EC=x,则AC=CD=DB=2x,AB=6x,……3分因为ED=9,则有x+2x=9,解得x=3,……5分则AB=6x=6×3=18.……6分21.设这台电脑的进价为x元,由题意可列:……1分5850×0.8-x=210,……4分解得x=4470,……6分答:这台电脑的进价为4470元.……7分22.(1)设当购买乒乓球x盒时,两种优惠办法付款一样,由题意可知……1分30×5+5×(x-5)=5×30×0.9+x×5×0.9,……4分去括号得,150+5x-25=135+4.5x移项合并得,0.5x=10化系数为1得,x=20.……5分答:当购买乒乓球20盒时,两种优惠办法付款一样.……6分(2)当购买30盒乒乓球时,去甲店购买要30×5+5(x-5)=150+5×25=275(元),……7分去乙店购买要5×30×0.9+x×5×0.9=135+4.5×30=270元……8分所以,去乙店购买合算.…………9分23.(1)能正确画出图形给4分(3)由题意可知30SAB ∠=︒,60SBA ∠=︒180603090ASB ∠=︒-︒-︒=︒AB =(12-8)×20=80千米24.(1)45MON ∠=︒;……3分(2)能,因为∠AOB =900,∠BOC =02x , 所以∠AOC =900+02x ,……4分 因为OM 、 ON 平分∠AOC,∠BOC 的线所以∠MOC =21∠AOC =21(900+02x )=450+x 所以∠CON =21∠BOC =x ……5分所以∠MON =∠MOC -∠CON =450+x -x =450……6分 (3)能,因为∠AOB =α,∠BOC =β, 所以∠AOC =α+β,……7分 因为OM 、 ON 平分∠AOC,∠BOC 的线所以∠MOC =21∠AOC =21(α+β) 所以∠CON =21∠BOC =21β ……8分所以∠MON =∠MOC -∠CON =21(α+β)-21β =21α即12MON α∠=.……9分25.下面用几何方法说明所得结果的正确性:因为 ∠POB+∠POA=∠AOB=90°,∠POM=12∠POB ,∠PON=12∠POA ,……………………………………(8分) 所以 ∠POM+∠PON=12(∠POB+∠POA )=12∠AOB=12×90°=45°. ………(10分)。
河北省滦县2017-2018学年七年级数学下学期期末试题2017——2018学年度第二学期期末考试七年级数学答案及评分标准一、选择题:1—5 DDCCB 6—10 ADBBB二、填空题:11.1;12.()()22x x x +-;写成-x(x+2)(x-2)或x(x+2)(2-x)或x(2-x)(2+x)13.垂直或MP ⊥NP (只写“⊥”不对);14.9,(写32或(-3)²不给分)15.3;16.-6;17.10;18.360;(写°和不写°都给分)19.2<m ≤3;20.76°(不写°也对)。
三、解答题:21. 解:()()()()221323252a a a a a --+-++=4a 2-4a +1-(9a 2-4)+(5a 2+10a ) (1分)=4a 2-4a +1-9a 2+4+5a 2+10a (1分)=6a +5 (1分)当a =12-时,原式=1652⎛⎫⨯-+ ⎪⎝⎭(1分) (不写括号不给分) =-3+5=2 (1分)22.解:解不等式①得:x ≤1 (2分)解不等式②得:x >-3 (2分)在数轴上表示解集为: (2分)(数轴表示画对一个给一分)∴不等式组的解集为:-3<x ≤1 (1分)23.解:(1)在△ABC 中,∵∠BCD =∠A +∠B , (1分)(不写在△ABC 中也给分)∠BCD =92°,∠A =27° (1分)∴∠B =∠BCD -∠A =92°-27°=65°。
(2分)(2)在△BEF 中,∵∠BFD =∠B +∠BED (1分)∠BED =44°,∠B =65° (1分)∴∠BFD =44°+65°=109°。
(2分)(方法二:(1)∵∠BCD =92°∴∠A CB=180°-∠BCD=180°-92°=88°(1分)在△ABC 中,∠A +∠B+∠A CB=180°, (这个式子不写也给分) ∠A =27°(1分)∠B=180°-(∠A+∠A CB)=180°-(27°+88°)=65°(2分)或:(1)∵∠BCD =92°∴∠A CB=180°-∠BCD=180°-92°=88°(1分)∵∠A +∠B+∠A CB=180°∠A =27° (1分)∴∠B=180°-27°-88°= 65° (2分)但是不写∵∠A +∠B+∠A CB=180°或∠B=180°-(∠A+∠A CB)只写 ∠B=180°-27°-88°= 65°给1分由(1)得:∠B = 65°,∵ ∠BED =44°,(1分)∴∠BFE=180°-∠B-∠BED=180°-65°-44°=71°(2分)∴∠BFD=180°-∠BFE=180°-71°=109°(1分)方法三:∵ ∠BED =∠A +∠D, (1分)∠BED =44°,∠A =27°(1分)∴∠D=∠BED-∠A=44°- 27°=17° (1分)∵∠BFD = ∠D+∠BCD, (1分)∠BCD =92°(1分)∴∠BFD=17°+92°=109°(1分)∵ ∠BFD =∠B+ ∠BED , (1分)∠BED =44°(1分)∴∠B= ∠BFD -∠BED =109°-44°=65°(1分) (求出∠D 后用内角和定理求∠DFC,进而再求∠B 也对)24.解:(1)不彻底,(2分) ()42x - (1分)(2)设:m ²-2m =x 。
2014—2015学年度下期期末学业质量监测七年级数学试题注意事项:1、全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2、考生必须在答题卷上作答,答在试卷上、草稿纸上无效。
3、试卷中横线上及方框内注有“▲”的地方,是需要考生在答题卷上作答的内容或问题。
请按照题号在答题卷上各题目对应的答题区域内作答,超出答题区域书写的答案无效。
