天津市河北区2017年中考数学模拟试卷(含解析)
- 格式:doc
- 大小:443.00 KB
- 文档页数:22
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
天津市河北区2017届九年级数学第一次模拟试题第I 卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分。
1.计算5+(-2)×3的结果等于( )A.-11B.-1C.1D.112.计算2∙tan 60°的值等于( ) A.35 B.36 C.5 D.6 3.下列图形中,既是轴对称图形又是中心对称图形的是( )4.将0.0000026用科学记数法表示为( )A.2.6×106B.0.26×10-5C.2.6×10-6D.2.6×10-75.用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为( )6.计算18212-的结果是( ) A.-2 B.-22 C.-42 D. -827.化简2222a ab b ab ab b a ----等于( ) A.b a B.ab C.1 D.-1 8.设ɑ,β是一元二次方程x 2+2x-3=0的两个根,则ɑβ的值是( ) A.3 B.-3 C.2 D.-29.抛物线y=2x 2-22x+l 与坐标轴的交点个数是( )A.0B.1C.2D.310.如图,以AB 为直径,点O 为圆心的半圆经过点C,若AC=BC=2,则图中阴影部分的面积是( )A.4πB.21+4πC.2πD.21+8π 11.下列命题为假命题的是( )A.有两边及一角对应相等的两个三角形全等B.面积之比为I:4的两个相似三角形的周长之比是1:2C.方程x 2-x-2=0有两个不相等的实数根D.顺次连接任意四边形各边中点得到的四边形是平行四边形12.如图,己知点A 是双曲线y=)0(>k x k 上的一个动点,连AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y=)0(<m xm 上运动,则m 与k 的关系是( )A.m=-kB.m=-3kC.m=-2kD. m=-3k第II 卷(非选择题共84分)二 填空题:13.计算(-3m 3n)2的结果等于 ;14.分解因式:ax 2-ay 2= ;15.己知一次函数y=kx-5和y=k /x+3,假设k>0,k /<0,则这两个一次函数图象的交点在第 象限;16.某学校想了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率为 ;17.如图,正五边形的边长为2,连对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,则MN= ;18.如图.六个完全相同的小长方形拼成了一个大长方形,AB 是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边;(2)在图(2)中画出线段AB 的垂直平分线,并简要说明画图的方法(不要求证明)三、解答题:本大题共7小题,共66分。
2017年中考数学冲刺练习卷一、选择题:1.计算1-(-2)的正确结果是( )A.-2B.-1C.1D.32.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1B.1C.3D.-33.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6B.7C.8D.94.如图,已知△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙5.若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()6.用矩形纸片折出直角的平分线,下列折法正确的是()A. B. C. D.7.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x8.如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.69.下列说法:①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60o的两个直角三角形相似,其中正确的说法是()A.②④B.①③C.①②④D.②③④10.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()二、填空题:11.分解因式:x2﹣4(x﹣1)= .12.一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是.13.函数中,自变量x的取值范围是.14.若三角形的边长分别为6、8、10,则它的最长边上的高为.15.如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k= .三计算题:16.解二元一次方程组:四解答题:17.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.18.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.19.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长.20.【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.21.如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.参考答案1.D2.B3.D4.B5.B6.D7.A8.C9.A10.B11.答案为:(x﹣2)2.12.答案为:0.25;13.答案为:x≤1.5;14.