黑龙江省绥化市初中毕业学业考试
- 格式:doc
- 大小:273.00 KB
- 文档页数:8
二O二三年绥化市初中毕业学业考试语文试题考生注意:1.考试时间120分钟2.本试题共四道大题,29个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、知识积累及运用(本题共8个小题,共30分)1.阅读下面文字,按要求回答问题。
在数千年的汉字演变中,书法家们创造了诸如篆、隶、草、行、楷等不同风格的书写形体,使汉字不但具有记载我们民族思想的实用功能,还升华为独具魅力的艺术形式,“横平竖直皆风骨,拟捺飞扬是血脉”。
汉字形美如幽,音美如歌,意美如诗。
汉字就是一道明媚的光,唤醒了梦寐中的国人,照亮了华夏文明之前的萌昧和黑暗。
(1)用音序检字法查“篆”,先查音序,再查音节。
(1分)(2)请找出文中一个有错别字的词语并改正:改成。
(1分)(3)任选下面句并按其字体,抄写在方格中。
(1分)横平竖直皆风骨撇捺飞扬是血脉2.下列句子中加点词语理解与使用有误的一项是(2分)A.读书足以怡情,足以傅彩..,足以长才。
(傅彩:给言辞增添光彩。
这里指涂上色彩。
)B.有些人有一种错觉,似乎优雅风度就是矫揉造作....,是出于无聊,是附庸风雅,是毫无意义的忸怩作态。
(矫揉造作:形容过分做作,极不自然。
)C.(清国留学生)也有解散辫子,盘得平的,除下帽来,油光可鉴,宛如小姑娘的发髻一般,还要将脖子扭几扭。
实在标致..极了。
(标致:漂亮。
这里是反语,用来讽刺。
)D.在乌云和大海之间,海燕像黑色的闪电,在高傲..地飞翔。
(高傲:本义是自高自大,看不起人;极其骄傲。
这里是贬词褒用。
)3.下列文学、文化常识及语法知识中,表述有误的一项是(2分)A.稽首,古代的一种跪拜礼,叩头至地;旧时为了对某人表示尊敬,不直呼其名,叫做“避讳”。
B.《愚公移山》《杞人忧天》均选自《列子》,《列子》中还有很多寓言,如“九方皋相马”“穿井得一人”“歧路亡羊”等。
C.“在他们的内心深处,与其说盼望着回家,毋宁说更害怕回家。
”这是一个选择复句。
二〇二三年绥化市初中毕业学业考试数学试题一、单选题1.【答案】C【解析】解:A 选项,是轴对称图形,不是中心对称图形,故A 选项不合题意;B 选项,是轴对称图形,不是中心对称图形,故B 选项不符合题意;C 选项,既是轴对称图形又是中心对称图形,故C 选项合题意;D 选项,不是轴对称图形,是中心对称图形,故D 选项不合题意.故选:C .2.【答案】D【解析】解:052-+516=+=,故选:D .3.【答案】B【解析】根据题意,该几何体的左视图为:,故选B .4.【答案】A【解析】解:90.000000001110-=⨯.故选:A .5.【答案】D【解析】解:A 选项,333()pq p q =--,故该选项不正确,不符合题意;B 选项,43222x x x x x ⋅+⋅=,故该选项不正确,不符合题意;C 5=,故该选项不正确,不符合题意;D 选项,()326a a =,故该选项正确,符合题意;故选:D .6.【答案】C【解析】解:依题意,190345∠+︒=∠+︒,∵125∠=︒,∴370∠=︒,故选:C .7.【答案】D【解析】解:A 选项,若方差22s s >乙甲,则乙组数据的波动较小,故该选项不正确,不符合题意;B 选项,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项不正确,不符合题意;C 选项,三角形三条中线的交点叫做三角形的重心,故该选项不正确,不符合题意;D 选项,角的内部到角的两边的距离相等的点在角的平分线上,故该选项正确,符合题意;故选:D .8.【答案】B【解析】解:A 选项,该组数据的样本容量是1224%50÷=,故该选项不正确,不符合题意;B 选项,8090x ≤<的人数为:5041212715----=,41525+<,4151225++>,该组数据的中位数落在90~100这一组,故该选项正确,符合题意;C 选项,90~100这组数据的组中值是95,故该选项不正确,不符合题意;D 选项,110~120这组数据对应的扇形统计图的圆心角度数为736050.450⨯︒=︒,故该选项不正确,不符合题意;故选:B .9.【答案】C【解析】设()3,B m ,∵点B ,C 的横坐标都是3,2BC =,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴()()3,2,1,2C m D m ++,∴32m m =+,解得1m =,∴()3,1B ,∴313k =⨯=,故选C .10.【答案】B【解析】解:设乙车单独运送这批货物需x 天,由题意列方程11111424x ⎛⎫++= ⎪⎝⎭,故选:B .11.【答案】A【解析】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==,∴2AM ABAN AE==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ==,∴2122y x x ==当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯=,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分,故选:A .12.【答案】D【解析】∵四边形ABCD 是正方形,∴90BAD ADE ∠=∠=︒,AB AD =∵BFAE⊥∴90ABF BAF DAE ∠=︒-∠=∠∴cos cos ABF EAD ∠=∠即BF ADAB AE=,又AB AD =,∴2AB BF AE =⋅,故①正确;设正方形的边长为a ,∵点E 为边CD 的中点,∴2a DE =,∴1tan tans 2ABF EAD ∠=∠=,在Rt ABE △中,AB a ===,∴55AF a =在Rt ADE △中,52AE ==∴55352510EF AE AF a =-=-=,∵AB DE ∥∴GAB GED ∽∴2AG ABGE DE==∴1536GE AE a ==∴25615FG AE AF GE a a a a =--=--=∴53522515aAF FG ==∴:2:3BGF BAF S S =△△,故②正确;∵AB a =,∴22222BD AB AD a =+=,如图所示,过点H 分别作,BF AE 的垂线,垂足分别为,M N,又∵BF AE ⊥,∴四边形FMHN 是矩形,∵FH 是BFG ∠的角平分线,∴HM HN =,∴四边形FMHN 是正方形,∴FN HM HN ==∵25252,515BF AF a FG a ===∴13MH FG BM BF ==设MH b =,则34BF BM FM BM MH b b b =+=+=+=在Rt BMH中,BH ==,∵5BF a =∴2545a b =解得:510b a =∴52102BH a a ==,∴22222B a D BD HD a a =-⋅⨯=,故④正确.故选:D .二、填空题13.【答案】()()x y x z +-【解析】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.14.【答案】5x ≥-且0x ≠##0x ≠且5x ≥-【解析】∵式子5x x有意义,∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.15.【答案】12##0.5【解析】解:列表如下,1234111 1=1213142221=212=232142=333 1=3 2313=344441=42 2=43414=共有16种等可能结果,符合题意的有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是81162=,故答案为:12.16.【答案】23-【解析】解:∵一元二次方程256x x x +=+,即2460x x --=,的两根为1x 与2x ,∴121246x x x x +==-,,∴1211+x x 12124263x x x x +===--,故答案为:23-.17.【答案】12x -##12x-+【解析】解:2222142442x x x x x x x x x+--⎛⎫-÷⎪--+-⎝⎭()()()()()2221242x x x x x x x x x +----=⨯--()()2222442x x x x x x x x ---+=⨯--12x =-;故答案为:12x -.18.【答案】22π3cm 3⎛⎫-⎪⎝⎭【解析】解:如图所示,连接,OA OC ,设,AB CO 交于点D∵将 AB 沿弦AB 翻折,使点C 与圆心O 重合,∴AC AO =,OC AB ⊥又OA OC =∴OA OC AC ==,∴AOC 是等边三角形,∴60AOC ∠=︒,1OD CD ==,∴AD ==,∴阴影部分面积)226012π22πcm 36023AOC AOC S S =-=⨯-⨯= 扇形故答案为:22πcm 3⎛-⎝.19.【答案】(62,2)a b --【解析】解:如图所示,过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',∵ABC 与AB C ''△的相似比为12∶,点A 是位似中心,(2,0)A ∴2AD AD '=∵(,)C a b ,∴2,AD a CD b =-=,∴24,2A D a C D b '''=-=,∴()224,0D a '-+∴C '(62,2)a b --故答案为:(62,2)a b --.20.【答案】3+##3【解析】解:∵E 为高BD 上的动点.∴1302CBE ABC ∠=∠=︒∵将CE 绕点C 顺时针旋转60︒得到CF .ABC 是边长为6的等边三角形,∴,60,CE CF ECF BCA BC AC =∠=∠=︒=∴CBE CAF ≌∴30CAF CBE ∠=∠=︒,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒在Rt AOC 中,30CAO ∠=︒,则132CO AC ==,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=∵6CC AC '==,ACO C CD '∠=∠,CO CD =∴ACO C CD ' ≌∴90C DC AOC '∠=∠=︒在C DC ' 中,C D '===∴CDF 周长的最小值为3CD FC CD CD DC '++=+=+故答案为:3+21.【答案】22n n -##22n n -+【解析】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.22.【答案】44+-【解析】解:如图所示,过点A 作AM BC ⊥于点M ,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∴112AM AB ==,BM CM ===∴BC =,如图所示,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BEA B '⊥交A D '于点E ,∵120BAC ∠=︒,∴60DA B '∠=︒,30A EB '∠=︒,在Rt A BE ' 中,24A E A B ''==,BE ==∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∵ABC 以点B 为旋转中心逆时针旋转45︒,∴45ABA '∠=︒,∴180********DBE ∠=︒-︒-︒-︒=︒,1804530105A BD '∠=︒-︒-︒=︒在A BD ' 中,1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒,∴D EBD ∠=∠,∴EB ED ==,∴4A D A E DE ''=+=+如图所示,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,在BFD △中,45BDF CBC ∠'=∠=︒,∴DF BF=在Rt DC F ' 中,30C '∠=︒∴3'3DF FC =∴BC BF =+=∴3DF BF ==-∴26DC DF '==-∴624A D C D A C ''''=-=-=-,综上所述,A D '的长度为4-或4+,故答案为:4-或4+.三、解答题23.【答案】(1)见解析(2)75EDF ∠=︒或105︒【解析】(1)解:如图所示,①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画弧,两弧交于点,M N 两点,作直线MN 交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,则直线,PE PF 即为所求;(2)如图所示,点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒,∵,PE PF 是O 的切线,∴90PEO PFO ∠=∠=︒,∴360909030150EOF ∠=︒-︒-︒-︒=︒,当点D 在优弧 EF 上时,1752EDF EOF ∠=∠=︒,当点D 在劣弧 EF上时,18075105EDF ∠=︒-︒=︒,∴75EDF ∠=︒或105︒.24.【答案】(1)河两岸之间的距离是20+米(2)5tan 2CPE ∠=【解析】(1)解:如图所示,过点C 作CM EF ⊥于点M ,设CM a =米,∵30CBE ∠=︒∴3tan tan 303CM CBM PB ∠==︒=,∴MB =,在Rt MCD △中,tan tan 451CM CDM MD∠==︒=,∴MD MC a ==∴40BD MB MD a =-=-=解得:20a =答:河两岸之间的距离是20米;(2)解:如图所示,依题意,4012)52PB BD DP =+=+=+,∴((20528MP MB PB =-=+=+,在Rt CMP △中,5tan2CM CPM MP ∠==,∴5tan 2CPE ∠=.25.【答案】(1)每辆A 型车、B 型车坐满后各载客40人、55人(2)共有4种租车方案,租8辆A 型车,2辆B 型车最省钱(3)在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米【解析】(1)解:设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意得5231034340x y x y +=⎧⎨+=⎩解得4055x y =⎧⎨=⎩答:每辆A 型车、B 型车坐满后各载客40人、55人.(2)设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意得()()500600105500405510420m m m m ⎧+-≤⎪⎨+-≥⎪⎩解得:2583m ≤≤m 取正整数,∴5m =,6,7,8∴共有4种租车方案设总租金为w 元,则500600(10)1006000w m m m =+-=-+ 1000-<w ∴随着m 的增大而减小∴8m =时,w 最小∴租8辆A 型车,2辆B 型车最省钱.