A 卷(100分)一、选择题(每小题3分,共30分)下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内。
1. 化简32b b ⋅的结果是( ▲ )A .62b B .52b C .5b D .6b2. 下列四个腾讯软件图标中,属于轴对称图形的是( ▲ )A .B .C .D .3. 如图,已知∠1=∠2,那么下列结论正确的是( ▲ ) A .∠C=∠D B .AD ∥BCC .AB ∥CD D .∠3=∠4 3题图4.下列计算中,正确的是( ▲ )A .422532a a a =+ B .()222b a b a -=-C .236a a a =÷ D .()63282a a -=-5. 在一个不透明的袋子中装有4个白球和3个黑球,它们除了颜色外都相同,随机从中摸出2个球,属于不可能事件的是( ▲ )A .摸到2个白球B .摸到2个黑球C .摸到1个白球,1个黑球D .摸到1个黑球,1个红球6. 如图,用尺规作出∠AOB 的角平分线OE ,在作角平分线过程中, 用到的三角形全等的判定方法是( ▲ ) A .ASA B .SSSC .SASD .AAS 6题图 7. 下列说法中错误的是( ▲ )A .三角形三条角平分线都在三角形的内部B .三角形三条中线都在三角形的内部C .三角形三条高都在三角形的内部D .三角形三条高至少有一条在三角形的内部8. 用科学记数法表示的数5108.5-⨯,它应该等于( ▲ )A. 0.0058B. 0.00058C. 0.000058D. 0.0000058A .当h=50cm 时,t=1.89sB .随着h 逐渐升高,t 逐渐变小C .h 每增加10cm ,t 减小1.23sD .随着h 逐渐升高,小车的速度逐渐加快 10题图10. 如图,正方形ABCD 的边长为4cm ,则图形中阴影部分的面积是( ▲ )㎝2A. 4B. 8C. 12D. 16 二、填空题(每小题4分,共16分) 11. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是 ▲ .11题图 13题图12. 分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是 ▲ . 13. 如图,在Rt △ABC 中,090=∠A ,BD 平分ABC ∠,交AC 于点D ,若AD=2,则点D 到边BC 的距离为 ▲ .14. 等腰三角形一边长为9cm ,另一边长为4cm ,则这个三角形的周长为 ▲ cm 三、解答题(15题4+6分,16题6分,共16分)15. 计算或化简:(1)()()3022201521-⨯-+⎪⎭⎫⎝⎛--(2) ()()()2232+--+a a a16. 填空(每空1分,共6分)如图,已知∠1=∠2,∠B=∠C ,可推得AB ∥CD .理由如下: ∵∠1=∠2(已知),且∠1=∠CGD ( ▲ ) ∴∠2=∠CGD (等量代换)∴CE ∥BF ( ▲ )∴∠ ▲ =∠BFD ( ▲ ) 又∵∠B=∠C (已知)∴ ▲ (等量代换) ∴AB ∥CD ( ▲ ) 四、解答题(每小题8分,共16分)17. 向如图所示的等边三角形区域内扔沙包,(区域中每个小等边三角形陈颜色外完全相同)沙包随机落在某个等边三角形内.(1)扔沙包一次,落在图中阴影区域的概率是多少? (2)要使沙包落在图中阴影区域和空白区域的概率均为,还要涂黑几个小等边三角形? (3)若从空白区域的小等边三角形中任选一个也涂上阴影,使得整个阴影部分组成的图..........形.成轴对称图形,那么符合条件的小等边三角形有几个?18. 一辆汽车油箱内有油48升,从某地出发,每行1km ,耗油0.6升,如果设剩余油量....为y (升),行驶路程为x (千米). (1)写出y 与x 的关系式;(2)这辆汽车行驶35km 时,剩油多少升?(3)这车辆在中途不加油的情况下最远能行驶多少千米?五、解答题(19题每小题6分,20题10分,共22分)19. (1)若5=+y x ,6=xy ,求①22y x +,②()2y x -的值(2)已知()()412=---b a a a ,求ab b a -+222的值。
2014-2015学年第二学期期末教学质量检测试卷⑴七年级数学试卷【冀教版全册】 考生注意:1。
本卷共6页,总分100分,考试时间90分钟.2. 答题前请将密封线左侧的项目填写清楚。
【本大题共10个小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在题中的括号内】1.下面四个图形中,不能下列图案用平移得到的图案是( );A B C D2。
下面四个图形中,∠1与∠2是对顶角的是( );12121212A B C D 3.两条直线被第三条所截,则( );A 。
同位角相等; B. 内错角相等; C. 同旁内角互补; D. 以上都不对; 4.下面各式中计算正确的是:( );A.(x -2)(x+2)=2x -2; B. 22)2(x x =--2;C 。
(-2x -1)(2x -1)=142-x ; D 。
9124)32(22++=--x x x ;5.等腰三角形有两边长是6厘米和10厘米,则它的周长是( );A 、 22厘米B 、 26厘米C 、 22厘米或26厘米D 、 22厘米和26厘米 6。
两个式子1x -与3x -的值的符号相同,则x 的取值范围是 ( ); A 。
3x = B.1x < C.12x << D.1x <或3x >7.某校运动员分组训练,若每组7人,则余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( ); A .7y x 38y 5x =+⎧⎨+=⎩ B .7y x 38y 5x =-⎧⎨+=⎩ C .7y x 38y x 5=-⎧⎨=+⎩ D .7y x 38y x 5=+⎧⎨=+⎩8。
下列各式的分解因式:其中正确的个数有( );①()()2210025105105p q q q -=+-; ②()()22422m n m n m n --=-+-;③()()2632x x x -=+-; ④221142x x x ⎛⎫--+=-- ⎪⎝⎭;A 、0B 、1C 、2D 、39。