答案为:h=4.815.【解答】解:如图,取点P关于y轴的对称点Q,∵P(4,3),∴Q(﹣4,3),连接PQ,∴PQ⊥y轴,∵PE=PF,∴∠CPE=∠DPE,∴点Q为的中点,连接OQ,则OQ⊥DC,设直线OQ解析式为y=mx,把Q点坐标代入可得3=﹣4m,解得m=﹣0.75,∴直线OQ解析式为y=﹣x,∴直线CD解析式为y=x+b,∴k=,故答案为:.16.答案为:17.解:(1)48,0.81;(2)P=0.8;18.【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m件,则购进乙种商品件,由已知得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.19.20.【解答】解:(1)DF=EF+BE.理由:如图1所示,∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=45°,∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=45°,而∠EAG=90°,∴∠GAF=90°﹣45°,在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=4.21.解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴,解得.∴二次函数的解析式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),∴BC==3,设BC所在的直线的解析式是:y=mx+n,则,解得.∴BC所在的直线的解析式是:y=x﹣3,∵经过t秒,AP=t,BQ=t,∴点P的坐标是(t﹣1,0),设点Q的坐标是(x,y),∵OB=OC=3,∴∠OBC=∠OCB=45°,则y=×sin45°=×=t,∴BP==×=t,∴x=3﹣t,∴点Q的坐标是(3﹣t,t),①如图1,当∠QPB=90°时,点P和点Q的横坐标相同,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴t﹣1=3﹣t,解得t=2,即当t=2时,△BPQ为直角三角形.②如图2,当∠PQB=90°时,∵∠PBQ=45°,∴BP=,∵BP=3﹣(t﹣1)=4﹣t,BQ=,∴4﹣t=即4﹣t=2t,解得t=,即当t=时,△BPQ为直角三角形.综上,可得当△BPQ为直角三角形,t=或2.(3)如图3,延长MQ交抛物线于点N,H是PQ的中点,设PQ所在的直线的解析式是y=cx+d,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴,解得.∴PQ所在的直线的解析式是y=x+,∴点M的坐标是(0,)∵,,∴PQ的中点H的坐标是(1,)假设PQ的中点恰为MN的中点,∵1×2﹣0=2,=,∴点N的坐标是(2,),又∵点N在抛物线上,∴=22﹣2×2﹣3=﹣3,解得t=或t=﹣(舍去),∵>,∴当t<2时,延长QP交y轴于点M,在抛物线上不存在一点N,使得PQ的中点恰为MN的中点.。
2017年九年级数学中考模拟试卷一、选择题:1.计算﹣4+3=( )A.1B.﹣5C.﹣1D.﹣62.在Rt△ABC中,∠C=90°,BC=1,那么AB的长为( )A.sinAB.cosAC.D.3.老师要求同学们课后自作既是轴对称又是中心对称的图形,结果有以下几个,其中符合条件的有( )A.1个B.2个C.3个D.4个4.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位C.千位D.十万位5.如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A.4种B.5种C.6种D.7种6.49的算术平方根的相反数是( )A.0.7B.-0.7C.±0.7D.07.把通分的过程中,不正确的是()8.若x 1、x 2是方程x 2+3x ﹣5=0的两个根,则x 1•x 2的值为( ) A .﹣3 B .﹣5 C .3 D .5 9.函数y=中,自变量x 的取值范围是( )A.x ≥1B.x >1C.x ≥1且x ≠2D.x ≠210.如图,在△ABC 中,AB=5,BC=6,AC=7,点D,E,F 分别是△ABC 三边的中点,则△DEF 周长为( ) A.9 B.10 C.11 D.1211.反比例函数1y x=-的图象位于( ) A.第一、三象限 B.第二、四象限 C.第一、四象限 D.第二、三象限12.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA=x,点D 到直线PA 的距离为y,则y 关于x 的函数图象大致是( )二 、填空题:13.分解因式:a 3﹣4a 2+4a= .14.已知a+b=﹣3,ab=2,则= .15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).16.结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是17.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=___________时,△AED与以M,N,C为顶点的三角形相似.18.把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=x2-3x+5,则a+b+c= .三、解答题:19.解不等式组:,并把解集在如图数轴上表示出来.20.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).21.如图,已知直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.22.