(3)设s kt =甲,1s k t b =+乙.由题意可知,甲车的函数图象经过(4,300);乙车的函数图象经过(0.5,0),(3.5,300)两点.∴75s t =甲,10050s t =-乙25s s -=乙甲,即100507525t t --=解得3t =或3007525t -=解得113t =所以,在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米.26.【答案】(1)见解析(2)y =(或2(416x y x -=+)(3)1023【解析】(1)证明:∵四边形ABCD 为矩形,∴AD BF ∥,∴D DCF ∠=∠,∵G 为CD 中点,∴DG CG =,在ADG △和△FCG 中D GCF DG CG AGD FGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)ADG FCG △≌△;(2)∵四边形ABCD 为矩形,∴90ABC ∠=︒,∵CE AF ⊥,∴90CEF ABC ∠=︒=∠,∵F F ∠=∠,∴CEF ABF △∽△,∴CE CF AB AF=,∵4AB =,BF x =,∴在Rt ABF 中,AF ==,∵CE y =,∴4y =∴y =2(416x y x -=+);(3)过点E 作EN BF ⊥于点N ,∵四边形ABCD 为矩形,且3AD =,∴3AD BC ==,∵4AB =,1CF =,∴AB BF =,∴ABF △为等腰直角三角形,∴45CFE BAF ∠=∠=︒,∵CE AF ⊥,∴CEF △为等腰直角三角形,∴45ECF ∠=︒,∵EN CF ^,∴EN 平分CF ,∴12CN NF NE ===,在Rt BNE 中,∵222BE BN EN =+,∴2BE ==,∵45ECF BAF ︒∠=∠=,∴135BAM BCE ∠=∠=︒,∵BM BE ⊥,∴90MBA ABE ∠+∠=︒,∵90ABE EBC ∠+∠=︒,∴MBA EBC ∠=∠,∴BAM BCE △∽△,∴43BM BA BE BC ==,43522=,∴1023BM =.27.【答案】(1)见解析(2)见解析(3)215【解析】(1) ABC ∠和AMC ∠是 AC 所对的圆周角,∴ABC AMC Ð=Ð,AHM CHB Ð=Ð,∴AMH CBH ,∴AH MH CH BH=,∴MH CH AH BH ⋅=⋅.(2)连接OC ,交AB 于点F ,MC 与ND 为一组平行弦,即:MC ND ∥,∴OND OMC Ð=Ð, OM OC =,∴OMC OCM ∠=∠, 90OND AHM∠+∠=︒,∴90OCM AHM OCM CHB Ð+Ð=Ð+Ð=°,∴90HFC ∠=︒,∴OC AB ⊥,∴OC 是AB 的垂直平分线,∴ =AC BC.(3)连接DM 、DG ,过点D 作DE MN ⊥,垂足为E ,设点G 的对称点G ',连接G D ¢、G N ',DG DG '=,G ND GND ¢Ð=Ð,∴ 'DM DG = ,∴DG DM ¢=,∴DG DM =,∴DGM 是等腰三角形,DE MN ⊥,∴GE ME =, DN CM ∥,∴CMN DNM Ð=Ð,MN 为直径,∴90MDN ∠=︒,∴90MDE EDN ∠+∠=︒,DE MN ⊥,∴90DEN ∠=︒,∴90DNM EDN Ð+Ð=°,∴3sin sin sin 5EDM DNM CMN Ð=Ð=Ð=,在Rt MND △中,15MN =,∴3sin 5MD DNM MN Ð==,∴3155MD =,∴9MD =,在Rt MED 中,3sin 5ME EDM MDÐ==,∴395ME =∴275ME =,∴2721215255NG MN MG MN ME =-=-=-´=∴215NG =故答案为:215.28.【答案】(1)211462y x x =++,36y x =+(2)满足条件的E 、F 两点存在,1(8,2)E -,2(4,2)E -,3(4,4)E -(3)当133m =时,12CD PD +的最大值为24【解析】(1)解:把(6,0)A -,(2,0)B -,(0,6)C 代入21y ax bx c =++得36604206a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得1246a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴211462y x x =++把(2,0)B -代入6y kx =+得3k =∴36y x =+(2)满足条件的E 、F 两点存在,1(8,2)E -,2(4,2)E -,3(4,4)E -解:①当BC 为正方形的边长时,分别过B 点C 点作12E E BC ⊥,12F F BC ⊥,使12E B E B BC ==,12CF CF BC ==,连接11E F 、22E F .过点1E 作11E H x ⊥轴于1H .∵1111,90BE CB BOC E H B E BC =∠=∠=︒=∠,又111190BE H E BH CBO ∠=︒-∠=∠,∴11(AAS)BE H CBO △≌△,∴112E H BO ==,16H B OC ==∴1(8,2)E -同理可得,2(4,2)E -②以BC 为正方形的对角线时,过BC 的中点G 作33EF BC ⊥,使33E F 与BC 互相平分且相等,则四边形33E BF C 为正方形,过点3E 作3E N y ⊥轴于点N ,过点B 作3BM E N ⊥于点M∵3333,90CE BE CNE E MB =∠=∠=︒,又33390BE M CE N E CN∠=︒-∠=∠∴33(AAS)CE N E BM △≌△∴3CN E M =,3BM E N=∵BC =∴3E G BG ==∴3E B =在3Rt E NC △中,22233E C CN E N =+∴222(6)CN CN =+-解得2CN =或4当4CN =时,3(2,2)E ,此时点E 在点F 右侧故舍去;当2CN =时,3(4,4)E -.综上所述:1(8,2)E -,2(4,2)E -,3(4,4)E -(3)∵211462y x x =++向右平移8个单位长度得到抛物线()()22184862y x x =-+-+当20y =,即()()21848602x x -+-+=解得:122,6x x ==∴(2,0)M ,(6,0)N ∵2y 过M ,N ,C 三点∴221462y x x =-+在直线NC 下方的抛物线2y 上任取一点P ,作PH x ⊥轴交NC 于点H ,过点H 作HG y ⊥轴于点.G∵(6,0)N ,(0,6)C ∴ON OC=∴CON 是等腰直角三角形∵45CHG ∠=︒,90GHP ∠=︒∴45PHD ∠=︒又PD CN⊥∴HPD 是等腰直角三角形∴22HD DP HP ==∵点P 在抛物线2y 上,且横坐标为m∴CG GH m==∴2CH m=∵6CN y x =-+∴(,6)H m m -+∴2211646322HP m m m m m ⎛⎫=-+--+=-+ ⎪⎝⎭∴222123232242HD DP m m m ⎛⎫==-+=-+ ⎪⎝⎭∴211332322222242CD PD CH HD PD CH PD m m m ⎛⎫+=++=+=+-+ ⎪ ⎪⎝⎭2321316928324m ⎛⎫=--+ ⎪⎝⎭∴当133m =时,12CD PD +的最大值为24.。
二O二三年绥化市初中毕业学业考试地理和生物学试卷考生注意:1.地理和生物学考试时间共90分钟2.所有答案都必顾写在答题卡上所对应的题号后的指定区域内第一部分地理考生注意:地理试卷共三道大题,42个小题,满分100分。
一、单项选择题(本题共30个小题,每小题2分,共60分)在答题卡上用2B铅笔把你的选项所对应的方框涂黑。
1.赤道这条纬线的纬度是()A.0°B.30°C.60°D.90°2.小红外出旅行确定行程时,应该参考的地图是()A.人口图B.气候图C.交通图D.地形图3.地球上海洋面积占全球总面积的()A.29%B.36%C.64%D.71%4.提出“大陆漂移假说”的科学家是()A.柯本B.麦哲伦C.哥伦布D.魏格纳5.在卫星云图上,蓝色表示的是()A.陆地B.海洋C.云层D.平原6.一天中,最低气温出现在()A.10时左右B.12时左右C.日落前后D.日出前后7.在赤道附近,降水的主要形式是()A.降雨B.降雪C.霜D.冰雹8.人口增长过慢会带来明显的负面影响是()A.就业困难B.劳动力短缺C.饥饿贫困D.居住条件差9.世界上使用人数最多的语言是A.英语B.法语C.汉语D.俄语10.下列条件中,有利于聚落形成与发展的是()A.水资源匮乏B.交通便利C.地形崎岖D.土壤贫瘠11.日本人的传统服装是()A.西装B.和服C.藏袍D.长袍12.地处亚洲与大洋洲、太平洋与印度洋之间“十字路口”的是()A.东南亚B.中亚C.北亚D.西亚13.下列旅游胜地中,位于欧洲西部的是()A.仰光大金塔B.荷兰风车C.富士山D.越南下龙湾14.黑种人的故乡是()A.南亚B.北极地区C.拉丁美洲D.撒哈拉以南非洲15.世界最大的工业区位于()A.伊朗B.老挝C.肯尼亚D.美国16.世界上流域面积最广、水量最大的河流是()A.尼罗河B.恒河C.亚马孙河D.密西西比河17.地球上最冷的地区是()A.撒哈拉沙漠B.南极地区C.亚洲东部D.亚洲南部18.我国的陆地面积居世界()A.第一位B.第二位C.第三位D.第四位19.我国人口的分布特点是()A.东多西少B.西多东少C.分布均匀D.西北多,东南少20.在中华民族大家庭中,人口最多的民族是()A.傣族B.汉族C.蒙古族D.苗族21.我国地势的特点是()A.西高东低,呈阶梯状分布B.南高北低,呈阶梯状分布C.中部高,四周低D.东南高,西北低22.我国气候的主要特征是()A.温带海洋性气候分布广B.气候复杂多样和季风气候显著C.热带草原气候分布广D.寒带气候分布广23.下列自然灾害中,属于气候灾害的是()A.地震B.滑坡C.泥石流D.寒潮24.下列自然资源属于可再生资源的是()A.煤B.铁C.石油D.森林25.我国解决水资源季节变化大的主要措施是()A.引滦入津B.引黄入晋C.南水北调D.兴建水库26.下列具有运量最大、价格最低的特点的运输方式是()A.铁路运输B.水路运输C.航空运输D.公路运输27.世界最大的货物出口国是()A.中国B.泰国C.印度D.蒙古28.我国的政治中心是()A.北京B.天津C.重庆D.广州29.香港和澳门依托祖国内地强有力的支持,经济持续繁荣,被誉为()A.水果之乡B.海上米仓C.兰花之乡D.东方明珠30.我国面积最大的岛屿是()A.海南岛B.氹仔岛C.台湾岛D.香港岛二、判断对错题(本题共5个小题,每小题1分,共5分)请在答题卡上用2B铅笔把你的判断结果所对应的方框涂黑。
二〇二四年绥化市初中毕业学业考试数学试题考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1.实数12025-的相反数是()A.2025B.2025- C.12025-D.12025【答案】D 【解析】【分析】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.【详解】解:实数12025-的相反数是12025,故选:D .2.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A 、是轴对称图形,也是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项正确,故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3.某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个【答案】A 【解析】【分析】此题主考查了三视图,由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【详解】解:由三视图易得最底层有3个正方体,第二层有2个正方体,那么共有325+=个正方体组成.故选:A .4.23m -有意义,则m 的取值范围是()A.23m ≤B.32m ≥-C.32m ≥D.23m ≤-【答案】C 【解析】【分析】本题考查了二次根式有意义的条件,根据题意可得230m -≥,即可求解.23m -有意义,∴230m -≥,解得:32m ≥,故选:C .5.下列计算中,结果正确的是()A.()2139--=B.()222a b a b +=+C.93=± D.()3263x y x y -=【答案】A 【解析】【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.3=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .6.小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2-和5-.则原来的方程是()A.2650x x ++=B.27100x x -+=C.2520x x -+=D.26100x x --=【答案】B 【解析】【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1;∴12617x x +=+=,又∵写错了一次项的系数,因而得到方程的两个根是2-和5-.∴1210x x =A.2650x x ++=中,126x x +=-,125x x =,故该选项不符合题意;B.27100x x -+=中,127x x +=,1210x x =,故该选项符合题意;C.2520x x -+=中,125x x +=,122x x =,故该选项不符合题意;D.26100x x --=中,126x x +=,1210x x =-,故该选项不符合题意;故选:B .7.某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A.平均数B.中位数C.众数D.方差【分析】此题主要考查统计的有关知识,了解平均数、中位数、众数、方差的意义;平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故老板最关注的销售数据的统计量是众数.故选:C .8.一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A.5km /hB.6km /hC.7km /hD.8km /h【答案】D 【解析】【分析】此题主要考查了分式方程的应用,利用顺水速=静水速+水速,逆水速=静水速-水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为km/h x ,根据题意可得:120804040x x=+-,解得:8x =,经检验:8x =是原方程的根,答:江水的流速为8km/h .