2014-2015学年河北省唐山市七年级(下)期末数学试卷一、单项选择题(每小题2分,28分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)﹣1的立方根为()A.﹣1 B.±1 C.1 D.不存在2.(2分)点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)下列四个实数中,是无理数的是()A.B.0 C.D.4.(2分)如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠1+∠3=180°C.∠3=∠4 D.∠3+∠4=180°5.(2分)下列调查适合用抽样调查的是()A.了解中央电视台“成语大赛”节目的收视率B.了解某班每个学生的体育达标情况C.了解某班每个学生家庭电脑的数量D.“辽宁号”航母下海之前对重要零部件的检查6.(2分)若是关于x,y的方程2x﹣ay=3的解,则a=()A.﹣5 B.﹣1 C.2 D.17.(2分)如果点P(5,y)在第四象限,则y的取值范围是()A.y<0 B.y>0 C.y≤0 D.y≥08.(2分)为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量9.(2分)能够通过如图平移得到的图形是()A. B.C. D.10.(2分)实数a在数轴上的位置如图,则下列关系表示正确的是()A.a<1<﹣a B.a<﹣a<1 C.1<﹣a<a D.﹣a<a<111.(2分)不等式y+2≤3的正整数解为()A.1,2 B.2,3 C.2 D.112.(2分)已知(2x﹣3y+1)2与|4x﹣3y﹣1|互为相反数,则x,y的值为()A.x=﹣1,y=1 B.x=1,y=﹣1 C.x=﹣1,y=﹣1 D.x=1,y=113.(2分)已知不等式组的解集是x>2,则m的取值范围在数轴上表示正确的是()A.B.C. D.14.(2分)某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,(1)班与(5)班得分比为6:5,(1)班得分比(5)班得分的2倍少40分,若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.二、填空题(本大题共5个小题,每小题3分,共15分,把正确答案填在题中的横线上)15.(3分)3的平方根是.16.(3分)如图,直线AB与CD相交于点O,E是∠AOD内一点,已知OE⊥CD,∠AOE=40°,则∠BOD=.17.(3分)已知a,b的值同时满足方程a+2b=8和2a+b=10,则a+b=.18.(3分)已知点A(﹣2,0),AB∥y轴,且AB=3,则B点坐标为.19.(3分)我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售,按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答下列问题:西瓜种类A B C每辆汽车运载量(吨)456设装运A种西瓜的车数为x,装运B种西瓜的车数为y,则用x的代数式表示y 为:y=.三、解答题(本大题共7个小题,满分57分,解答应写出文字说明、证明过程或演算步骤)20.(6分)(1)计算:+;(2)计算:(3)﹣()21.(8分)解不等式组,并将其解集在数轴上表示.22.(6分)如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.23.(9分)请在网格中建立平面直角坐标系,使得A点的坐标为(4,2).(1)写出B点的坐标;(2)将线段AB平移后得到线段A′B,若点A′的坐标为(2,3),画出平移后的线段A′B′,并直接写出点B′的坐标;(3)已知点P(0,3),请在平面直角坐标系描出点P,并求△PAB的面积S的值.24.(6分)在某项针对18﹣35岁的青年人每天发微信数量的调查中,设一个人的“日均发微信条数”为m,当0≤m<5时为A级,5≤m<10时为B级,10≤m <15时为C级,15≤m<20时为D级.现随机抽取部分符合年龄条件的青年人开展每人“日均发微信条数”的调查,根据调查数据整理并制作图表如下:青年人日均发微信条数统计表m频数百分数A级(0≤m<5)900.3B级(5≤m<10)1200.4C级(10≤m<15)b0.2D级(15≤m<20)30a请你根据以上信息解答下列问题:(1)在表中:a=,b=;(2)补全频数分布直方图;(3)若北京市常住人口中18~35岁的青年人大约有530万人,试估计其中“日均发微信条数”不少于10条的大约有多少万人.25.(10分)已知,甲、乙两人相距36千米.(1)如果甲、乙两人相向而行,若甲比乙先走2小时,则他们在乙出发2.5小时后相遇,若乙比甲先走2小时,则他们在甲出发3小时后相遇,求甲、乙两人每小时各走多少千米?(2)如果甲、乙两人保持(1)中速度,两人同时、同向而行,直接写出1小时后两人相距多少千米.26.(12分)某中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),商店推出了以下两种促销方案:(1)购买一个足球、一个篮球各需多少元?(2)根据该中学的实际情况,需从该体育用品商店一次性购买足球和篮球共80个.要求购买足球和篮球的总费用不超过5160元,这所中学想购买足够多的足球,求此时最佳的购买方案以及所用的钱数.2014-2015学年河北省唐山市七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(每小题2分,28分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)﹣1的立方根为()A.﹣1 B.±1 C.1 D.不存在【解答】解:因为(﹣1)3=﹣1,所以﹣1的立方根为﹣1,即=﹣1,故选:A.2.