如图,在□ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.23.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是________________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?四、综合题:24.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设 DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.25.如图,在平面直角坐标系中,直线y=1/2x+2与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-1.5,且经过A、C两点,与x轴的另一交点为点B.(1)(①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案1.C2.D3.C4.C5.A6.B7.D8.B9.C10.A11.B12.B13.答案为:a(a﹣2)2.14.答案为:1.15.答案为:0.8;16.略17.或18.答案:1119.答案为:2<x<320.解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.21.(1)略;(2)7.5;.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.23.(1)108 ;(2)180<x≤450 ;(3)0.6 .(4)设直线BC的解析式为y=kx+b,由图象,得解得∴y=0.9x-121.5.当y=328.5时,0.9x-121.5=328.5.解得x=500.答:这个月他家用电500千瓦时.24.(1)将ACE绕点C顺时针旋转60°后能得到DCB(2) 如图(2),答:相等且垂直.先证MGD≌MEN∴DM=NM.在中,.∵NE=GD, GD=CD,∴NE=CD,∴FN=FD即FM⊥DM,∴DM与 FM相等且垂直(3)如图(3),答:相等且垂直.延长DM交CE于N,连结DF、FN先证MGD≌MNE∴DM =NM, NE=DG.∵∠DCF=∠FEN=45°,DC=DG=NE,FC=FE,∴DCF≌NEF,∴DF=FN, ∠DFC=∠NFE,可证∠DFN=90°,即FM=DM, FM⊥DM∴DM与 FM相等且垂直25.。
2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8- 2.060cos 的值等于( ) A 3 B .1 C .22 D .21 3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯ B .710263.1⨯ C .61063.12⨯ D .5103.126⨯ 5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间 7.计算111+++a a a 的结果为( )A .1B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( ) A .321y y y << B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y 二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上. (1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.①②22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.11。
3 2017 年天津市中考数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3 分)计算(﹣3)+5 的结果等于( ) A .2B .﹣2C .8D .﹣82.(3 分)cos60°的值等于()1A .B .1C .2 D .23.(3 分)在一些美术字中,有的汉子是轴对称图形.下面 4 个汉字中,可以看作是轴对称图形的是()A .B .C .D .4.(3 分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止 2017 年 4 月末,累计发放社会保障卡 12630000 张.将 12630000 用科学记数法表示为()A .0.1263×108B .1.263×107C .12.63×106D .126.3×1055.(3 分)如图是一个由 4 个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D . 6.(3 分)估计 38的值在()A .4 和 5 之间B .5 和 6 之间C .6 和 7 之间D .7 和 8 之间 +17.(3 分)计算 +1+ 1的结果为()2{1A .1B .aC .a +1D . + 18.(3 分)方程组 {3+ = 2= 15的解是( ){2 = A . =3{4= B . = 3{4 =C . =8= 3 D . = 69.(3 分)如图,将△ABC 绕点 B 顺时针旋转 60°得△DBE ,点 C 的对应点 E 恰好落在 AB 延长线上,连接 AD .下列结论一定正确的是()A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC10.(3 分)若点 A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数象上,则 y 1,y 2,y 3 的大小关系是()A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 3y =‒ 3的图11.