故选:D .9.如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是()A.()9,4 B.()4,9 C.31,2⎛⎫⎪⎝⎭D.21,3⎛⎫⎪⎝⎭【分析】本题考查了位似图形的性质,根据题意B 的坐标乘以13,即可求解.【详解】解:依题意,()3,2B ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是21,3⎛⎫ ⎪⎝⎭故选:D .10.下列叙述正确的是()A.顺次连接平行四边形各边中点一定能得到一个矩形B.平分弦的直径垂直于弦C.物体在灯泡发出的光照射下形成的影子是中心投影D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C 【解析】【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A.顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B.平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C.物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11.如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是()A.245B.6C.485D.12【答案】A【分析】本题考查了勾股定理,菱形的性质,根据勾股定理求得OC ,进而得出6AC =,进而根据等面积法,即可求解.【详解】解:∵四边形ABCD 是菱形,5CD =,8BD =,∴142DO BD ==,AC BD ⊥,5BC CD ==,在Rt CDO △中,3CO ==,∴26AC OC ==,∵菱形ABCD 的面积为12AC BD BC AE ⨯=⨯,∴18624255AE ⨯⨯==,故选:A .12.二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x -,则下列结论中:①0b c>②2am bm a b +≤-(m 为任意实数)③31a c +<④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤-.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B 【解析】【分析】本题考查了二次函数的图象的性质,根据抛物线的开口方向,对称轴可得a<0,20b a =<即可判断①,=1x -时,函数值最大,即可判断②,根据1x =时,0y <,即可判断③,根据对称性可得122x x +=-即可判段④,即可求解.【详解】解:∵二次函数图象开口向下∴a<0∵对称轴为直线=1x -,∴12bx a=-=-∴20b a =<∵抛物线与y 轴交于正半轴,则0c >∴0bc<,故①错误,∵抛物线开口向下,对称轴为直线=1x -,∴当=1x -时,y 取得最大值,最大值为a b c -+∴2am bm c a b c ++≤-+(m 为任意实数)即2am bm a b +≤-,故②正确;∵1x =时,0y <即0a b c ++<∵2b a =∴20a a c ++<即30a c +<∴31a c +<,故③正确;∵()1,M x y 、()2,N x y 是抛物线上不同的两个点,∴,M N 关于=1x -对称,∴1212x x +=-即122x x +=-故④不正确正确的有②③故选:B二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在所对应的题号后的指定区域内13.中国的领水面积约为370000km 2,将数370000用科学记数法表示为:__________.【答案】3.7×105【解析】【详解】科学记数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一,370000=3.7×510.故答案为:3.7×105.14.分解因式:2228mx my -=______.【答案】()()222m x y x y +-【解析】【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.15.如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.【答案】66【解析】【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.16.如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).【答案】(50+##()50+【解析】【分析】本题考查解直角三角形—仰角俯角问题.注意准确构造直角三角形是解答此题的关键.根据题意得456050m BAD CAD AD ∠=︒∠=︒=,,,然后利用三角函数求解即可.【详解】解:依题意,456050m BAD CAD AD ∠=︒∠=︒=,,.在Rt △ABD 中,tan 4550150m BD AD =⋅︒=⨯=,在Rt ACD △中,tan 6050CD AD =⋅︒==,∴(m 50BC BD CD =+=+.故答案为:(50+.17.计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________.【答案】1x y-【解析】【分析】本题考查了分式的混合运算.先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【详解】解:22x y xy y x x x ⎛⎫--÷- ⎪⎝⎭222x y x xy y x x--+=÷2()x y x x x y -=-1x y=-,故答案为:1x y-.18.用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm .【答案】72【解析】【分析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.【详解】解:设这个圆锥的底面圆的半径为cm R ,由题意得,12610π2π180R ⨯⨯=解得:7cm 2R =故答案为:72.19.如图,已知点()7,0A -,(),10B x ,()17,C y -,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0ky k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.【答案】15-【解析】【分析】本题考查了反比例函数与平行四边形综合,相似三角形的性质与判定,分别过点,B D ,作x 的垂线,垂足分别为,F E ,根据平行四边形的性质得出()2410B -,,证明ODE OBF △∽△得出6OE =,2.5DE =,进而可得()6,2.5D -,即可求解.【详解】如图所示,分别过点,B D ,作x 的垂线,垂足分别为,F E ,∵四边形AOCB 是平行四边形,点()7,0A -,(),10B x ,()17,C y -,∴7OA BC ==,∴24x =-,即()2410B -,,则24OF =,10BF =∵DE x ⊥轴,BF x ⊥轴,∴DE BF∥∴ODE OBF △∽△∴14OE OD DE OF OB BF ===∴6OE =, 2.5DE =∴()6,2.5D -∴6 2.515k =-⨯=-故答案为:15-.20.如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.【答案】80︒##80度【解析】【分析】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,根据对称的性质可以证得:150OPM OPM ∠=∠=︒,12OP OP OP ==,根据等腰三角形的性质即可求解.【详解】解:作P 关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,连接12PO P O 、,1PP 关于OA 对称,∴11112POP MOP OP OP PM PM OPM OPM ∠=∠==∠=∠,,,同理,222P OP NOP OP OP ∠=∠=,,12122(210)0POP POP P OP MOP NOP AOB ∴∠=∠+∠=∠+∠=∠=︒,12OP OP OP ==,∴12POP △是等腰三角形.∴2140OP N OPM ∠=∠=︒,∴2180MPN MPO NPO OP N OPM ∠=∠+∠=∠+∠=︒故答案为:80︒.21.如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.【答案】(2891,【解析】【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,据此可求得2024A 的坐标.【详解】解:∵(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,,∴可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,(71101,n A n ++∵202472891÷=⋅⋅⋅,∴2023A 的坐标为()2890,0.∴2024A 的坐标为(2891,故答案为:(2891,.22.在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .【答案】255或655或25【解析】【分析】本题考查了矩形的性质,解直角三角形,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ,进而分别求得垂线段的长度,即可求解.【详解】解:∵四边形ABCD 是矩形,4AB =,8BC =,∴8AD BC ==,4CD AB ==,∴22224845AC AD CD =+=+=∴45sin 545CD CAD AC ∠===,825cos 545CAD ∠==,41tan 82CAD ∠==如图所示,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ∵AO DO=∴OAD ODA∠=∠当E 在线段AD 上时,∴1826AE AD DE =-=-=在11Rt AE F 中个,111565sin 655E F AE CAD =⋅∠==∵OAD ODA∠=∠在12Rt E F D 中,12112525sin 255E F DE E DF =∠=⨯=;当E 在射线AD 上时,在2Rt DCE 中,221tan 42DCE ∠==∴CAD DCE∠=∠∴90DCE DCA ∠+∠=︒∴2E C AC⊥∴2E C ===在23Rt DE F中,232232sin 55E F DE E DF DE =⨯∠=⨯=综上所述,点E 到对角线所在直线的距离为:255或5或或655或三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23.已知:ABC.(1)尺规作图:画出ABC 的重心G .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG ,BG .已知ABG 的面积等于25cm ,则ABC 的面积是______2cm .【答案】(1)见解析(2)15【解析】【分析】本题考查了三角形重心的性质,画垂线;(1)分别作,BC AC 的中线,交点即为所求;(2)根据三角形重心的性质可得23ABG ABD S S = ,根据三角形中线的性质可得2215cm ABC ABD S S == 【小问1详解】解:作法:如图所示①作BC 的垂直平分线交BC 于点D②作AC 的垂直平分线交AC 于点F③连接AD 、BF 相交于点G④标出点G ,点G 即为所求【小问2详解】解:∵G 是ABC 的重心,∴23AG AD =∴23ABG ABD S S = ∵ABG 的面积等于25cm ,∴27.5cm ABD S = 又∵D 是BC 的中点,∴2215cmABC ABD S S == 故答案为:15.24.为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.【答案】(1)60(2)30%,作图见解析(3)1 6【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,列表法或画树状图法求概率;(1)根据D组的人数除以占比得出总人数;(2)根据总人数求得A组的人数,进而求得占比,以及补全统计图;(3)根据列表法或画树状图法求概率,即可求解.【小问1详解】解:参加本次问卷调查的学生共有1220%60÷=(人);【小问2详解】解:A组人数为6020101218---=人A组所占的百分比为:18100%30% 60⨯=补全统计图如图所示,【小问3详解】画树状图法如下图列表法如下图A B C DA(),B A(),C A(),D AB(),A B(),C B(),D BC(),A C(),B C(),D CD(),A D(),B D(),C D由树状图法或列表法可以看出共有12种结果出现的可能性相等,选中的2个社团恰好是B和C的情况有两种.∴P(选中的2个社团恰好是B和C)21 126 ==.25.为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间minx之间的对应关系如图.其中A种电动车支付费用对应的函数为1y;B种电动车支付费用是10min之内,起步价6元,对应的函数为2y.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.【答案】(1)A 、B 两种电动车的单价分别为1000元、3500元(2)当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元(3)①B②5或40【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种电动车的单价分别为x 元、y 元,根据题意列二元一次方程组,解方程组,即可求解;(2)设购买A 种电动车m 辆,则购买B 种电动车()200m -辆,根据题意得出m 的范围,进而根据一次函数的性质,即可求解;(3)①根据函数图象,即可求解;②分别求得12,y y 的函数解析式,根据214y y -=,解方程,即可求解.