(2分)点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵P(﹣1,2),横坐标为﹣1,纵坐标为:2,∴P点在第二象限.故选:B.3.(2分)下列四个实数中,是无理数的是()A.B.0 C.D.【解答】解:=3,0,都是有理数,是无理数.故选:C.4.(2分)如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠1+∠3=180°C.∠3=∠4 D.∠3+∠4=180°【解答】解:∵∠4+∠5=180°,∠3+∠4=180°,∴∠3=∠5,∴AB∥CD,故选:D.5.(2分)下列调查适合用抽样调查的是()A.了解中央电视台“成语大赛”节目的收视率B.了解某班每个学生的体育达标情况C.了解某班每个学生家庭电脑的数量D.“辽宁号”航母下海之前对重要零部件的检查【解答】解:A、了解中央电视台“成语大赛”节目的收视率,调查范围广,适合抽样调查,故A正确;B、了解某班每个学生的体育达标情况,调查范围小,适合普查,故B错误;C、了解某班每个学生家庭电脑的数量,调查范围小,适合普查,故C错误;D、辽宁号”航母下海之前对重要零部件的检查,是求要精确度高的调查,适合普查,故D错误;故选:A.6.(2分)若是关于x,y的方程2x﹣ay=3的解,则a=()A.﹣5 B.﹣1 C.2 D.1【解答】解:将代入方程2x﹣ay=3,得4﹣a=3,解得a=1,故选:D.7.(2分)如果点P(5,y)在第四象限,则y的取值范围是()A.y<0 B.y>0 C.y≤0 D.y≥0【解答】解:∵点P(5,y)在第四象限,∴y<0.故选:A.8.(2分)为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量【解答】解:A、总体是全市1 600多万民众的身体健康状况的全体,错误;B、个体是所抽取的1 000人中每一个人的身体状况,错误;C、样本是所抽取的这1 000人的身体状况,正确;D、样本容量是1 000,错误.故选:C.9.(2分)能够通过如图平移得到的图形是()A. B.C. D.【解答】解:A、图形需要旋转才能得到,不符合平移的定义,故本选项错误;B、图形的形状和大小没有改变,符合平移的性质,故本选项正确;C、图形需要翻转才能得到,不符合平移的定义,故本选项错误;D、图形中的斜线位置不对,图形发生了改变,不符合平移的定义,故本选项错误.故选:B.10.(2分)实数a在数轴上的位置如图,则下列关系表示正确的是()A.a<1<﹣a B.a<﹣a<1 C.1<﹣a<a D.﹣a<a<1【解答】解:根据数轴可得:a<﹣1<0,则﹣a>1,则a<1<﹣a,故选:A.11.(2分)不等式y+2≤3的正整数解为()A.1,2 B.2,3 C.2 D.1【解答】解:移项,得y≤3﹣2,合并同类项,得y≤1.则正整数解是1.故选:D.12.(2分)已知(2x﹣3y+1)2与|4x﹣3y﹣1|互为相反数,则x,y的值为()A.x=﹣1,y=1 B.x=1,y=﹣1 C.x=﹣1,y=﹣1 D.x=1,y=1【解答】解:∵(2x﹣3y+1)2+|4x﹣3y﹣1|=0,∴,解得:,故选:D.13.(2分)已知不等式组的解集是x>2,则m的取值范围在数轴上表示正确的是()A.B.C. D.【解答】解:∵不等式组的解集是x>2,∴m的取值范围是m≤2,故选:B.14.(2分)某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,(1)班与(5)班得分比为6:5,(1)班得分比(5)班得分的2倍少40分,若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.【解答】解:设(1)班得x分,(5)班得y分,由题意得,.故选:A.二、填空题(本大题共5个小题,每小题3分,共15分,把正确答案填在题中的横线上)15.(3分)3的平方根是.【解答】解:∵()2=3,∴3的平方根是为.故答案为:±.16.(3分)如图,直线AB与CD相交于点O,E是∠AOD内一点,已知OE⊥CD,∠AOE=40°,则∠BOD=50°.【解答】解:∵OE⊥CD,∴∠EOC=90°.∠AOC=∠EOC﹣∠AOE=90°﹣40°=50°由对顶角相等可知:∠DOB=50°.故答案为:50°.17.(3分)已知a,b的值同时满足方程a+2b=8和2a+b=10,则a+b=6.【解答】解:,①+②得:3a+3b=18,则a+b=6,故答案为:618.(3分)已知点A(﹣2,0),AB∥y轴,且AB=3,则B点坐标为(﹣2,3)或(﹣2,﹣3).【解答】解:∵AB∥y轴,点A的坐标为(﹣2,0),∴A、B两点横坐标都是﹣2,又∵AB=3,∴当B点在A点上边时,B的坐标为(﹣2,3),当B点在A点下边时,B的坐标为(﹣2,﹣3).故答案为:(﹣2,3)或(﹣2,﹣3).19.(3分)我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售,按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答下列问题:西瓜种类A B C每辆汽车运载量(吨)456设装运A种西瓜的车数为x,装运B种西瓜的车数为y,则用x的代数式表示y 为:y=﹣2x+40.【解答】解:根据题意得4x+5y+6(40﹣x﹣y)=200,整理得y=﹣2x+40,故答案为:﹣2x+40.三、解答题(本大题共7个小题,满分57分,解答应写出文字说明、证明过程或演算步骤)20.(6分)(1)计算:+;(2)计算:(3)﹣()【解答】解:(1)原式=3﹣2+0.1=1.1;(2)原式=3+2﹣+=2+3.21.(8分)解不等式组,并将其解集在数轴上表示.【解答】解:,解①得x≤2,解②得x>﹣1,所以不等式组的解集为﹣1<x≤2,用数轴表示为:22.(6分)如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.