(3 分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是 AD 上一个动点,则下列线段的长度等于 BP +EP 最小值的是()A .BCB .CEC .AD D .AC12.(3 分)已知抛物线 y=x 2﹣4x +3 与 x 轴相交于点 A ,B (点 A 在点 B 左侧),顶点为 M .平移该抛物线,使点 M 平移后的对应点 M'落在 x 轴上,点 B 平移后的对应点 B'落在 y 轴上,则平移后的抛物线解析式为( ) A .y=x 2+2x +1B .y=x 2+2x ﹣1C .y=x 2﹣2x +1D .y=x 2﹣2x ﹣1二、填空题(本大题共6 小题,每小题3 分,共18 分)13.(3 分)计算x7÷x4的结果等于.14.(3 分)计算(4 + 7)(4 ‒ 7)的结果等于.15.(3 分)不透明袋子中装有6 个球,其中有5 个红球、1 个绿球,这些球除颜色外无其他差别.从袋子中随机取出1 个球,则它是红球的概率是.16.(3 分)若正比例函数y=kx(k 是常数,k≠0)的图象经过第二、四象限,则k 的值可以是(写出一个即可).17.(3 分)如图,正方形ABCD 和正方形EFCG 的边长分别为3 和1,点F,G 分别在边BC,CD 上,P 为AE 的中点,连接PG,则PG 的长为.18.(3 分)如图,在每个小正方形的边长为1 的网格中,点A,B,C 均在格点上.(1)AB 的长等于;(2)在△ABC 的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P 的位置是如何找到的(不要求证明).三、解答题(本大题共7 小题,共66 分。
2017年市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)据《日报》报道,市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的部有一点P,满足S△PAB :S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
天津市河北区第⼆中学2017年九年级数学中考模拟试卷(含答案)2017年九年级数学中考模拟试卷⼀、选择题:1、计算1-(-2)的正确结果()A.-2 B.-1 C.1 D.32、在下列四个图案中,既是轴对称图形,⼜是中⼼对称图形是()A. B. C. D.3、⼀个⼏何体的三视图如图所⽰,则这个⼏何体是()A. B. C. D.4、的平⽅根是()A.3B.±3C.D.±5、如图,⼀副分别含有30°和45°⾓的两个直⾓三⾓板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15° B.25° C.30° D.10°6、如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50° B.45° C.40° D.30°7、⼀件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A.100元B.105元 C.108元D.118元8、⼀个均匀的⽴⽅体各⾯上分别标有数字:1, 2, 3, 4, 6, 8,其表⾯展开图如图所⽰,抛掷这个⽴⽅体,则朝上⼀⾯的数字恰好等于朝下⼀⾯上的数字的2倍的概率是()A. B. C. D.9、如图,△ABC中,D、E两点分别在BC、AD上,且AD平分∠BAC,若∠ABE=∠C,AD:ED=3:1,则△BDE与△ADC的⾯积⽐为()A.16:45B.2:9C.1:9D.1:310、如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的⼀动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<511、在平⾯直⾓坐标系中,A为双曲线上⼀点,点B的坐标为(4,0).若△AOB的⾯积为6,则点A的坐标为( )A.(-4,1.5)B.(4,-1.5)C.(-2,3)或(2,-3)D.(-3,2)或(3,-2)12、已知⼆次函数y=ax2+bx+c(a≠0)的图象如图所⽰,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有( )A.2个 B.3个 C.4个 D.5个⼆、填空题:13、计算:(-8)2016×0.1252017= .14、分解因式:a3b-2a2b+ab= .15、“赵爽弦图”由四个全等的直⾓三⾓形与中间的⼀个⼩正⽅形拼成的⼀个⼤正⽅形(如图所⽰).⼩亮随机地向⼤正⽅形内部区域投飞镖,若直⾓三⾓形两条直⾓边的长分别是2和1,则飞镖投到⼩正⽅形(阴影)区域的概率是________.16、关于x的⽅程有实数根,则偶数m的最⼤值为 .17、如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的⾯积为.18、如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆⼼坐标为(﹣1,0),半径为1.若D 是⊙C上的⼀个动点,线段DA与y轴交于点E,则△ABE⾯积的最⼩值是.三、解答题:19、解不等式组:,并把解集在数轴上表⽰出来.20、为增强学⽣的⾝体素质,教育⾏政部门规定每位学⽣每天参加户外活动的平均时间不少于1⼩时. 为了解学⽣参加户外活动的情况,对部分学⽣参加户外活动的时间进⾏抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学⽣?(2)求户外活动时间为1.5⼩时的⼈数,并补充频数分布直⽅图;(3)户外活动时间的众数和中位数分别是多少?(4)若该市共有20000名学⽣,⼤约有多少学⽣户外活动的平均时间符合要求?21、如图,△内接于⊙O,过点B作⊙O的切线DE,F为射线BD上⼀点,连接CF.