【小问1详解】解:设A 、B 两种电动车的单价分别为x 元、y 元由题意得,258030500060120480000x y x y +=⎧⎨+=⎩解得10003500x y =⎧⎨=⎩答:A 、B 两种电动车的单价分别为1000元、3500元【小问2详解】设购买A 种电动车m 辆,则购买8种电动车()200m -辆,由题意得:()12002m m ≤-解得:2003m ≤设所需购买总费用为w 元,则()100035002002500700000w m m m =+-=-+25000-< ,w 随着m 的增大而减小,m 取正整数66m ∴=时,w 最少∴700000250066535000w =-⨯=最少(元)答:当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元【小问3详解】解:①∵两种电动车的平均行驶速度均为300m /min ,小刘家到公司的距离为8km ,∴所用时间为80002263003=分钟,根据函数图象可得当20x >时,21y y <更省钱,∴小刘选择B 种电动车更省钱,故答案为:B .②设11y k x =,将()20,8代入得,1820k =解得:25k =∴125y x =;当010x <≤时,26y =,当10x >时,设222y k x b =+,将()10,6,()20,8代入得,2222610820k b k b =+⎧⎨=+⎩解得:22154k b ⎧=⎪⎨⎪=⎩∴2145y x =+依题意,当010x <<时,214y y -=即2645x -=解得:5x =当10x >时,214y y -=即124455x x +-=解得:0x =(舍去)或40x =故答案为:5或40.26.如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD 1,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交 CE 于点N .当:1:4CM FM =时,求CN 的长.【答案】(1)证明见解析(2(3)2105【解析】【分析】(1)方法一:连接OE ,过点O 作OG AB ⊥于点G ,四边形ABCD 是正方形,AC 是正方形的对角线,得出OE OG =,进而可得OG 为O 的半径,又OG AB ⊥,即可得证;方法二:连接OE ,过点O 作OG AB ⊥于点G ,根据正方形的性质证明()AAS AOE AOG ≌得出OE OG =,同方法一即可得证;方法三:过点O 作OG AB ⊥于点G ,连接OE .得出四边形AEOG 为正方形,则OE OG =,同方法一即可得证;(2)根据O 与AD 相切于点E ,得出90AEO ∠=︒,由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,勾股定理得出AO =,在Rt ADC 中,勾股定理求得AC ,进而根据OA OC AC +=建立方程,解方程,即可求解.(3)方法一:连接ON ,设CM k =,在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,结合题意522FC k R ====得出225k =,即可得出CN =;方法二:连接FN ,证明CNM CFN ∽△△得出2CN CM CF =⋅,进而可得12255CM CF ==,同理可得CN方法三:连接FN ,证明CNM CFN ∽△△得出2NC MC FC =⋅,设CM k =,则5FC k =,进而可得NC =,进而同方法一,即可求解.【小问1详解】方法一:证明:连接OE ,过点O 作OG AB ⊥于点G ,O 与AD 相切于点E ,∴OE AD ⊥.四边形ABCD 是正方形,AC 是正方形的对角线,∴45BAC DAC ∠=∠=︒,∴OE OG =,OE 为O 的半径,OG ∴为O 的半径,OG AB ⊥,AB ∴与O 相切.方法二:证明:连接OE ,过点O 作OG AB ⊥于点G ,O 与AD 相切于点E ,∴OE AD ⊥,∴90AEO AGO ∠=∠=︒,四边形ABCD 是正方形,∴45BAC DAC ∠=∠=︒,又 AO AO =,∴()AAS AOE AOG ≌,∴OE OG =,OE 为O 的半径,OG ∴为O 的半径,OG AB ⊥,AB ∴与O 相切.方法三:证明:过点O 作OG AB ⊥于点G ,连接OE .AD 与O 相切,OE 为O 半径,∴OE AE ⊥,∴90AEO ∠=︒,OG AB ⊥,∴90AGO ∠=︒,又 四边形ABCD 为正方形,∴90BAD ∠=︒,∴四边形AEOG 为矩形,又AC 为正方形的对角线,∴45EAO GAO AOE ∠=∠=∠=︒,∴OE AE =,∴矩形AEOG 为正方形,∴OE OG =.又OE 为O 的半径,OG ∴为O 的半径,又 OG AB ⊥,AB ∴与O 相切.【小问2详解】解:AC 为正方形ABCD 的对角线,∴45DAC ∠=︒,O 与AD 相切于点E ,∴90AEO ∠=︒,∴由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,222AE EO AO +=,∴222AO R R =+,0R >,∴AO =,又 正方形ABCD 1.在Rt ADC 中,∴)1AC ==+, OA OC AC +=,∴)1R +=,∴R =.∴O 的半径为.【小问3详解】方法一:解:连接ON ,设CM k =,:1:4CM FM =,∴5CF k =,∴ 2.5OC ON k ==,∴ 1.5OM OC CM k =-=.在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,又 522FC k R ====,∴225k =.∴55CN ==.方法二:解:连接FN ,CF 为O 的直径,∴90CNF ∠=︒,∴90FNM CNM ∠+∠=︒,MN AC ⊥,∴90NFM FNM ∠+∠=︒,∴NFM CNM ∠=∠,NCM FCN ∠=∠,∴CNM CFN ∽△△,∴2CN CM CF =⋅,:1:4CM FM =,5CF CM =,∴CN =, 22CF R ===∴12255CM CF ==,方法三:解:连接FN ,CF 为O 的直径,∴90CNF ∠=︒,∴90FNM CNM ∠+∠=︒,MN AC ⊥,∴90NFM FNM ∠+∠=︒,∴NFM CNM ∠=∠,NCM FCN ∠=∠,∴CNM CFN ∽△△,∴NC FC MC NC=,∴2NC MC FC =⋅,:1:4CM FM =,∴:1:5CM FC =,设CM k =,则5FC k =,∴25NC k k =⨯,∴NC =.又 522FC k R ====,∴225k =,【点睛】本题考查了切线的性质与判定,正方形的性质,全等三角形的性质与判定,勾股定理,垂径定理,相似三角形的性质与判定,正确的添加辅助线是解题的关键.27.综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片ABC 和DEF 满足90ACB EDF ∠=∠=︒,2cm AC BC DF DE ====.下面是创新小组的探究过程.操作发现(1)如图1,取AB 的中点O ,将两张纸片放置在同一平面内,使点O 与点F 重合.当旋转DEF 纸片交AC 边于点H 、交BC 边于点G 时,设()12AH x x =<<,BG y =,请你探究出y 与x 的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH ,发现CGH 的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F 在AB 边上运动(不包括端点A 、B ),且始终保持60AFE ∠=︒.请你直接写出DEF 纸片的斜边EF 与ABC 纸片的直角边所夹锐角的正切值______(结果保留根号).【答案】(1)()212y x x=<<,见解析;(2)2,见解析;(3)2+或2【解析】【分析】(1)根据题意证明AFH BGF ∽△△,得出关系式AH BG AF BF ⋅=⋅,进而求得AB AF BC ===,代入比例式,即可求解;(2)方法一:勾股定理求得GH ,将将(1)中2xy =代入得2GH x y =+-,进而根据三角形的周长公式,即可求解;方法二:证明AOH BGO ∽△△,HAO HOG ∽△△,过O 作OM AH ⊥交AH 于点M ,作OP HG ⊥交HG 于点P ,作ON GB ⊥交GB 于点N .证明OMH OPH △≌△,OPG ONG △≌△,得出HG MH GN =+,得出112CM CN BC ===,进而根据三角形的周长公式可得CHG △的周长2212CM CN CM =+==⨯=.方法三:过O 作OM AH ⊥交AH 于点M ,作ON GB ⊥交GB 于点N ,在NB 上截取一点Q ,使NQ MH =,连接OC .得出OMH ONQ △≌△,OHG OQG △≌△,则HG GQ GN MH ==+,同方法二求得112CM CN BC ===,进而即可求解;(3)分两种情况讨论,EF 于,AC BC 的夹角;①过点F 作FN AC ⊥于点N ,作FH 的垂直平分线交FN于点M ,连接MH ,在Rt MNH △中,设NH k =,由勾股定理得,(2FN MN MF k =+=+,进而根据正确的定义,即可求解;②过点F 作FN BC ⊥于点N ,作FG 的垂直平分线交BG 于点M ,连接FM ,在Rt FNM △中,设FN k =,同①即可求解..【详解】操作发现解:(1)∵90ACB EDF ∠=∠=︒,且2cm AC BC DF DE ====.∴45A B DFE ∠=∠=∠=︒,∴135AFH BFG BFG FGB ∠+∠=∠+∠=︒,∴AFH FGB ∠=∠,∴AFH BGF ∽△△,∴AF AH BG BF=,∴AH BG AF BF ⋅=⋅.在Rt ACB △中,2AC BC ==,∴AB ===∵O 是AB 的中点,点O 与点F 重合,∴AF BF ==,∴xy =,∴()212y x x=<<.问题解决(2)方法一:解:CGH 的周长定值为2.理由如下:∵2AC BC ==,AH x =,BG y =,∴2CH x =-,2CG y =-,在Rt HCG 中,∴GH ===.将(1)中2xy =代入得:∴2GH x y ===+-.∵()22222244x y x y xy x y +=++=++≥,又∵12x <<,∴2x y +>,∴2GH x y =+-.∵CHG △的周长CH CG GH =++,∴CHG △的周长2222x y x y =-+-++-=.方法二:解:CGH 的周长定值为2.理由如下:∵ABC 和DEF 是等腰直角三角形,∴45A B E EOD ∠=∠=∠=∠=︒,∵180AOH BOG EOD ∠+∠+∠=︒,∴135AOH BOG ∠+∠=︒,在AOH △中,45A ∠=︒,∴135AOH AHO ∠+∠=︒,∴AHO BOG ∠=∠,∴AOH BGO ∽△△,∴AO OH AH BG OG OB==,AOH OGB ∠=∠,AHO BOG ∠=∠,∵O 为AB 的中点,∴AO BO =,∴OH AH OG AO=,又∵45A EOD ∠=∠=︒,∴HAO HOG ∽△△,AHO OHG ∠=∠,OGB OGH ∠=∠,∴过O 作OM AH ⊥交AH 于点M ,作OP HG ⊥交HG 于点P ,作ON GB ⊥交GB 于点N .∴OM OP ON ==.又∵OH OH =,OG OG =,∴OMH OPH △≌△,OPG ONG △≌△,∴HM PH =,PG NG =,∴HG MH GN =+.∵CHG △的周长CH CG GH CH CG MH GN CM CN =++=+++=+.又∵AO OB =,OM ON =,45A B ∠=∠=︒,∴AOM BON ≌,∴AM BN =,∵90C ∠=︒,90AMO ∠=︒,∴OM BC ∥,∵O 是AB 的中点,∴点M 是AC 的中点,同理点N 是BC 的中点.∴112CM CN BC ===,∴CHG △的周长2212CM CN CM =+==⨯=.方法三:解:CGH 的周长定值为2.理由如下:过O 作OM AH ⊥交AH 于点M ,作ON GB ⊥交GB 于点N ,在NB 上截取一点Q ,使NQ MH =,连接OC .∵ABC 是等腰直角三角形,O 为AB 的中点,∴OC 平分ACB ∠,∴OM ON =,∴OMH ONQ △≌△,∴OH OQ =,MOH NOQ ∠=∠.∵45HOG Ð=°,90ACB ∠=︒,∴90MON ∠=︒,45MOH GON ∠+∠=︒,∴45GOQ ∠=︒,∴HOG GOQ ∠=∠,∵OG OG =,∴OHG OQG △≌△,∴HG GQ GN MH ==+,∴CHG △的周长CH CG GH CH CG MH GN CM CN =++=+++=+.又∵AO OB =,OM ON =,45A B ∠=∠=︒,∴AOM BON ≌,∴AM BN =.∵90C ∠=︒,90AMO ∠=︒,∴OM BC ∥.∵O 是AB 的中点,∴点M 是AC 的中点,同理点N 是BC 的中点.∴112CM CN BC ===,∴CHG △的周长2212CM CN CM =+==⨯=.拓展延伸(3)2+或2①解:∵60AFE ∠=︒,45A ∠=︒,∴75AHF ∠=︒,过点F 作FN AC ⊥于点N ,作FH 的垂直平分线交FN 于点M ,连接MH ,∴FM MH =,∵90FNH ∠=︒,∴15NFH ∠=︒,∵FM MH =,∴15NFH MHF ∠=∠=︒,∴=30NMH ∠︒,在Rt MNH △中,设NH k =,∴2MH MF k ==,由勾股定理得,MN ==,∴(2FN MN MF k =+=+,∴在Rt FNH △中,(2tan tan 752k FN FHNNH k +∠=︒===+②解:∵60AFE ∠=︒,45A ∠=︒,∴15FGB ∠=︒,过点F 作FN BC ⊥于点N ,作FG 的垂直平分线交BG 于点M ,连接FM .∵GM MF =,∴15FGB GFM ∠=∠=︒,∴30FMB ∠=︒,在Rt FNM △中,设FN k =,∴2GM MF k ==,由勾股定理得,MN ==,∴(2GN GM MN k =+=+,∴在Rt FNG △中,tan tan152FN FGN GN ∠=︒===-.∴tan 2FHN ∠=+或tan 2FGN ∠=.【点睛】本题考查了相似三角形的性质与判定,全等三角形的性质与判定,解直角三角形,旋转的性质,函数解析式,熟练掌握相似三角形的性质与判定,解直角三角形是解题的关键.28.综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.【答案】(1)241y x x =-++(2)存在,点P 坐标为1111,24P ⎛⎫ ⎪⎝⎭,215,24P ⎛⎫-- ⎪⎝⎭,补图见解析(3)()11,3F -、(23,4F -、(33,4F +、()41,2F -【解析】【分析】(1)待定系数法求解析式即可求解;(2)根据平行线的性质可得2141c y x x ==-++,求得()4,1C ,进而分别求得()3,4A ,()3,1Q ,根据1tan tan 6BCP ACB ∠=∠可得1tan 2BCP ∠=,设直线CP 交y 轴于点M ,则()10,3M ,()20,1M -.