【解答】证明:(1)∵EF⊥AB,CD⊥AB,∴∠BFE=∠CDB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠DGC+∠GCB=180°.23.(9分)请在网格中建立平面直角坐标系,使得A点的坐标为(4,2).(1)写出B点的坐标;(2)将线段AB平移后得到线段A′B,若点A′的坐标为(2,3),画出平移后的线段A′B′,并直接写出点B′的坐标;(3)已知点P(0,3),请在平面直角坐标系描出点P,并求△PAB的面积S的值.【解答】解:(1)B(1,﹣1);(2)如图所示:B′(﹣1,0);(3)S=4×4﹣×4×1﹣×3×3﹣1×4=16﹣4﹣4.5=7.5.24.(6分)在某项针对18﹣35岁的青年人每天发微信数量的调查中,设一个人的“日均发微信条数”为m,当0≤m<5时为A级,5≤m<10时为B级,10≤m <15时为C级,15≤m<20时为D级.现随机抽取部分符合年龄条件的青年人开展每人“日均发微信条数”的调查,根据调查数据整理并制作图表如下:青年人日均发微信条数统计表m频数百分数A级(0≤m<5)900.3B级(5≤m<10)1200.4C级(10≤m<15)b0.2D级(15≤m<20)30a请你根据以上信息解答下列问题:(1)在表中:a=0.1,b=60;(2)补全频数分布直方图;(3)若北京市常住人口中18~35岁的青年人大约有530万人,试估计其中“日均发微信条数”不少于10条的大约有多少万人.【解答】解:(1)调查的总人数=90÷0.3=300(人),b=0.2×300=60,a=30÷300=0.1,故答案为0.1,60;(2)如图,(3)530×(0.2+0.1)=159(万),所以估计其中“日均发微信条数”不少于10条的大约有159万人.25.(10分)已知,甲、乙两人相距36千米.(1)如果甲、乙两人相向而行,若甲比乙先走2小时,则他们在乙出发2.5小时后相遇,若乙比甲先走2小时,则他们在甲出发3小时后相遇,求甲、乙两人每小时各走多少千米?(2)如果甲、乙两人保持(1)中速度,两人同时、同向而行,直接写出1小时后两人相距多少千米.【解答】解:设甲,乙速度分别为x,y千米/时,依题意得:,解得:.答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时.(2)依题意得:36+6﹣3.6=38.4千米或36+3.6﹣6=33.6(千米).答:1小时后,甲、乙相距38.4千米或33.6千米.26.(12分)某中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),商店推出了以下两种促销方案:(1)购买一个足球、一个篮球各需多少元?(2)根据该中学的实际情况,需从该体育用品商店一次性购买足球和篮球共80个.要求购买足球和篮球的总费用不超过5160元,这所中学想购买足够多的足球,求此时最佳的购买方案以及所用的钱数.【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球49元,每个足球90元;(2)设买m个篮球,则购买(80﹣m)个足球,由题意得,49m+90(80﹣m)≤5160,解得:m≤49,∵m为整数,∴m最大取50,则49×50+90(80﹣50)=5150(元)答:最多可以买31个足球,需要的费用是5150元.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2014-2015学年河北省唐山市滦县七年级(下)期末数学试卷一、选择题,每小题2分,共20分1.(2分)二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A. B.C.D.2.(2分)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠AOC,则∠2的度数是()A.20°B.25°C.30°D.70°3.(2分)下列运算不正确的是()A.x2•x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x34.(2分)下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.5.(2分)把不等式组>的解集表示在数轴上,正确的是()A.B.C.D.6.(2分)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°7.(2分)若多项式a2﹣na﹣3可以分解成(a+1)(a﹣3),那么,n应等于()A.2 B.﹣2 C.﹣1 D.18.(2分)已知方程组,那么x+y的值()A.﹣1 B.1 C.0 D.59.(2分)若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形10.(2分)若不等式组>>无解,则a的取值范围是()A.a>1 B.a<1 C.a=1 D.a≥1二、填空题,每小题3分,共30分11.(3分)计算(﹣m2n)3=.12.(3分)“同角的余角相等”是命题.(真或假)13.(3分)如果x=1,y=2满足方程ax+y=0,那么a=.14.(3分)如图,为估计池塘岸边A、B的距离,甲、乙二人在池塘的一侧选取一点O,测得OA=15米,OB=10米,设A、B间的距离为x米,则x的取值范围是.15.(3分)分解因式:a3﹣ab2=.16.(3分)如图所示,平移△ABC可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=度.17.(3分)不等式2x+7>3x+4的正整数解是.18.(3分)适合于∠A=∠C的三角形是三角形.19.(3分)已知a、b是常数,且<0,则关于x的不等式ax+b>0的解集是.20.(3分)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=cm2.三、解答题21.(6分)分解因式:x2y﹣14xy+49y.22.