山西省祁县中学2018-2019届高三10月月考数学(文)试题及答案
- 格式:pdf
- 大小:275.58 KB
- 文档页数:8
祁县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 2. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 3. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°5. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .806. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .157. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣18. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<9. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心10.如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D .二、填空题11.方程(x+y ﹣1)=0所表示的曲线是 .12.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 13.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 14.已知f (x )=x (e x +a e -x )为偶函数,则a =________.15.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.16.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .三、解答题17.已知函数f (x )=(Ⅰ)求函数f (x )单调递增区间;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a ﹣c )cosB=bcosC ,求f (A )的取值范围.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积V =,求A 到平面PBC 的距离.111]19.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.20.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.21.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.22.(本小题满分10分) 已知函数()|||2|f x x a x =++-.(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.祁县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.2. 【答案】D. 【解析】3. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面. 故选D【点评】本题主要考查在空间内两条直线的位置关系.4. 【答案】A【解析】解:根据余弦定理可知cosA=∵a 2=b 2+bc+c 2, ∴bc=﹣(b 2+c 2﹣a 2)∴cosA=﹣ ∴A=120° 故选A5. 【答案】 C【解析】 二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.6.【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.7.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.8.【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.19. 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化 【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2. 圆心到直线的距离为:,所以直线与圆相交。
祁县中学高三10月月考数学(文科)试题一.选择题(本大题共有12个小题,每小题5分,共60分)1.已知集合P={x ∈N|1≤x ≤10},集合Q={x ∈R|06--2=x x },则P ∩Q 等于( )A.{2}B.{1,2}C.{2,3}D.{3} 2.若函数)2(),3,0[)1(x f x f 则的定义域为+的定义域为( )A .[1,8]B .[1,4)C .[0,2)D .[0,2]3. 函数3)(5-+=x x x f 的零点落在的区间是( )A .[]1,0B .[]2,1C .[]3,2D .[]4,3 4.已知10.20.7321.5, 1.3,()3a b c -===,则,,a b c 的大小为 ( )A.c a b <<B. c b a <<C. a b c <<D. a c b << 5.在R 的定义运算: ⎝⎛c a bc ad d b -=⎪⎪⎭⎫,若不等式 ⎝⎛+-11a x 12≥⎪⎪⎭⎫-x a 对任意实数x 恒成立,则实数a 的最大值为( )A .21-B .23- C .21 D .236. 下列判断错误..的是( ) A .“22bm am <”是“a < b ”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“ 01,23>--∈∃x x R x ”C .若f (x)是定义在R 上的奇函数,且f (x+2)也为奇函数,则f (x)是以4为周期的周期函数.D .若q p Λ为假命题, 则p, q 均为假命题7若把函数x x y 2sin -2cos 3=的图象向右平移0)(>m m 个单位长度后,所得到的图象关于y轴对称,则m 的最小值是( )A .π3 B .12π C .π6 D .5π68.函数f(x)=ln(4+3x -x 2)的单调递减区间是( )A.),(∞+23B.),(23-∞C.),(41- D. ),(4239. 函数1ln --=x e y x的图象大致是( )10. 若定义在R 上的函数)(-)1()(x f x f x f y =+=满足满足,且当]1,1[-∈x 时,2)(x x f =,函数⎩⎨⎧≤>=1,21),1-(log )(3x x x x g x ,则函数)(-)()(x g x f x h =在区间]5,5[-内的零点的个数为( )A .6 B. 7 C. 8 D. 911. 已知函数()f x 是定义在实数集R 上得不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5()2f =( )A .0 B.12C.1D.5212. 设()f x 是R 上的偶函数,对任意x R ∈,都有(2)(2),f x f x -=+且当[2,0]x ∈-时,1()()1,(2,6]2x f x =--若在区间内关于x 的方程()log (2)0(1)a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( )A .(1,2)B .(2,)+∞C .3(1,4)D .3(4,2)二.填空题13.已知:()()110p x m x m -+--<;:1223q x <<,若q 是p 的充分不必要条件, 则实数m 的取值范围是___________________。