(1)求证:;(2)若⊙O 的直径为5,,,求的长.22、如图,已知斜坡AP的坡度为1:2.4,坡长AP为26⽶,在坡顶A处的同⼀⽔平⾯上有⼀座古塔BC,在斜坡底P处测得该塔的塔顶B的仰⾓为45°,在坡顶A处测得该塔的塔顶B的仰⾓为76°.求:(1)坡顶A到地⾯PQ的距离;(2)古塔BC的⾼度(结果精确到1⽶).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23、某超市准备购进A、B两种品牌的书包共100个,已知两种书包的进价如下表所⽰,设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为y元.(1)将表格的信息填写完整;(2)求y关于x的函数表达式;(3)如果购进两种书包的总费⽤不超过4500元且购进B种书包的数量不⼤于A种书包的3倍,那么超市如何进货才能获利最⼤?并求出最⼤利润.24、在正⽅形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正⽅形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.25、如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直⾓三⾓形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合。
2017年天津市河北区新开中学中考数学模拟试卷一、选择题:1.计算﹣5+(﹣2)×3的结果等于()A.﹣11 B.﹣1 C.1 D.112.3tan60°的值为()A.B.C.D.33.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.4.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位C.千位D.十万位5.由五个小立方体搭成如图的几何体,从正面看到的平面图形是()A. B.C.D.6.若一个数的一个平方根是8,则这个数的立方根是()A.±2 B.±4 C.2 D.47.化简的结果是()A.x+1 B. C.x﹣1 D.8.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于39.使有意义的x 的取值范围是( )A .x ≥B .x >C .x >﹣D .x ≥﹣10.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分11.近视眼镜的度数y (度)与镜片焦距x (m )成反比例,已知400度近视眼镜镜片的焦距为0.25m ,则y 与x 的函数关系式为( )A .B .C .D .y=12.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴的直线l :x=t (0≤t ≤a )从原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若y 关于t 函数的图象大致如图,那么平面图形的形状不可能是( )A .B .C .D .二、填空题: 13.计算(﹣2x 3y 2)3•4xy 2= .14.如果最简二次根式与是同类二次根式,则a= .15.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为 .16.己知一次函数y=kx+5和y=k′x+3,假设k>0,k′<0,则这两个一次函数图象的交点在第象限.17.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=.18.如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为.三、计算综合题:19.若不等式组的解集为1<x<6,求a,b的值.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB•AE.求证:DE是⊙O的切线.22.如图,两条互相平行的河岸,在河岸一边测得AB为20米,在另一边测得CD为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(≈1.7,结果保留整数)23.某商店销售一种成本为40元/kg的水产品,若按50元/kg销售,一个月可售出500kg,售价毎涨1元,月销售量就减少10kg.(1)写出月销售利润y(元)与售价x(元/kg)之间的函数表达式;(2)当售价定为多少元时,该商店月销售利润为8000元?(3)当售价定为多少元时会获得最大利润?求出最大利润.24.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E 分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).25.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.2017年天津市河北区新开中学中考数学模拟试卷参考答案与试题解析一、选择题:1.计算﹣5+(﹣2)×3的结果等于()A.﹣11 B.﹣1 C.1 D.11【解答】解:原式=﹣5﹣6=﹣11,故选A2.3tan60°的值为()A.B.C.D.3【解答】解:3tan60°=3×=3.故选D.3.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故答案为:A.4.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位C.千位D.十万位【解答】解:近似数9.17×105精确到千位.故选C.5.由五个小立方体搭成如图的几何体,从正面看到的平面图形是()A. B.C.D.