(8分)先化简,再求值:(x﹣1)2+x(x+2),其中x=﹣1.23.(8分)求不等式组><的解集,并把解集在数轴上表示出来.24.(9分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截,在下面三个式子只,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并写出对应的推理过程①AB∥CD,②BE∥CF,③∠1=∠2题设(已知);结论(求证):理由:25.(9分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大求水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?请运用方程组的信息进行解答.26.(10分)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究(1)如图1,△ABC两内角∠ABC与∠ACB的平分线交于点E.则∠BEC=90°+∠A.(阅读下面证明过程,并填空.)理由:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB()∴∠BEC+∠EBC+∠ECB=180°()∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)==90°+∠A(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E.请你写出∠BEC与∠A的数量关系,并说明理由.答:∠BEC与∠A的数量关系式:.理由:.(3)如图3,△ABC的两外角∠CBD与∠BCF的平分线交于点E,请你直接写出∠BEC与∠A的数量关系,不需证明.2014-2015学年河北省唐山市滦县七年级(下)期末数学试卷参考答案与试题解析一、选择题,每小题2分,共20分1.(2分)二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A. B.C.D.【分析】将x、y的值分别代入x﹣2y中,看结果是否等于1,判断x、y的值是否为方程x﹣2y=1的解.【解答】解:A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;故选:B.【点评】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.2.(2分)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠AOC,则∠2的度数是()A.20°B.25°C.30°D.70°【分析】先根据邻补角的定义求出∠AOC的度数,再由OD平分∠AOC即可求出∠2的度数.【解答】解:∵∠1=40°,∴∠AOC=180°﹣40°=140°,∵OD平分∠AOC,∴∠2=∠AOC=140°=70°.故选:D.【点评】本题考查的是邻补角的定义及角平分线的定义,熟知以上知识是解答此题的关键.3.(2分)下列运算不正确的是()A.x2•x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3【分析】本题考查的知识点有同底数幂乘法法则,幂的乘方法则,合并同类项,及积的乘方法则.【解答】解:A、x2•x3=x5,正确;B、(x2)3=x6,正确;C、应为x3+x3=2x3,故本选项错误;D、(﹣2x)3=﹣8x3,正确.故选:C.【点评】本题用到的知识点为:同底数幂的乘法法则:底数不变,指数相加;幂的乘方法则为:底数不变,指数相乘;合并同类项,只需把系数相加减,字母和字母的指数不变;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.4.(2分)下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.【分析】根据过三角形的顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.【点评】本题考查了三角形的高线,是基础题,熟记概念是解题的关键.5.(2分)把不等式组>的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出不等式组的解集,再在数轴上表示出来即可.>【解答】解:有①得:x>﹣1;有②得:x≤1;所以不等式组的解集为:﹣1<x≤1,在数轴上表示为:故选:C.【点评】本题考查的是数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别,这是此题的易错点.6.(2分)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.【解答】解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选:C.【点评】本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.7.(2分)若多项式a2﹣na﹣3可以分解成(a+1)(a﹣3),那么,n应等于()A.2 B.﹣2 C.﹣1 D.1【分析】根据因式分解与整式的乘法互为逆运算,把(a+1)(a﹣3)利用乘法公式展开,即可求出n的值.【解答】解:∵(a+1)(a﹣3)=a2﹣2a﹣3,又∵多项式a2﹣na﹣3可以分解成(a+1)(a﹣3),∴n=﹣2;故选:B.【点评】此题考查了因式分解的意义,用到的知识点是因式分解与整式的乘法互为逆运算,是一道基础题.8.(2分)已知方程组,那么x+y的值()A.﹣1 B.1 C.0 D.5【分析】方程组中两方程相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=15,则x+y=5,故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2分)若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形内角和定理可分别求得每个角的度数,从而根据最大角的度数确定其形状.