2016届山西省祁县中学高三10月月考数学(理)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“p 或q 是假命题”是“非p 为真命题”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知集合⎭⎬⎫⎩⎨⎧≥--=031x x x A ,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-==)4(log 21x y x B ,则=B A C R )(( ) A. φ B .{}3 C .{}43<≤x x D .{}41<<x x3.函数f(x)的图象向右平移一个单位长度,所得图象与x y e =关于y 轴对称,则f(x)=( )A.1+x e B. 1-x e C. 1+-x e D. 1--x e4.若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )A.(,)-∞+∞ B .(2,)-+∞ C. (0,)+∞ D .(1,)-+∞ 5.由曲线1=xy 及直线2,==y x y 围成的平面图形的面积是( )A.87B. 2ln 23-C.2ln 23+D.8256.已知函数1)391ln()(2+-+=x x x f ,则=+)21(lg )2(lg f f ( ) A .1- B .0 C .1 D .27.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )xx8.若函数32)(2++-=x x x f ,则)(x f 的单调递增区间是( )A. []1,1- B .)1,(-∞ C. []3,1 D. ),1(+∞9.已知函数)3(log )(22a ax x x f +-=在区间[)+∞,2上是增函数,则实数a 的取值范围是( )A. (]4,∞- B .(],44- C. (],24- D . (][)∞+⋃-∞-,,24 10.已知函数)(ln )(ax x x x f -=有两个极值点,则实数a 的取值范围是( )A .)0,(-∞B .)21,0(C . )1,0(D .),0(+∞11.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是( ) A .(01), B .(12),C .(23),D .(34),12. 设定义在R 上的函数)(x f 是最小正周期为π2的偶函数,)('x f 是)(x f 的导函数,当],0[π∈x 时,1)(0<<x f ;当),0(π∈x 且2π≠x 时,0)(')2(>-x f x π,则函数x x f y sin )(-=在]2,2[ππ-∈x 上的零点个数为( )A .2B .4 C.5 D. 8二、填空题:本大题共4小题,每小题5分,共20分.将答案填在答题卡中的横线上.13.设ax x f x ++=)110lg()(是偶函数,x x bx g 24)(-=是奇函数,那么b a +的值是_______14.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______ . 15.设曲线*)(1N n x y n ∈=+在点)1,1(处的切线与x 轴的交点的横坐标为n x ,令n n x a lg =,则9921a a a +++ 的值为_______ .16.已知,给出以下四个命题:(1)若,则;(2)直线是函数图象的一条对称轴;(3)在区间上函数是增函数;(4)函数的图象可由的图象向右平移个单位而得到.其中正确命题的序号为_______ .三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本大题满分10分)已知锐角ABC ∆中,内角C B A 、、的对应边分别为c b a 、、,且C b c B c b A a s i n )2(s i n )2(s i n2-+-= (1)求角A 的大小;(2)求C B cos cos 2+的取值范围 18.(本大题满分12分)若函数431)(23+-+=bx ax x x f 在2-=x 和1=x 处取的极值. (1)求函数()f x 的解析式;(2)讨论方程()f x k =实数解的个数.19. (本大题满分12分)已知是定义在上的偶函数,且时,.(1)求,;(2)求函数的表达式;(3)若,求的取值范围.20.(本小题满分12分)已知集合{}⎭⎬⎫⎩⎨⎧<+--=<+--=0)1(2,0)]13()[2(2a x ax x B a x x x A (1)当B A a 时,求2=; (2)求使A B ⊆的实数a 的取值范围。
山西省祁县中学2018-2019学年高二数学11月月考试题文(扫描版)祁县中学2018年高二年级11月月考数学(文)答案一、选择题DBDDAC CCCBAC二、填空题13.若24x ≠,则2x ≠且2x ≠- 14.(x -1)2+y 2=215.3x +2y -7=0或4x +y -6=0 16.36π三、解答题17. 解:(1)设圆A 的半径为R ,因为圆A 与直线l 1:x+2y+7=0相切,∴,∴圆A 的方程为(x+1)2+(y ﹣2)2=20. (2)①当直线l 与x 轴垂直时,易知x=﹣2符合题意;②当直线l 与x 轴不垂直时,设直线的方程为y=k (x+2),即kx ﹣y+2k=0.连接AQ ,则AQ ⊥MN ,∵,∴,则由得,∴直线l 为:3x ﹣4y+6=0,故直线l 的方程为x=﹣2或3x ﹣4y+6=0.18. 解:(1)由题意知BC 的斜率为-2,又点B(4,4),∴直线BC 的方程为y -4=-2(x -4),即2x +y -12=0.解方程组⎩⎪⎨⎪⎧ y =0,x -2y +2=0,得⎩⎪⎨⎪⎧ x =-2,y =0,∴点A 的坐标为(-2,0).又∠A 的内角平分线所在直线的方程为y =0,∴点B(4,4)关于直线y =0的对称点B′(4,-4)在直线AC 上,∴直线AC 的方程为y =-23(x +2),即2x +3y +4=0. 解方程组⎩⎪⎨⎪⎧ 2x +y -12=0,2x +3y +4=0,得⎩⎪⎨⎪⎧ x =10,y =-8,∴点C 的坐标为(10,-8). (2)∵|BC|=-2+-8-2=65,又直线BC 的方程是2x +y -12=0,∴点A 到直线BC 的距离是d =-+0-12|22+12=165,∴△ABC 的面积是S =12×|BC|×d=12×65×165=48.19.解:(1)若p 为真则()()222log 612log 32;x x x +≥++得22612032061232x x x x x x +>⎧⎪++>⎨⎪+≥++⎩即22320 61232x x x x x ⎧++>⎪⎨+≥++⎪⎩,解得: 15x -<≤. 若非q 为真,则232222,32,13,x x x x x x -≥-≥∴≤-≥得或所以()p q ∧⌝为真命题,则x 的取值范围为[]3,5.(2)因为()p q ∧⌝为真命题是不等式2240x ax a -+->成立的充分条件所以[]3,5x ∈时不等式2240x ax a -+->恒成立.