进而可得1C M ,2CM 的解析式为1132CM y x =-+,2112CM y x =-,连接1C M 交抛物线于1P ,连接2CM 交抛物线于2P ,进而联立抛物线与直线解析式,解方程,即可求解.(3)①以BD 为对角线,如图作BD 的垂直平分线1ME 交BD 于点M 交直线2x =于1E ,设()12,E y ,根据两点距离公式可得2y =,根据中点坐标公式可得()11,3F -,②以BD 为边,如图以B 为圆心,BD 为半径画圆交直线2x =于点2E ,3E ;连接2BE ,3BE ,根据勾股定理求得2,BD BE ,进而得出(22,1E ,(32,1E +,根据平移的性质得出(23,4F ,(33,4F +,③以BD 为边,如图以点D 为圆心,BD 长为半径画圆交直线2x =于点4E 和5E ,连接4DE ,5DE ,则45DE DE BD ===,过点D 作45DH E E ⊥于点H ,则1DH =,在4Rt DHE △和5Rt DHE △中,由勾股定理得453HE HE ==,则()42,1E 、()52,7E ,根据45tan tan 3DBE E DH ∠=∠=,可得45DBE E DH ∠=∠,过点B 作44BF DE ∥,过4E 作44E F BD ∥,4BF 和44E F 相交于点4F ,4BE 的中点()1,1G .根据中点坐标公式可得()41,2F -;【小问1详解】解:∵把点()3,4A ,()0,1B 代入2y x bx c =-++得9341b c c -++=⎧⎨=⎩,解得41b c =⎧⎨=⎩,∴241y x x =-++.【小问2详解】存在.理由:∵BC x ∥轴且()0,1B ,∴2141c y x x ==-++,∴10x =(舍去),24x =,∴()4,1C .过点A 作AQ BC ⊥于点Q ,在Rt ACQ 中,∵()3,4A ,∴()3,1Q ,∵1tan tan 6BCP ACB ∠=∠,∴111tan 3662AQ BCP CQ ∠=⨯=⨯=.设直线CP 交y 轴于点M ,4BC =,90CBM ∠=︒,∴()10,3M ,()20,1M -.连接1C M 交抛物线于1P ,连接2CM 交抛物线于2P ,∴1C M ,2CM 的解析式为1132CM y x =-+,2112CM y x =-,∴1213241CM y x y x x ⎧=-+⎪⎨⎪=-++⎩,解得()12124x x ⎧=⎪⎨⎪=⎩舍去,或2211241CM y x y x x ⎧=-⎪⎨⎪=-++⎩,解得()34124x x ⎧=-⎪⎨⎪=⎩舍去.∴把112x =,312x =-代入241y x x =-++得1114y =,354y =-,∴1111,24P ⎛⎫ ⎪⎝⎭,215,24P ⎛⎫-- ⎪⎝⎭.综上所述,满足条件的点P 坐标为1111,24P ⎛⎫⎪⎝⎭,215,24P ⎛⎫-- ⎪⎝⎭.【小问3详解】()11,3F -、(23,4F、(33,4F +、()41,2F -.方法一:①以BD 为对角线,如图作BD 的垂直平分线1ME 交BD 于点M 交直线2x =于1E ∵()0,1B ,()1,4D ,∴15,22M ⎛⎫ ⎪⎝⎭.设()12,E y ,∵11DE BE =,∴()()22221421y y +-=+-,∴2y =,∴()12,2E ,∵M 是11E F 的中点,∴()11,3F -.。
2024年绥化市初中毕业学业考试道德与法治试题一、选择题(本题共20个小题,每小题3分,共60分,每小题的四个选项中只有一项最符合题意)1.即使离开了学校,也要不断地学习,不断地充实自己,要活到老,学到老。
这告诉我们对学习的正确认识是()A.学习要脱离学校B.学习要掌握方法C.学习要学会思考D.学习没有终点2.有人说:“要想了解自己,最好问问别人。
”这句话体现出认识自己的途径是()A.自我观察B.自我分析C.他人评价D.自我评价3.彼此尊重,是师生建立良好关系的开始。
以下有利于构建良好师生关系的是()A.老师和大家一起讨论,倾听同学发言B.在学校,学生看见老师不理不睬C.老师批评某同学时,该同学不以为然D.上课时,学生故意打断老师讲课4.青春期是人一生中的重要时期。
这一时期,我们各方面都在发生变化,如身体外形的变化、内部器官的完善、性机能的成熟,这些都属于()A.情感变化B.生理变化C.思想变化D.心理变化5.作为社会的一员,我们要遵守社会规则。
下列行为属于遵守规则的是()A.演出结束后同学们有序退场B.过马路时闯红灯C.在图书馆大声喧哗D.在名胜古迹上乱涂乱画6.人人都是维护国家安全的主角。
以下属于维护国家安全的行为是()A.在军事禁区偷拍照片B.某企业偷排工业废水C.向境外人员泄露国家秘密D.报告危害国家安全活动的线索7.为落实宪法基本原则,中国政府不断加大各项人权保障力度,公民的各项权利得到切实保障。
宪法的这项基本原则是()A.法律面前人人平等B.人民民主专政C.尊重和保障人权D.自由平等8.小强与小西在学校操场玩耍时,小强不慎致小西受伤,就赔偿问题产生纠纷。
经双方家长直接对话,分清责任,最终达成协议。
这种维护权利的方式是()A.仲裁B.诉讼C.和解D.调解9.正义是社会文明的尺度,体现了人们对美好社会的期待和追求。
下列选项属于正义行为的是()A.违法乱纪B.助人为乐C.弄虚作假D.恃强凌弱10.40多年来,中国的腾飞证明,决定当代中国命运的关键抉择是()A.不均衡发展B.乡村振兴C.西部大开发D.改革开放11.党和政府坚持以人民为中心的发展思想,强调人人参与、人人尽力、人人享有,让人民群众共享发展成果,引领全体人民稳步走向()A.共同富裕B.同步富裕C.同时富裕D.同等富裕12.我国社会主义民主政治的本质属性是()A.全过程人民民主B.有事好商量C.众人的事情由众人商量D.求同存异13.长期以来,我国高度重视和积极推进社会主义法治建设,党的十五大确定的党领导人民治理国家的基本方略是()A.以德治国B.依法执政C.从严治党D.依法治国14.“先天下之忧而忧,后天下之乐而乐”所蕴含的中华传统美德是()A.扬善抑恶的处世准则B.诚信守法的高尚情操C.忧国忧民的爱国情怀D.孝敬父母的伦理规范15.2023年哈尔滨火热“出圈”,鄂伦春族、达斡尔族等少数民族非遗传承人身穿盛装在中央大街相继亮相。
二○二四年绥化市初中毕业学业考试物理和化学试题考生注意:1.物理和化学考试时间共150分钟2.所有答案都必须写在答题卡上所对应的题号后的指定区域内第一部分物理考生注意:1.物理试题共四道大题,26个小题,总分80分。
2.可能用到的参考数据:10N/kg g =;()34.210J /kg C c =⨯⋅︒水,331.010kg/m ρ=⨯水一、选择题(本题共10个小题,每小题2分,共20分。
1-8小题每题只有一个正确选项;9、10小题每题有两个或两个以上正确选项,正确选项不全得1分,有错误选项不得分)请在答题卡上用2B 铅笔把你的选项所对应的方框涂黑1.声音丰富了我们的世界,下列关于声现象的说法中正确的是()A.蝈蝈发出的声音不是由振动产生的B.敲鼓时鼓面振幅越大,音调越高C.倒车雷达利用超声波传递信息D.防噪声耳罩是在声源处控制噪声2.下列现象中,属于光的反射现象的是()A.水中倒影B.海市蜃楼C.小孔成像D.雨后的彩虹3.将一瓶酸奶喝掉一半后,下列关于剩下半瓶酸奶的说法中,正确的是()A.质量和密度都不变B.质量和密度都变为原来的一半C.质量不变,密度变为原来的一半D.质量变为原来的一半,密度不变4.下列有关导电性能及材料应用的说法中,正确的是()A.硬币、钢尺、订书钉都是导体B.铅笔芯、橡皮、塑料吸管都是绝缘体C.超导体可用于制作电炉子的电热丝D.半导体有良好的导电性5.“安全用电,珍爱生命”,下图中符合安全用电原则的是()A.人站在地上接触火线B.使用绝缘皮破损的电线C.开关接在火线与灯泡之间D.多个大功率用电器同时使用6.随着新能源技术的日渐成熟,风力发电机已经在我市投入使用,下图与发电机原理相同的是()A. B.C. D.7.如图所示,人造地球卫星沿椭圆轨道绕地球运行的过程中,机械能是守恒的,当卫星从远地点向近地点运动时,下列说法正确的是()A.动能减小,重力势能增大B.动能转化为重力势能C.动能增大,重力势能减小D.卫星的速度一直在减小8.如图所示电路中,0R 是定值电阻,1R 是阻值随光照强度增大而减小的光敏电阻。
二〇二三年绥化市初中毕业学业考试数学试题考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.计算052-+的结果是()A.3- B.7C.4- D.63.如图是一个正方体,被切去一角,则其左视图是()A. B. C. D.4.纳米是非常小的长度单位,1nm 0.000000001m =,把0.000000001用科学记数法表示为()A.9110-⨯ B.8110-⨯ C.8110⨯ D.9110⨯5.下列计算中,结果正确的是()A.333()pq p q-= B.3228x x x x x⋅+⋅= C.5=± D.()326a a =6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为()A.55︒B.65︒C.70︒D.75︒7.下列命题中叙述正确的是()A.若方差22s s >乙甲,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A 7080x ≤<B 8090x ≤<C 90100x ≤<D 100110x ≤<E110120x ≤<A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51︒9.在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,2BC =,点D 在AC 上,且其横坐标为1,若反比例函数ky x=(0x >)的图像经过点B ,D ,则k 的值是()A.1B.2C.3D.3210.某运输公司,运送一批货物,甲车每天运送货物总量的14.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物12天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天,由题意列方程,正确的是()A.11142x += B.11111424x ⎛⎫++= ⎪⎝⎭C.1111142x⎛⎫++= ⎪⎝⎭ D.11111442x⎛⎫++= ⎪⎝⎭11.如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()A. B. C. D.12.如图,在正方形ABCD 中,点E 为边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,连接BD 交AE 于点G ,FH 平分BFG ∠交BD 于点H .则下列结论中,正确的个数为()①2AB BF AE =⋅;②:2:3BGF BAF S S =△△;③当AB a =时,22BD BD HD a -⋅=A.0个B.1个C.2个D.3个二、填空题13.因式分解:2x xy xz yz +--=_______.14.若式子5x x+有意义,则x 的取值范围是_______.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.16.已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.17.化简:2222142442x x x x x x x x x +--⎛⎫-÷=⎪--+-⎝⎭_______.18.如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)19.如图,在平面直角坐标系中,ABC 与AB C ''△的相似比为12∶,点A 是位似中心,已知点(2,0)A ,点(,)C a b ,90C ∠=︒.则点C '的坐标为_______.(结果用含a ,b 的式子表示)20.如图,ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60︒得到CF .连接AF ,EF ,DF ,则CDF 周长的最小值是______.21.在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= _______.(结果用含n 的代数式表示)22.已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.三、解答题23.已知:点P 是O 外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE ,PF ,切点分别为点E 、点F .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒.求EDF ∠的度数.24.如图,直线MN 和EF 为河的两岸,且MN EF ∥,为了测量河两岸之间的距离,某同学在河岸FE 的B 点测得30CBE∠=︒,从B 点沿河岸FE 的方向走40米到达D 点,测得45CDE ∠=︒.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D 点继续沿DE 的方向走12)+米到达P 点.求tan CPE ∠的值.25.某校组织师生参加夏令营活动,现准备租用A 、B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A 、B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s (千米)与甲车行驶的时间t (小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t 为何值时两车相距25千米.26.已知:四边形ABCD 为矩形,4AB =,3AD =,点F 是BC 延长线上的一个动点(点F 不与点C 重合).连接AF 交CD 于点G .(1)如图一,当点G 为CD 的中点时,求证:ADG FCG ≅△△.(2)如图二,过点C 作CE AF ⊥,垂足为E .连接BE ,设BF x =,CE y =.求y 关于x 的函数关系式.(3)如图三,在(2)的条件下,过点B 作BM BE ⊥,交FA 的延长线于点M .当1CF =时,求线段BM 的长.27.如图,MN 为⊙O 的直径,且15MN =,MC 与ND 为圆内的一组平行弦,弦AB 交MC 于点H .点A 在¼MC上,点B 在»NC 上,90OND AHM ∠+∠=︒.(1)求证:MH CH AH BH ⋅=⋅.(2)求证: AC BC=.(3)在⊙O 中,沿弦ND 所在的直线作劣弧 ND 的轴对称图形,使其交直径MN 于点G .