【解答】解:从正面可看到三列正方形的个数依次为2,1,1.故选C.6.若一个数的一个平方根是8,则这个数的立方根是()A.±2 B.±4 C.2 D.4【解答】解:∵82=64,∴=4,故选:D.7.化简的结果是()A.x+1 B. C.x﹣1 D.【解答】解:原式=﹣===x+1.故选A8.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3【解答】解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x2=1+>3,x1=1﹣<﹣1,故选:A.9.使有意义的x的取值范围是()A.x≥B.x>C.x>﹣D.x≥﹣【解答】解:由有意义,得3x﹣1≥0.解得x≥,故选:A.10.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A.B.C.D.y=【解答】解:设y=,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=.故选C.12.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x轴的直线l:x=t(0≤t≤a)从原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若y关于t函数的图象大致如图,那么平面图形的形状不可能是()A. B.C.D.【解答】解:由函数图象可知,阴影部分的面积随t的增大而增大,图象都是曲线,故选项A、B、D符合函数的图象,而C中刚开始的图象符合,到t到梯形上底边时图象符合一次函数的图象,故选C.二、填空题:13.计算(﹣2x3y2)3•4xy2=﹣32x10y8.【解答】解:(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y814.如果最简二次根式与是同类二次根式,则a=1.【解答】解:∵最简二次根式与是同类二次根式,∴a+2=6﹣3a.解得:a=1.故答案为:1.15.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.16.己知一次函数y=kx+5和y=k′x+3,假设k>0,k′<0,则这两个一次函数图象的交点在第二象限.【解答】解:如图所示,这两个一次函数图象的交点在第二象限.故答案为:二.17.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=1:3:5.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴S△ADE :S△AFG:S△ABC=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.18.如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为(,﹣4).【解答】解:过点B作BE⊥x轴于点E,B′作B′F⊥x轴于点F,∵点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于的A的位似图形,且O′的坐标为(﹣1,0),∴==,AE=1,EO=2,BE=3,∴==,∴=,解得:AF=,∴EF=,∴FO=2﹣=,∵=,解得:B′F=4,则点B′的坐标为:(,﹣4).故答案为:(,﹣4).三、计算综合题:19.若不等式组的解集为1<x<6,求a,b的值.【解答】解:原不等式组可化为∵它的解为1<x<6,∴,解得.20.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.21.如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB•AE.求证:DE是⊙O的切线.【解答】证明:连接DC,DO并延长交⊙O于F,连接AF.∵P点为△ABC的内心,∴∠BAD=∠DAE,又∵AD2=AB•AE,即=,∴△BAD∽△DAE,∴∠ADB=∠E.又∵∠ADB=∠ACB,∴∠ACB=∠E,BC∥DE,∴∠CDE=∠BCD=∠BAD=∠DAC,又∵∠CAF=∠CDF,∴∠FDE=∠CDE+∠CDF=∠DAC+∠CAF=∠DAF=90°,故DE是⊙O的切线.22.如图,两条互相平行的河岸,在河岸一边测得AB为20米,在另一边测得CD为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(≈1.7,结果保留整数)【解答】解:如图,分别过点A、B作CD的垂线交CD于点E、F,令两条河岸之间的距离为h.∵AE⊥CD,BF⊥CD,AB∥CD,AB=20,∴AE=BF=h,EF=AB=20.在Rt△ACE中,∵∠AEC=90°,∠ACE=30°,∴tan∠ACE=,即tan30°=,∴CE=h.在Rt△BDF中,∵∠BFD=90°,∠BDF=45°,∴DF=BF=h.∵CD=70,∴CE+EF+FD=70,∴h+20+h=70,∴h=25(﹣1)≈18.答:两条河岸之间的距离约为18米.23.某商店销售一种成本为40元/kg的水产品,若按50元/kg销售,一个月可售出500kg,售价毎涨1元,月销售量就减少10kg.(1)写出月销售利润y(元)与售价x(元/kg)之间的函数表达式;(2)当售价定为多少元时,该商店月销售利润为8000元?(3)当售价定为多少元时会获得最大利润?求出最大利润.【解答】解:(1)可卖出千克数为500﹣10(x﹣50)=1000﹣10x,y与x的函数表达式为y=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000;(2)根据题意得﹣10x2+1400x﹣40000=8000,解得:x=60或x=80,答:当售价定为60元或80元时,该商店月销售利润为8000元;(3)∵y=(x﹣40)[500﹣10(x﹣50)]=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∴当x=70时,利润最大为9000元.