()[][]22240,24,3,5,202,25,7, 5.x ax a a x x x x a x x a -+->∴-<-∈∴-><++∈∴<又即又20. (1)证明:∵E 为BC 的中点,1EC CD ==,∴DCE ∆为等腰直角三角形,∴211121=⨯⨯=∆DCE S ,而PA 是三棱锥DCE P -的高, ∴611213131=⨯⨯=⋅==∆--PA S V V DCE DCE P PDE C (2)在PA上存在中点G ,使得PCD EG 平面//.理由如下:取PD PA ,的中点H G ,,连结CH GH EG ,,.………9分∵H G ,是PD PA ,的中点, ∴AD GH //,且AD GH 21=,21. (1)如图,由已知AD∥BC,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. P B C AG H因为AD⊥平面PDC ,直线PD ⊂平面PDC ,所以AD⊥PD.在Rt△PDA 中,由已知,得AP =,故cos∠DAP==.所以,异面直线AP 与BC 所成角的余弦值为.(2)证明:由(1)知AD⊥PD.又因为BC∥AD,所以PD⊥BC.又PD⊥PB,PB∩BC=B ,所以PD⊥平面PBC.(3)解:过点D 作DF∥AB,交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD⊥平面PBC ,所以PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD∥BC,DF∥AB,故BF =AD =1.由已知,得CF =BC -BF =2.又AD⊥DC,所以BC⊥DC.在Rt△DCF 中,可得DF =2,在Rt△DPF 中,可得sin∠DFP=.所以直线AB 与平面PBC 所成角的正弦值为.22.解:(1)由已知可得直线l :323-=x y ,∴椭圆的右焦点)02(, ∴362=a , ∴6=a ,2=b ,椭圆C 的方程为12622=+y x . (4分) (2)由DN DM λ=知,D ,M ,N 三点共线,又点D 在x 轴上,∴直线MN 有以下两种情况: ①当直线MN 与x 轴重合时,M ,N 为椭圆长轴的两个端点,由λ= 得,625±=λ; (6分)②当直线MN 与x 轴不重合时,设MN :3+=my x ,由⎪⎩⎪⎨⎧=++=126322y x my x 消去x 得,036)3(22=+++my y m ,设M(11y x ,),N(22y x ,), 则36221+-=+m m y y ①33221+=m y y ②, (7分) 由0)3(12)6(22>+-=∆m m 得232>m (8分) 又DN DM λ=,∴)3()3(2211y x y x ,,-=-λ,且0>λ,1≠λ,∴21y y λ=③, 由①②③得=+λλ1=+1221y y y y =+21221)(y y y y 336102+-m ,∵232>m ∴1012<+<λλ,解得,625625+<<-λ且1≠λ (11分)综上所述,实数λ的取值范围是],,6251()1625[+- (12分)。
2024-2025学年山西省高三(上)质检数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|−4≤x ≤2},B ={x|x =2n−1,n ∈Z},则A ∩B =( )A. {−3,−1,1,3}B. {−3,−1,1}C. {−1,1}D. {1}2.已知复数z =3−4i (2+i )2(i 是虚数单位),则z 的虚部是( )A. 2425B. 2425iC. −2425D. −2425i 3.古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有阳眼,表示万物都在互相转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含着现代哲学中的矛盾对立统一规律.图2(正八边形ABCDEFGH)是由图1(八卦模型图)抽象并以正八边形ABCDEFGH 的中心O 为旋转中心顺时针旋转π8而得到,若OG =x OH +y OF ,则x +y =( )A. 2B. 32C. 2D. 3 224.若命题p :∃x ∈[−2,2],使得x 2−2x−m 2+2m ≥0为假命题,则实数m 的取值范围为( )A. (−∞,1)∪(1,+∞)B. (−∞,0)∪(2,+∞)C. (−∞,−4)∪(2,+∞)D. (−∞,−2)∪(4,+∞)5.已知x ∈(−π2,π4],则函数f(x)=(13)tanx 的值域是( )A. (0,13]B. (0,3]C. [13,+∞)D. [3,+∞)6.若不等式(ax−1)(x−b)≥0对任意的x ∈R 恒成立,则4a +b 的最小值为( )A. 2 2B. 4C. 5D. 4 27.已知命题p :设等差数列{a n }的前n 项和为S n ,若S 1S 2⋯S k =0(k ∈N +且k ≥2),则a 1a 2⋯a k =0,命题q :设等比数列{b n }的前n 项和为T n ,若T 1T 2⋯T k =0(k ∈N +且k ≥2),则b k−1+b k =0,则( )A. p 是真命题,q 是假命题B. p 是假命题,q 是真命题C. p 与q 都是真命题D. p 与q 都是假命题8.在半径为2的圆C 上任取三个不同的点A ,B ,P ,且|AB|=2 2,则PA ⋅PB 的最大值是( )A. 2+2 B. 2+2 2 C. 2 2+4 D. 4+4 2二、多选题:本题共3小题,共18分。
祁县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .2. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )A .B .C .2 D .43. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=( )A .2或0B .0C .﹣2或0D .﹣2或24. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .5. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +> 6. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 7. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定8. 在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣9. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 10.已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确11.若复数(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( )A .﹣2B .4C .﹣6D .612.下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”二、填空题13.函数的单调递增区间是 .14.求函数在区间[]上的最大值 .15.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.16.