若3sin 5CMN ∠=,求NG 的长.28.如图,抛物线21y ax bx c =++的图象经过(6,0)A -,(2,0)B -,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?二〇二三年绥化市初中毕业学业考试数学试题一、单选题1.【答案】C【解析】解:A 选项,是轴对称图形,不是中心对称图形,故A 选项不合题意;B 选项,是轴对称图形,不是中心对称图形,故B 选项不符合题意;C 选项,既是轴对称图形又是中心对称图形,故C 选项合题意;D 选项,不是轴对称图形,是中心对称图形,故D 选项不合题意.故选:C .2.【答案】D【解析】解:052-+516=+=,故选:D .3.【答案】B【解析】根据题意,该几何体的左视图为:,故选B .4.【答案】A【解析】解:90.000000001110-=⨯.故选:A .5.【答案】D【解析】解:A 选项,333()pq p q =--,故该选项不正确,不符合题意;B 选项,43222x x x x x ⋅+⋅=,故该选项不正确,不符合题意;C 5=,故该选项不正确,不符合题意;D 选项,()326a a =,故该选项正确,符合题意;故选:D .6.【答案】C【解析】解:依题意,190345∠+︒=∠+︒,∵125∠=︒,∴370∠=︒,故选:C .7.【答案】D【解析】解:A 选项,若方差22s s >乙甲,则乙组数据的波动较小,故该选项不正确,不符合题意;B 选项,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项不正确,不符合题意;C 选项,三角形三条中线的交点叫做三角形的重心,故该选项不正确,不符合题意;D 选项,角的内部到角的两边的距离相等的点在角的平分线上,故该选项正确,符合题意;故选:D .8.【答案】B【解析】解:A 选项,该组数据的样本容量是1224%50÷=,故该选项不正确,不符合题意;B 选项,8090x ≤<的人数为:5041212715----=,41525+<,4151225++>,该组数据的中位数落在90~100这一组,故该选项正确,符合题意;C 选项,90~100这组数据的组中值是95,故该选项不正确,不符合题意;D 选项,110~120这组数据对应的扇形统计图的圆心角度数为736050.450⨯︒=︒,故该选项不正确,不符合题意;故选:B .9.【答案】C【解析】设()3,B m ,∵点B ,C 的横坐标都是3,2BC =,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴()()3,2,1,2C m D m ++,∴32m m =+,解得1m =,∴()3,1B ,∴313k =⨯=,故选C .10.【答案】B【解析】解:设乙车单独运送这批货物需x 天,由题意列方程11111424x ⎛⎫++= ⎪⎝⎭,故选:B .11.【答案】A【解析】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==,∴2AM ABAN AE==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ==,∴2122y x x ==当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯=,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分,故选:A .12.【答案】D【解析】∵四边形ABCD 是正方形,∴90BAD ADE ∠=∠=︒,AB AD =∵BFAE⊥∴90ABF BAF DAE ∠=︒-∠=∠∴cos cos ABF EAD ∠=∠即BF ADAB AE=,又AB AD =,∴2AB BF AE =⋅,故①正确;设正方形的边长为a ,∵点E 为边CD 的中点,∴2a DE =,∴1tan tans 2ABF EAD ∠=∠=,在Rt ABE △中,AB a ===,∴55AF a =在Rt ADE △中,52AE ==∴55352510EF AE AF a =-=-=,∵AB DE ∥∴GAB GED ∽∴2AG ABGE DE==∴1536GE AE a ==∴25615FG AE AF GE a a a a =--=--=∴53522515aAF FG ==∴:2:3BGF BAF S S =△△,故②正确;∵AB a =,∴22222BD AB AD a =+=,如图所示,过点H 分别作,BF AE 的垂线,垂足分别为,M N,又∵BF AE ⊥,∴四边形FMHN 是矩形,∵FH 是BFG ∠的角平分线,∴HM HN =,∴四边形FMHN 是正方形,∴FN HM HN ==∵25252,515BF AF a FG a ===∴13MH FG BM BF ==设MH b =,则34BF BM FM BM MH b b b =+=+=+=在Rt BMH中,BH ==,∵5BF a =∴2545a b =解得:510b a =∴52102BH a a ==,∴22222B a D BD HD a a =-⋅⨯=,故④正确.故选:D .二、填空题13.【答案】()()x y x z +-【解析】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.14.【答案】5x ≥-且0x ≠##0x ≠且5x ≥-【解析】∵式子5x x有意义,∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.15.【答案】12##0.5【解析】解:列表如下,1234111 1=1213142221=212=232142=333 1=3 2313=344441=42 2=43414=共有16种等可能结果,符合题意的有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是81162=,故答案为:12.16.【答案】23-【解析】解:∵一元二次方程256x x x +=+,即2460x x --=,的两根为1x 与2x ,∴121246x x x x +==-,,∴1211+x x 12124263x x x x +===--,故答案为:23-.17.【答案】12x -##12x-+【解析】解:2222142442x x x x x x x x x+--⎛⎫-÷⎪--+-⎝⎭()()()()()2221242x x x x x x x x x +----=⨯--()()2222442x x x x x x x x ---+=⨯--12x =-;故答案为:12x -.18.【答案】22π3cm 3⎛⎫-⎪⎝⎭【解析】解:如图所示,连接,OA OC ,设,AB CO 交于点D∵将 AB 沿弦AB 翻折,使点C 与圆心O 重合,∴AC AO =,OC AB ⊥又OA OC =∴OA OC AC ==,∴AOC 是等边三角形,∴60AOC ∠=︒,1OD CD ==,∴AD ==,∴阴影部分面积)226012π22πcm 36023AOC AOC S S =-=⨯-⨯= 扇形故答案为:22πcm 3⎛-⎝.19.【答案】(62,2)a b --【解析】解:如图所示,过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',∵ABC 与AB C ''△的相似比为12∶,点A 是位似中心,(2,0)A ∴2AD AD '=∵(,)C a b ,∴2,AD a CD b =-=,∴24,2A D a C D b '''=-=,∴()224,0D a '-+∴C '(62,2)a b --故答案为:(62,2)a b --.20.【答案】3+##3【解析】解:∵E 为高BD 上的动点.∴1302CBE ABC ∠=∠=︒∵将CE 绕点C 顺时针旋转60︒得到CF .ABC 是边长为6的等边三角形,∴,60,CE CF ECF BCA BC AC =∠=∠=︒=∴CBE CAF ≌∴30CAF CBE ∠=∠=︒,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒在Rt AOC 中,30CAO ∠=︒,则132CO AC ==,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=∵6CC AC '==,ACO C CD '∠=∠,CO CD =∴ACO C CD ' ≌∴90C DC AOC '∠=∠=︒在C DC ' 中,C D '===∴CDF 周长的最小值为3CD FC CD CD DC '++=+=+故答案为:3+21.【答案】22n n -##22n n -+【解析】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.22.【答案】44+-【解析】解:如图所示,过点A 作AM BC ⊥于点M ,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∴112AM AB ==,BM CM ===∴BC =,如图所示,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BEA B '⊥交A D '于点E ,∵120BAC ∠=︒,∴60DA B '∠=︒,30A EB '∠=︒,在Rt A BE ' 中,24A E A B ''==,BE ==∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∵ABC 以点B 为旋转中心逆时针旋转45︒,∴45ABA '∠=︒,∴180********DBE ∠=︒-︒-︒-︒=︒,1804530105A BD '∠=︒-︒-︒=︒在A BD ' 中,1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒,∴D EBD ∠=∠,∴EB ED ==,∴4A D A E DE ''=+=+如图所示,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,在BFD △中,45BDF CBC ∠'=∠=︒,∴DF BF=在Rt DC F ' 中,30C '∠=︒∴3'3DF FC =∴BC BF =+=∴3DF BF ==-∴26DC DF '==-∴624A D C D A C ''''=-=-=-,综上所述,A D '的长度为4-或4+,故答案为:4-或4+.三、解答题23.【答案】(1)见解析(2)75EDF ∠=︒或105︒【解析】(1)解:如图所示,①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画弧,两弧交于点,M N 两点,作直线MN 交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,则直线,PE PF 即为所求;(2)如图所示,点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒,∵,PE PF 是O 的切线,∴90PEO PFO ∠=∠=︒,∴360909030150EOF ∠=︒-︒-︒-︒=︒,当点D 在优弧 EF上时,1752EDF EOF ∠=∠=︒,当点D 在劣弧 EF上时,18075105EDF ∠=︒-︒=︒,∴75EDF ∠=︒或105︒.24.【答案】(1)河两岸之间的距离是20+米(2)5tan 2CPE ∠=【解析】(1)解:如图所示,过点C 作CM EF ⊥于点M ,设CM a =米,∵30CBE ∠=︒∴3tan tan 303CM CBM PB ∠==︒=,∴MB =,在Rt MCD △中,tan tan 451CMCDM MD∠==︒=,∴MD MC a==∴40BD MB MD a =-=-=解得:20a =答:河两岸之间的距离是20米;(2)解:如图所示,依题意,4012)52PB BD DP =+=+=+,∴((20528MP MB PB =-=+=+,在Rt CMP △中,5tan2CM CPM MP ∠==,∴5tan 2CPE ∠=.25.【答案】(1)每辆A 型车、B 型车坐满后各载客40人、55人(2)共有4种租车方案,租8辆A 型车,2辆B 型车最省钱(3)在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米【解析】(1)解:设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意得5231034340x y x y +=⎧⎨+=⎩解得4055x y =⎧⎨=⎩答:每辆A 型车、B 型车坐满后各载客40人、55人.(2)设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意得()()500600105500405510420m m m m ⎧+-≤⎪⎨+-≥⎪⎩解得:2583m ≤≤m 取正整数,∴5m =,6,7,8∴共有4种租车方案设总租金为w 元,则500600(10)1006000w m m m =+-=-+ 1000-<w ∴随着m 的增大而减小∴8m =时,w 最小∴租8辆A 型车,2辆B 型车最省钱.(3)设s kt =甲,1s k t b =+乙.由题意可知,甲车的函数图象经过(4,300);乙车的函数图象经过(0.5,0),(3.5,300)两点.∴75s t =甲,10050s t =-乙25s s -=乙甲,即100507525t t --=解得3t =或3007525t -=解得113t =所以,在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米.26.【答案】(1)见解析(2)y =(或2(416x y x -=+)(3)1023【解析】(1)证明:∵四边形ABCD 为矩形,∴AD BF ∥,∴D DCF ∠=∠,∵G 为CD 中点,∴DG CG =,在ADG △和△FCG 中D GCF DG CG AGD FGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)ADG FCG △≌△;(2)∵四边形ABCD 为矩形,∴90ABC ∠=︒,∵CE AF ⊥,∴90CEF ABC ∠=︒=∠,∵F F ∠=∠,∴CEF ABF △∽△,∴CE CF AB AF=,∵4AB =,BF x =,∴在Rt ABF 中,AF ==,∵CE y =,∴4y =∴y =2(416x y x -=+);(3)过点E 作EN BF ⊥于点N ,∵四边形ABCD 为矩形,且3AD =,∴3AD BC ==,∵4AB =,1CF =,∴AB BF =,∴ABF △为等腰直角三角形,∴45CFE BAF ∠=∠=︒,∵CE AF ⊥,∴CEF △为等腰直角三角形,∴45ECF ∠=︒,∵EN CF ^,∴EN 平分CF ,∴12CN NF NE ===,在Rt BNE 中,∵222BE BN EN =+,∴2BE ==,∵45ECF BAF ︒∠=∠=,∴135BAM BCE ∠=∠=︒,∵BM BE ⊥,∴90MBA ABE ∠+∠=︒,∵90ABE EBC ∠+∠=︒,∴MBA EBC ∠=∠,∴BAM BCE △∽△,∴43BM BA BE BC ==,43522=,∴1023BM =.27.