【解答】解:依题意,设三角形的三个内角分别为:2x,7x,4x,∴2x+7x+4x=180°,∴7x≈97°,x=13.85°.7x=97°∴这个三角形是钝角三角形.故选:C.【点评】此题主要考查学生对三角形内角和定理及三角形形状的判断的综合运用.10.(2分)若不等式组>>无解,则a的取值范围是()A.a>1 B.a<1 C.a=1 D.a≥1【分析】根据大大小小无处找不等式无解,可得答案.【解答】解:x>a,1﹣2x>x﹣2,解得x<1,不等式无解,得a≥1,故选:D.【点评】本题考查了不等式的解集,不等式组的解集是同大取大,同小取小,大小小大中间找,大大小小无处找.二、填空题,每小题3分,共30分11.(3分)计算(﹣m2n)3=﹣m6n3.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:(﹣m2n)3=﹣m6n3,故答案为:﹣m6n3.【点评】此题主要考查了幂的乘方和积的乘方,关键是熟练掌握幂的乘方和积的乘方的计算法则.12.(3分)“同角的余角相等”是真命题.(真或假)【分析】根据余角的定义进行判断即可.【解答】解:同角的余角相等,正确;故答案为真.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.(3分)如果x=1,y=2满足方程ax+y=0,那么a=﹣.【分析】把x与y的值代入计算即可求出a的值.【解答】解:当x=1,y=2时,方程变形为a+=0,解得:a=﹣,故答案为:﹣【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.(3分)如图,为估计池塘岸边A、B的距离,甲、乙二人在池塘的一侧选取一点O,测得OA=15米,OB=10米,设A、B间的距离为x米,则x的取值范围是5<x<25.【分析】根据三角形的三边关系定理即可求解.【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,则5<x<25.故答案为5<x<25.【点评】此题主要考查了三角形的三边关系定理,能正确运用三角形的三边关系定理是解此题的关键.15.(3分)分解因式:a3﹣ab2=a(a+b)(a﹣b).【分析】首先提取公因式a,进而利用平方差公式分解因式得出答案.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.16.(3分)如图所示,平移△ABC可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=70度.【分析】根据三角形的内角和等于180°求出∠ABC,再根据平移的性质,∠E=∠ABC.【解答】解:∵∠A=50°,∠C=60°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣50°﹣60°=70°,∵平移△ABC可得到△DEF,∴∠E=∠ABC=70°.故答案为:70.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.(3分)不等式2x+7>3x+4的正整数解是1,2.【分析】根据不等式的性质求出不等式的解集,根据不等式的解集找出答案即可.【解答】解:2x+7>3x+4,移项得:2x﹣3x>4﹣7,合并同类项得:﹣x>﹣3,不等式的两边都除以﹣1得:x<3,∴不等式的正整数解是1,2.故答案为:1,2.【点评】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.18.(3分)适合于∠A=∠C的三角形是直角三角形.【分析】由∠A=∠C可得到∠B、∠C与∠A间关系,根据三角形的内角和定理,求出∠B、∠C、∠A的度数,从而判断出三角形的形状.【解答】解:∵∠A=∠C,∴∠B=2∠A,∠C=3∠A.又∵∠A+∠B+∠C=180°,即∠A+2∠A+3∠A=180°,∴∠A=30°,∠B=60°,∠C=90°故答案为:直角.【点评】本题考查了三角形的内角和定理,利用三角形的内角和是180°和∠B、∠C与∠A间关系,是解决本题的关键.19.(3分)已知a、b是常数,且<0,则关于x的不等式ax+b>0的解集是x <﹣.【分析】根据不等式的性质解关于x的不等式.【解答】解:ax>﹣b,因为a<0,所以x<﹣.故答案为x<﹣.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.20.(3分)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S=4cm2,则S阴影=1cm2.△ABC【分析】根据三角形的面积公式,知△BCE的面积是△ABC的面积的一半,进一步求得阴影部分的面积是△BEC的面积的一半.【解答】解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.【点评】此题主要是根据三角形的面积公式,知三角形的中线把三角形的面积分成相等的两部分.三、解答题21.(6分)分解因式:x2y﹣14xy+49y.【分析】直接提取公因式y,再利用完全平方公式分解因式得出答案.【解答】解:x2y﹣14xy+49y=y(x2﹣14x+49)=y(x﹣7)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.22.(8分)先化简,再求值:(x﹣1)2+x(x+2),其中x=﹣1.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+1+x2+2x=2x2+1,当x=﹣1时,原式=2+1=3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.23.