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 17.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .18.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .三、解答题19.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金. (1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?20.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y =的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.21.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.23.(1)直线l 的方程为(a+1)x+y+2﹣a=0(a ∈R ).若l 在两坐标轴上的截距相等,求a 的值; (2)已知A (﹣2,4),B (4,0),且AB 是圆C 的直径,求圆C 的标准方程.24.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.ABCDP祁县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11. 又a 3=5,得d=,∴a 1=a 3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B .2. 【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==.∴1212S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质.3. 【答案】D【解析】解:由题意:函数f (x )=2sin (ωx+φ), ∵f(+x )=f (﹣x ),可知函数的对称轴为x==,根据三角函数的性质可知, 当x=时,函数取得最大值或者最小值. ∴f()=2或﹣2故选D .4. 【答案】 B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x值为∴=,其中k ∈Z取k=1,得φ=因此,f (x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.5. 【答案】 C【解析】22212'()x f x x x x-=-+=,'(2)0f =,且当02x <<时,'()0f x <,函数递减,当2x >时,'()0f x >,函数递增,因此2x =是()f x 的极小值点,A 正确;()()g x f x x =-,221'()1g x x x =-+-2217()24x x -+=-,所以当0x >时,'()0g x <恒成立,即()g x 单调递减,又11()210g e ee =+->,2222()20g e e e =+-<,所以()g x 有零点且只有一个零点,B 正确;设2()2ln ()f x xh x x x x==+,易知当2x >时,222ln 21112()x h x x x x x x x x =+<+<+=,对任意的正实数k ,显然当2x k >时,2k x <,即()f x k x<,()f x kx <,所以()f x kx >不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草图可看出(0,2)的时候递减的更快,所以124x x +>6. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 7. 【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02>4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.8. 【答案】A【解析】解:在△ABC 中,已知D 是AB 边上一点∵=2, =,∴=,∴λ=, 故选A .【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.9. 【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.10.【答案】B【解析】解:∵E 是BB 1的中点且AA 1=2,AB=BC=1, ∴∠AEA 1=90°, 又在长方体ABCD ﹣A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,∴A 1D 1⊥AE , ∴AE ⊥平面A 1ED 1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.11.【答案】C【解析】解:复数=,它是纯虚数,则a=﹣6.故选C.【点评】本题考查复数代数形式的乘除运算,复数的分类,是基础题.12.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.二、填空题13.【答案】[2,3).【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,本题即求函数t在(1,3)上的减区间.利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),故答案为:[2,3).14.【答案】.【解析】解:∵f(x)=sin2x+sinxcosx=+sin2x =sin (2x﹣)+. 又x ∈[,], ∴2x﹣∈[,],∴sin (2x﹣)∈[,1], ∴sin (2x﹣)+∈[1,].即f (x )∈[1,]. 故f (x )在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.15.【答案】【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),由y =ax +ln x 得y ′=a +1x(x >0),∴⎩⎪⎨⎪⎧a +1x 0=1y 0=x 0-1y 0=ax 0+ln x,解之得x 0=1,y 0=0,a =0. ∴a =0. 答案:016.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1), ∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3, 又a 4a 6=(a 5﹣d )(a 5+d )=9﹣d 2=8, ∴d 2=1,解得:d=1或d=﹣1(舍去)∴a n =a 5+(n ﹣5)×1=3+(n ﹣5)=n ﹣2. ∴a 1=﹣1, ∴S 10=10a 1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n }为等差数列,并求得a n =2n ﹣1是关键,考查理解与运算能力,属于中档题.17.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.18.【答案】12()()f x f x ] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.三、解答题19.