【答案】(1)见解析(2)见解析(3)215【解析】(1) ABC ∠和AMC ∠是 AC 所对的圆周角,∴ABC AMC Ð=Ð,AHM CHB Ð=Ð,∴AMH CBH ,∴AH MH CH BH=,∴MH CH AH BH ⋅=⋅.(2)连接OC ,交AB 于点F ,MC 与ND 为一组平行弦,即:MC ND ∥,∴OND OMC Ð=Ð, OM OC =,∴OMC OCM ∠=∠, 90OND AHM∠+∠=︒,∴90OCM AHM OCM CHB Ð+Ð=Ð+Ð=°,∴90HFC ∠=︒,∴OC AB ⊥,∴OC 是AB 的垂直平分线,∴ =AC BC.(3)连接DM 、DG ,过点D 作DE MN ⊥,垂足为E ,设点G 的对称点G ',连接G D ¢、G N ',DG DG '=,G ND GND ¢Ð=Ð,∴ 'DM DG = ,∴DG DM ¢=,∴DG DM =,∴DGM 是等腰三角形,DE MN ⊥,∴GE ME =, DN CM ∥,∴CMN DNM Ð=Ð,MN 为直径,∴90MDN ∠=︒,∴90MDE EDN ∠+∠=︒,DE MN ⊥,∴90DEN ∠=︒,∴90DNM EDN Ð+Ð=°,∴3sin sin sin 5EDM DNM CMN Ð=Ð=Ð=,在Rt MND △中,15MN =,∴3sin 5MD DNM MN Ð==,∴3155MD =,∴9MD =,在Rt MED 中,3sin 5ME EDM MDÐ==,∴395ME =∴275ME =,∴2721215255NG MN MG MN ME =-=-=-´=∴215NG =故答案为:215.28.【答案】(1)211462y x x =++,36y x =+(2)满足条件的E 、F 两点存在,1(8,2)E -,2(4,2)E -,3(4,4)E -(3)当133m =时,12CD PD +的最大值为24【解析】(1)解:把(6,0)A -,(2,0)B -,(0,6)C 代入21y ax bx c =++得36604206a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得1246a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴211462y x x =++把(2,0)B -代入6y kx =+得3k =∴36y x =+(2)满足条件的E 、F 两点存在,1(8,2)E -,2(4,2)E -,3(4,4)E -解:①当BC 为正方形的边长时,分别过B 点C 点作12E E BC ⊥,12F F BC ⊥,使12E B E B BC ==,12CF CF BC ==,连接11E F 、22E F .过点1E 作11E H x ⊥轴于1H .∵1111,90BE CB BOC E H B E BC =∠=∠=︒=∠,又111190BE H E BH CBO ∠=︒-∠=∠,∴11(AAS)BE H CBO △≌△,∴112E H BO ==,16H B OC ==∴1(8,2)E -同理可得,2(4,2)E -②以BC 为正方形的对角线时,过BC 的中点G 作33EF BC ⊥,使33E F 与BC 互相平分且相等,则四边形33E BF C 为正方形,过点3E 作3E N y ⊥轴于点N ,过点B 作3BM E N ⊥于点M∵3333,90CE BE CNE E MB =∠=∠=︒,又33390BE M CE N E CN∠=︒-∠=∠∴33(AAS)CE N E BM △≌△∴3CN E M =,3BM E N=∵BC =∴3E G BG ==∴3E B =在3Rt E NC △中,22233E C CN E N =+∴222(6)CN CN =+-解得2CN =或4当4CN =时,3(2,2)E ,此时点E 在点F 右侧故舍去;当2CN =时,3(4,4)E -.综上所述:1(8,2)E -,2(4,2)E -,3(4,4)E -(3)∵211462y x x =++向右平移8个单位长度得到抛物线()()22184862y x x =-+-+当20y =,即()()21848602x x -+-+=解得:122,6x x ==∴(2,0)M ,(6,0)N ∵2y 过M ,N ,C 三点∴221462y x x =-+在直线NC 下方的抛物线2y 上任取一点P ,作PH x ⊥轴交NC 于点H ,过点H 作HG y ⊥轴于点.G∵(6,0)N ,(0,6)C ∴ON OC=∴CON 是等腰直角三角形∵45CHG ∠=︒,90GHP ∠=︒∴45PHD ∠=︒又PD CN⊥∴HPD 是等腰直角三角形∴22HD DP HP ==∵点P 在抛物线2y 上,且横坐标为m∴CG GH m==∴2CH m=∵6CN y x =-+∴(,6)H m m -+∴2211646322HP m m m m m ⎛⎫=-+--+=-+ ⎪⎝⎭∴222123232242HD DP m m m ⎛⎫==-+=-+ ⎪⎝⎭∴211332322222242CD PD CH HD PD CH PD m m m ⎛⎫+=++=+=+-+ ⎪ ⎪⎝⎭2321316928324m ⎛⎫=--+ ⎪⎝⎭∴当133m =时,12CD PD +的最大值为24.。
二○二四年绥化市初中毕业学业考试英语试题考生注意:1. 考试时间120分钟2. 本试题分听力和笔试两部分3. 所有答案都必须写在答题卡上所对应的题号后的指定区域内听力部分(共四道大题,20个小题,不赋分,不计入总分)一、听句子,选出与句子内容相符的图片,每个句子读一遍1. ________2. ________3. ________4. ________5. ________二、听句子,选择最佳答语,每个句子读两遍6. A. Sony, I won't. B. Forget it. C. So do I.7. A. For one hour. B. Once a day. C. In one week.8. A. My father. B. This is Gina Green. C. I don't know.9. A. Me neither. B. Me too. C. I think so.10. A. Not at all. B. Yes, you can. C. No, you needn't.听短文,选择正确答案,短文读两遍11. When did the White family clear out their old things?A. Last Friday.B. Last Saturday.C. Last Sunday.12. Henry put ________ in the sale box.A. some magazinesB. an old computerC. some basketballs13. Who is the youngest child in the White family?A. Kate.B. Rose.C. Henry.14. They began to ________ at 8:00 in the morning.A. set up the tablesB. clean the yardC. put up a notice15. They got ________ dollars in the end.A. 180B. 218C. 280听短文,完成下面的表格,短文读两遍笔试部分(共五道大题,88个小题,共120分,计入总分)第一部分英语知识应用(共计70分)一、单项选择题(本题共20个小题,每小题1分,共20分)1. Beijing, ________ capital of China, is ________ city with a long history.A. /; theB. a; theC. the; a2. The light went out suddenly. It was very dark and ________ could be seen clearly.A. anythingB. somethingC. nothing3. My little brother suggested ________ for a walk.A. to goB. goingC. goes4. —How much does the film ticket ________?—Thirty-five yuan.A. spendB. costC. pay5. The flight was delayed (延期) because of storm, ________ the passengers had to wait at the airport.A. soB. orC. for6. I could ________ understand what he was saying because it’s ________ to follow a quick speaker.A. hard; hardlyB. hard; hardC. hardly; hard7. Look! There ________ some information about traffic rules in this book.A. isB. areC. was8. “Li Ming, ________ your homework first, and you can watch TV for 30 minutes.” said his mum.A. doesB. didC. do9. He ________ much healthier if he ________ enough exercise in his free time.A. is; takeB. will be; takesC. will be; take10. For your own ________, please do not smoke inside the plane.A. seatB. safetyC. score11. An ________ boy, Li Wen, works hard and gets good grades in his final exam.A. eighteen-year-oldsB. eighteen-year-oldC. eighteen years old12. —________ do many farmers put their products online these days?—To sell them more easily.A. WhyB. HowC. When13. —I’m thirsty. I’d like a bottle of water. How about you, Bob?—I prefer a cup of coffee ________ nothing in it.A. withoutB. withC. to14. In China, a number of birthday persons ________ cakes with candles. The number of candles ________ the person’s age.A. has; isB. eats; areC. eat; is15. I like playing tennis. I think nothing is ________ than playing tennis.A. enjoyableB. more enjoyableC. less enjoyable16. — There will be a robot on show in our school next week.— Really? I wonder ________.A. what it likesB. what it is likeC. what is it like17. Hurry up! The movie ________ for ten minutes.A. has begunB. beganC. has been on18. —It was sunny several minutes ago, but it’s raining heavily now!—________ difference a day makes!A. WhatB. What aC. How19. —I feel so nervous. What should I do?