(8分)求不等式组><的解集,并把解集在数轴上表示出来.【分析】分别求得每个不等式的解集,再根据口诀即可得不等式组的解集,将其表示在数轴上即可.【解答】解:解不等式><,解不等式①,得:x>﹣2,解不等式②,得:x<1,∴不等式组的解集为﹣2<x<1,将解集表示在数轴上如下:.【点评】本题主要考查解不等式组的基本技能,准确求得每个不等式的解集及不等式组解集的确定是解题的关键.24.(9分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截,在下面三个式子只,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并写出对应的推理过程①AB∥CD,②BE∥CF,③∠1=∠2题设(已知);①②结论(求证):③理由:【分析】可以有①②得到③:由于AB∥CD、BE∥CF,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.(答案不唯一)【解答】解:已知:如图,AB∥CD、BE∥CE,求证:∠1=∠2.证明:∵AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.【点评】此题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.25.(9分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm,放入一个大求水面升高3cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?请运用方程组的信息进行解答.【分析】(1)结合给定图形,利用“加个一个球上升的水面高度=上升高度÷放入球的个数”即可求出放入一个大球(小球)水面上升的高度;(2)设放入大球x个,小球y个时,水面上升到50cm,根据(1)的结论以及放入大小球共10个即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:(1)放入一个小球水面上升高度为:(32﹣26)÷3=2cm,放入一个大球水面上升高度为:(32﹣26)÷2=3cm.故答案为:2;3.(2)设放入大球x个,小球y个时,水面上升到50cm,由题意得:,解得:.答:果要使水面上升到50cm,应放入大球4个、小球6个.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组)是关键.26.(10分)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究(1)如图1,△ABC两内角∠ABC与∠ACB的平分线交于点E.则∠BEC=90°+∠A.(阅读下面证明过程,并填空.)理由:∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的性质)∴∠BEC+∠EBC+∠ECB=180°(三角形内角和定理)∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣90°+∠A=90°+∠A(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E.请你写出∠BEC与∠A的数量关系,并说明理由.答:∠BEC与∠A的数量关系式:∠A=2∠BEC.理由:∵BE是∠ABC的平分线,CE是∠ACM的平分线,∴∠EBC=∠ABC,∠ECM=∠ACM.∵∠ACM是△ABC的外角,∠ECM是△BCE的外角,∴∠ACM=∠A+∠ABC,∠ECM=∠BEC+∠EBC,∴,∠ECM=∠ACM=(∠A+∠ABC)=∠BEC+∠EBC,即∠A+∠EBC=∠BEC+∠EBC,∴∠A=2∠BEC..(3)如图3,△ABC的两外角∠CBD与∠BCF的平分线交于点E,请你直接写出∠BEC与∠A的数量关系,不需证明.【分析】(1)先根据角平分线的性质得出∠EBC=∠ABC,∠ECB=∠ACB,再由三角形内角和定理得出∠BEC+∠EBC+∠ECB=180°,利用等量代换即可得出结论;(2)先根据角平分线的性质得出∠EBC=∠ABC,∠ECM=∠ACM,再由三角形外角的性质即可得出结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.【解答】解:(1)∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB(角平分线的性质),∴∠BEC+∠EBC+∠ECB=180°(三角形内角和定理),∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣90°+∠A=90°+∠A.故答案为:角平分线的性质,三角形内角和定理,180°﹣90°+∠A;(2)∵BE是∠ABC的平分线,CE是∠ACM的平分线,∴∠EBC=∠ABC,∠ECM=∠ACM.∵∠ACM是△ABC的外角,∠ECM是△BCE的外角,∴∠ACM=∠A+∠ABC,∠ECM=∠BEC+∠EBC,∴∠ECM=∠ACM=(∠A+∠ABC)=∠BEC+∠EBC,即∠A+∠EBC=∠BEC+∠EBC,∴∠A=2∠BEC;故答案为:∠A=2∠BEC;(3)结论∠BEC=90°﹣∠A.∵∠CBD与∠BCF是△ABC的外角,∴∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∵BE,CE分别是∠ABC与∠ACB的平分线,∴∠EBC=(∠A+∠ACB),∠ECB=(∠A+∠ABC).∵∠EBC+∠ECB+∠BEC=180°,∴∠BEC=180°﹣∠EBC﹣∠ECB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),=180°﹣∠A﹣90°=90°﹣∠A.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.。