【答案】【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C 103=120,奖金的可能取值是0,30,60,240,∴一等奖的概率P (ξ=240)=,P(ξ=60)=P(ξ=30)=,P(ξ=0)=1﹣∴变量的分布列是ξ0 30 60 240∴E ξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是相互独立的∴中奖次数η~B(4,)∴Dη=4×【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.20.【答案】21.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).22.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力23.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a ≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a ﹣2),(,0).∵直线l 在两坐标轴上的截距相等,∴a ﹣2=,解得a=2或a=0;(2)∵A (﹣2,4),B (4,0), ∴线段AB 的中点C 坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB 为直径的圆C 的标准方程为(x ﹣1)2+(y ﹣2)2=13.24.【答案】【解析】解: (Ⅰ)当13PE PB =时,//CE 平面PAD . 设F 为PA 上一点,且13PF PA =,连结EF 、DF 、EC ,那么//EF AB ,13EF AB =.∵//DC AB ,13DC AB =,∴//EF DC ,EF DC =,∴//EC FD .又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,(1,2,0)C -.由(6)(2PO ==-=知(0,0,2)P . (9分)设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r则00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|||||AP n AP n AP n θ⋅=<>==⋅ ∴πθ=,∴直线PB 与平面PAD 所成角为3π. (13分)。
祁县中学校2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 2. 某空间几何体的三视图如图所示,则该几何体的体积为( )A .B .8C .D .163. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 4.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π5. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .32D .336. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .27. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .22B . C. D .42+2 8. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x =D.1(ln )f x x x=+ 【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 9. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的1610.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A.该几何体体积为 B.该几何体体积可能为 C.该几何体表面积应为+D .该几何体唯一11.已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}- 【命题意图】本题考查集合的交集运算,意在考查计算能力.12.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知tan 23πα⎛⎫+= ⎪⎝⎭,则42sin cos 335cos sin 66ππααππαα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ .14.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .15.若函数63e ()()32ex x bf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.16.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .三、解答题(本大共6小题,共70分。
2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。
祁县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱2. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2-3. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=4. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .15 5. 正方体的内切球与外接球的半径之比为( ) A.B.C.D.6. 已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( ) ABCD7. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.8. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.9. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣10.函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<11.已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65B .5C .5D .512.已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.14.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .15.不等式0<1﹣x 2≤1的解集为 .16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测年份 2030 2035 2040 2045 2050 年份代号t 1 2 3 4 5 所占比例y6865626261的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.三、解答题(本大共6小题,共70分。