—You’d better listen to music that ________.A. helps you relaxB. you can danceC. makes you sad20. The tea ________ in China ________ to many different countries and places each year.A. is made; sentB. made; sentC. made; is sent二、完形填空题(本题共10个小题,每小题1分,共10分)It was in autumn. A young woman was ill. She ____21____ in the hospital. There was a tree ____22____ her room. She saw the leaves fall down. Day after day, there were less and less leaves on the tree. The woman ____23____ very sad. She didn’t eat or drink, and she didn’t want____24____. The doctor asked her to ____25____ and take a walk. She ____26____ do that. She became worse day by day. One day she said, “When the last leaf falls down, I will die, too.”An old artist knew that. He decided to help ____27____. One night, all yellow leaves fell down. The artist painted a green and yellow leaf, ____28____ put it in the tree. The next morning, when the woman looked out of the window and saw the last leaf, she was filled with ____29____. She would like to be alive. She didn’t want to fall down like other ____30____. From then on, she became better and better and lived a long time.Don’t give up your hope at anytime.21. A. played B. stayed C. worked22. A. outside B. inside C. in23. A. feel B. feels C. felt24. A. talk B. to talk C. talked25. A. fall asleep B. hurry up C. get up26. A. wouldn’t B. can’t C. won’t27. A. she B. him C. her28. A. then B. though C. but29. A. doubt B. hope C. sadness30. A. leaf B. leaves C. leave三、综合运用题(本题共30个小题,共40分)(A)完成下列交际用语,词数不限31. A: ________________________?B: It’s about two kilometers from my home to school.32. A: Can you come over to my house for dinner?B: ________________________. Shall I bring anything?33. A: Excuse me, ________________________?B: Go along this street, turn right at the second crossing. The bank is on the right.34. A: Mum, I want to know ________________________.B: It’s half past six. It’s time to take a shower.35. A: The yogurt is so delicious, would you like some more?B: ________________________. Just a little.根据对话内容,用适当的句子将对话补充完整。
2024年绥化市初中毕业学业考试语文试题一、积累·强化基础(本题共5个小题,共10分)阅读下面语段,按要求回答1-5小题。
①“我一路向北,离开有你的季节☐”《一路向北》的歌声一直在校园的上空回荡着,似乎预示着毕业季的到来。
随手拿起拍立得,我们拍了张照片。
记得那日,晚霞如橙,令人如痴如醉,晚风吹起我们的发梢。
今天,考场外,柳条轻轻飞舞。
风一如那日温柔,撩起我的记忆、bō动我的心弦。
②又是一年芳草绿,又是一季毕业时。
青春的我们,信心满怀,背起行囊,奔向属于自己的诗和远方:睿智的我们,满怀理想,点燃青春,挥别昨日,开启一段斩新的人生旅.途。
即使选择了远方,我们就不怕风雨兼程。
③如诗如画的青春回忆总是赶不上生命的脚步,烟水迷茫的沧波永远落后于憧憬的丽帆。
愿我们的青春岁月如同三月的樱笋,五月的榴锦一般,向阳生长,不负伟大时代,不负美丽韶华。
1.给加点字注音,按所给拼音写出汉字。
(2分)旅.()途bō()动2.给☐处填写正确的标点,找出并改正选文第②段中的一个错别字。
(2分)标点:__________改_____3.第②段画线句子有语病,请结合语境将修改后的句子写下来。
(2分)______________________________4.下列加点词语使用不当的一项是()(2分)A.记得那日,晚霞如橙,令人如痴如醉....。
B.这些复杂对立的情感,林林总总,会将这间小屋挤得满满的,间不容发....。
C.互联网时代,“快餐”式阅读方式快速收集了络绎不绝....的资讯。
D.富有创造力的人总是孜孜不倦....地汲取知识,使自己学识渊博。
5.下列有关语法知识表述不正确的一项是()(2分)A.“风—如那日温柔”中的“温柔”和“烟水迷茫的沧波”中的“迷茫”都是形容词。
B.“背起行囊”“信心满怀”“如诗如画”“轻轻飞舞”四个短语结构类型各不相同。
C.“尊老爱幼是中华民族的传统美德”,句子的主干是“尊老爱幼是美德”。
2009年黑龙江省绥化市初中毕业学业考试化学试卷一、选择题(1~12题每题只有1个选项符合题意单选,13~15题每题有1~2个选项符合题意)1.下列变化不属于化学变化的是()A.食物腐败B.塑料降解C.玻璃破碎D.动物呼吸2.物质的用途和性质密切相关。
下列用途主要是利用化学性质的是()3.下列说法正确的是()A.地球上的淡水资源非常丰富B.氧气能跟所有的物质发生化学反应C.氢氧化钠可用于除油污D.生铁是混合物而钢是纯净物4.下列实验现象描述正确的是()A.干冰在空气中升华时周围出现白雾B.铁锈与稀盐酸反应溶液变成浅绿色C.铁丝在空气中剧烈燃烧,火星四射D.碳还原氧化铜生成铜5.关于一氧化碳和二氧化碳的说法正确的是()A.都是大气污染物B.都能与水反应C.都能还原氧化铜D.都能通过碳与氧气反应制得6.塑料制品在生活中应用非常广泛,下列生活用品必须使用热固性塑料的是()①雨衣②食品包装袋③炒菜用锅的手柄④电源插座⑤饮料瓶A.①②B.①②⑤C.③④⑤D.③④7.下图是甲、乙两种固体物质的溶解度曲线,据此判断以下叙述正确的是()A.甲的溶解度比乙的溶解度大B.乙的溶解度受温度变化影响较大C.要从乙的饱和溶液中得到乙,通常采用蒸发溶剂的方法D.20℃时,甲、乙两种饱和溶液中溶质的质量相等8.水是生命之源,既普通又宝贵。
下列有关水的说法正确的是A.水通电生成氢气和氧气,因此水是由氢元素和氧元素组成的B.自然界的水经过滤后就得到软水C.为了节约用水,可以用工业废水直接浇灌农田D.水蒸发时水分子不断运动,水结冰时水分子静止不动9.下列实验基本操作错误的是10.用所学化学知识分析,下列做法正确的是A.家用电器着火时立即用水扑灭B.使用布袋有利于减少白色污染C.经常用水冲洗自行车可防止生锈D.厨房煤气泄漏立即打开排气扇11.有X、Y、Z三种金属,把X和Y分别放在稀硫酸中,X溶解并产生氢气,Y不反应;若把Y和Z分别放入硝酸银溶液中,过-会儿,在Y的表面有银析出,而Z没有变化。
根据以上实验事实,下列关于三种金属活动性由强到弱的判断正确的是A.Y > X >Z B.X > > Z C.Z > X > Y D.X > Z > Y12.下列图像能正确体现与实验对应关系的是A.在一定温度下,向一定质量的硝酸钾饱和溶液中不断加入硝酸钾晶体B.向氢氧化钠溶液中加稀硫酸直至恰好完全反应C.给盛有高锰酸钾固体的试管加热D.少量红磷在盛有空气的密闭容器中燃烧13.除去下列物质中的少量杂质(括号内是杂质),所用试剂及方法均正确的是()A.铜粉(碳粉)——在空气中灼烧B.氯化亚铁溶液(氯化铜)——加过量的铁粉、过滤C.氢氧化钠(碳酸钠)——加适量的稀盐酸,蒸发D.一氧化碳(二氧化碳)——通过足量氢氧化钠溶液,干燥14.下图是同学们利用大可乐瓶设计的储气装置(铁架台未画出),以下说法不正确的是()A.打开止水夹a、b。
气体从d管倒入储存在下面的瓶子里,水被压入上瓶B.取用气体时,可通过控制止水夹a、b,靠水的重力方便地将气体排出C.气体被储存在装置中,c导管也必须安装止水夹D.该装置也可用于实验室制取二氧化碳的发生装置15.有一种不纯的K2CO3固体,可能含Na2CO3、Mg CO3、CuSO4、NaCl中的一种或几种。
取该样品13.8g加入100g稀盐酸恰好完全反应得到无色溶液,同时产生气体4.4g,下列判断正确的是()A.完全反应得到无色溶液,样品中一定没有CuSO4B.NaCl不与盐酸反应,样品中一定没有NaClC.所加稀盐酸中溶质的质量分数为7.3%D.Na2CO3和Mg CO3都能和盐酸反应生成气体,样品中一定有Na2CO3和Mg CO3二、填空题(本题共10小题,每空1分。
共25分〕16.用适当的化学符号和数字回答:(1)常用作建筑材料,改良酸性土壤的碱;(2)三个钠原子;(3)两个二氧化碳分子;(4)硫酸中硫元素的化合价;17.某粒子的结构示意图为,该粒子可用符号表示,它与镁离子形成化合物的化学式。
18.下图为某化学反应的微观模拟图,分别表示氢原子、碳原子和氧原子,根据模拟图回答:上述变化中的物质属于单质的是(填化学式,下同)属于有机物的是。
通过观察上图你获得的一条信息是。
19.我国卫生部根据国内居民身体健康实际需要提出“大豆行动计划”,提倡“一把蔬菜一把豆,一个鸡蛋加点肉“的饮食结构。
这条理念包含的物质中富含人体必需的营养素有(至少答出两种〕,从营养均衡的角度看,你认为在此基础上还应该补充的营养素是。
20.现有三瓶失去标签的无色溶液,分别是稀硫酸、氯化钠溶液、澄清石灰水。
在没有酸碱指示剂的条件下,用一种试剂一次将三种溶液鉴别出来,这种试剂是,写出鉴别时发生反应的化学方程式,。
21.学习化学使我们的思维更加严谨,从而发现许多特殊的规律。
例如:在学习中我们遇到有许多“1+1≠2”的事例,请你仿照示例填写下面表格:22.小东同学对自家的-片农田中的秧苗仔细观察,发现这里的秧苗矮小,叶色萎黄不绿。
现农村供销社有下列常用化肥:氯化钾、磷矿粉、碳酸氢铵。
他应该买的一种化肥是,请你告诉他该化肥使用时的一点注意事项。
23.前不久大兴安岭局部地区发生森林火灾,消防队员紧急奔赴现场。
他有的使用风力灭火机强力灭火,其原理是;有的砍伐部分树木打防火隔离带,其灭火原理又是。
24.类比归纳是学好化学的一种有效手段,它可以引导我们总结规律、发现区别。
例如一些燃烧实验常在瓶中预先加少量的水,但作用各不相同。
硫在氧气中燃烧,瓶中加水的作用是;红磷燃烧法测空气中氧气含量,瓶中装水的作用是;还有实验瓶中预先也装有少量的水。
25.A+3B==C+2D反应中,8gA和9gB恰好完全反应生成7gC,同时生成gD;若要得到30Gd,则参加反应的B为g。
三、简答题(本题共4小题,每题3分,共12分)26.小强同学在检验碳酸根离子的实验中,向盛有0.5g碳酸钠的试管中加入2mL盐酸,迅速用带导管的胶塞塞紧试管口,并将导管的另一端通入澄清的石灰水中,结果他没有看到澄清的石灰水变浑浊。
请你帮助小强分析产生该现象的原因可能是什么?(答出三点)27.化学和人类衣食住行关系密切。
从“衣”的角度说,我们穿的服装颜色各不相同,有些衣料的颜色是用特殊染料染出来的,请你想一想作为服装染料的物质应该具有怎样的性质(答出三点)28.人体胃液中含有适量的盐酸,可以帮助消化,正常胃液的pH在0.9~1.5之间,胃酸过多或过少,都会引起胃部不适。
患胃酸过多病症的人应口服含有哪些物质的药物来治疗?(答一种即可)治疗胃酸目过多的药物为什么通常需嚼碎后服用?还有一些人因胃酸过少影响消化,你建议他应该多吃哪些食物?29.我国外交部郑重声明,今年2月25日在法国佳士德拍卖行拍卖的两件文物鼠首和兔首,其所属权为中国。
这两件文物均属于我国圆明园流失在国外的精美铜饰品。
铜在常温下几乎不和氧气反应,在潮湿的环境中锈蚀速度也比较慢,其主要是和空气中的氧气、二氧化碳、水蒸气共同作用而生成铜锈。
试回答:铜饰品为什么能长久的保存仍然精美如初?如果你是收藏者,为防止铜制文物锈蚀应当注意什么?(答两点即可)四、实验题(本题共3小题,每空1分,共18分)30.现有如下仪器:用字母回答:(1)在粗盐提纯实验中,每步实验都用到的是;(2)用于吸取和滴加少量液体的是;(3)用于较大量液体的反应容器是;(4)收集和储存少量气体的是;31.实验室用大理石(杂质既不溶于水也不与稀盐酸反应)和稀盐酸反应制取二氧化碳。
实验结束后,锥形瓶内已无气泡产生,但还有少量固体剩余。
写出反应的化学方程式,该反应的基本类型是。
小文和小明对锥形瓶内溶液中溶质的成分展开辩论:小文说:因瓶内有固体剩余,所以溶液中只有氯化钙而无盐酸。
小明不完全同意小文的说法,请你说出小明的理由。
按小明的猜想,写出溶液中成分的几种可能,请你选择其中-种情况,设计实验证明,完成下列探究报告:32.利用下列仪器进行实验(所有装置的气密性都已检查完毕)(1)把过氧化氢溶液缓缓加入盛有二氧化锰的容器中制取并收集氧气,完成该实验你所连用的仪器有____ 。
写出发主反应的化学方程式。
这种方法与“把二氧化锰加入盛有过氧化氢溶液的试管中制氧气”相比有__________ 优点。
用可检验你收集到的气体是氧气。
(2)某同学继续探究“红砖粉末是否也可以作过氧化氢分解反应的催化剂?”实验步骤和现象如下:①他分别向两支试管中加入等质量等溶质质量分数的过氧化氢溶液,向其中一支试管加入一药匙红砖粉末,然后将两支试管中的气体导出通入水中比较产生气泡的快慢,发现加入红砖粉末的试管中反应较快。
②将反应较快的试管内固体过滤出来,洗涤、烘干、称重。
③用称量后的固体重复步骤①的实验,现象与步骤①完全相同试回答:步骤①中他除了选用试管外还用到上面列出的仪器有(填字母)。
步骤步③实验目的是。
该学生认为通过上述实验已证明红砖粉末可以作过氧化氢分解反应的催化剂,但老师认为该同学的实验还缺少一个关键步骤,请指出来。
五、思考与感悟(本题共2小题,33题2分,34题2分,共4分)33.绥化市冬天取暖主要以煤为燃料。
已知原煤中含硫1%,若燃烧1000t这样的原煤,可以产生二氧化硫20t,这些二氧化硫中的硫元素全部转化成硫酸,可产生0.005%的硫酸溶液612500t。
通过以上信息你会得到哪些启示?(答出两点即可)34.旧家电中含有许多贵重金属材料和合成材料,国家的惠民政策最近出台了旧家电回收和以旧换新的补贴方案。
由此你想到了什么?(从资源、环境、情感态度价值观等角度答出两点即可)六、计算题(本题共2小题,35题4分,36题7分,共11分)35.在现代生活中,人们越来越注重微量元素摄取。
碘元素对人体有着至关重要的作用。
下图是某地市场销售的一种“加碘食盐”包装袋上的部分说明。
(1)食用“碘盐”可预防;(2)碘酸钾(KIO3)中钾元素、碘元素、氧元素的质量比是;(3)碘酸钾(KIO3)中。
碘元素的质量分数是;(计算结果精确到0.1%)(4)若成人每天摄入5g这样的“碘盐”,至少补充碘元素mg。
36.现有氧化铜和铜的混合物,对其成分进行分析。
取10g此样品,向其中分五次加入相同溶质质量分数的稀硫酸,使之充分反应。
每次所用稀硫酸的质量及剩余固体的质量记录于下表:(反应的化学方程式:CuO + H2SO4===CuSO4+ H2O)试回答下列问题:(1)上述表格中m的值为,10g样品中CuO的质量为g。
(2)计算所加入稀硫酸中溶质质量分数(3)计算第三次加稀硫酸反应后所得溶液中溶质的质量分数?(精确到0.1%)。