答:当售价为70元,利润最大,最大利润是9000元.24.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E 分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).【解答】解:(1)如图1中,∵AD′∥CE′,∴∠AD′C=∠E′CD′=90°,∵AC=2CD′,∴∠CAD′=30°,∴∠ACD′=90°﹣∠CAD′=60°,∴α=60°.(2)如图2中,作CK⊥BE′于K.∵AC=BC==2,∴CD′=CE′=,∵△CD′E′是等腰直角三角形,CD′=CE′=,∴D′E′=2,∵CK⊥D′E′,∴KD′=E′K,∴CK=D′E′=1,∴sin∠CBE′===.(3)如图3中,以C为圆心为半径作⊙C,当BE′与⊙C相切时AP最长,则四边形CD′PE′是正方形,作PH⊥AB于H.∵AP=AD′+PD′=+,∵cos∠PAB==,∴AH=2+,∴点P横坐标的最大值为.如图4中,当BE′与⊙C相切时AP最短,则四边形CD′PE′是正方形,作PH⊥AB 于H.根据对称性可知OH=,∴点P横坐标的最小值为﹣,∴点P横坐标的取值范围为﹣≤m≤.25.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.【解答】解:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB===3,BM==2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x ,可得,消去y 整理可得x 2﹣(2m +1)x +m 2+2m=0,∵平移后的抛物线总有不动点,∴方程x 2﹣(2m +1)x +m 2+2m=0总有实数根, ∴△≥0,即(2m +1)2﹣4(m 2+2m )≥0, 解得m ≤,即当m ≤时,平移后的抛物线总有不动点.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2017年天津市河北区中考数学模拟试卷一、选择题(本题共12个小题,每小题3分,共36分)1.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.正八边形 D.等边三角形2.由六个相同的立方体拼成的几何体如图所示,则它的主视图是()A.B.C.D.3.如图中主三视图对应的三棱柱是()A.B.C.D.4.已知x1,x2是一元二次方程x2﹣6x﹣15﹣0的两个根,则x1+x2等于()A.﹣6 B.6 C.﹣15 D.155.二次函数y=x2﹣4x﹣4的顶点坐标为()A.(2,﹣8)B.(2,8)C.(﹣2,8)D.(﹣2,﹣8)6.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()A.15° B.20° C.30° D.40°7.一副完整的扑克牌,去掉大小王,将剩余的52张混合后从中随机抽取一张,则抽出A 的概率是()A.B.C.D.8.对于函数y=﹣,当x<0时,函数图象位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,在4×4的正方形方格网中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.B.C.D.210.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:2511.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.212.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.计算cos60°=.14.两个实数的和为4,积为﹣7,则这两个实数为.15.已知直角三角形的两直角边分别为8和15,则这个三角形的内切圆的直径为.16.若二次函数y=x2﹣x﹣2的函数值小于0,则x的取值范围是.17.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2= .18.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.三、解答题(本大题共6小题,共66分)19.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.20.如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.21.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4,如图2,正方形ABCD顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.例如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D,若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B,…设游戏者从圈A起跳.(1)若随机掷一次骰子,求落回到圈A的概率P1;(2)若随机掷两次骰子,用列表法或树状图法求出最后落回到圈A的概率P.22.如图,在矩形ABCD中,点O在对角线AB上,以OA的长为半径的圆O与AD交于点E,且∠ACB=∠DCE,求证:CE是⊙O的切线.23.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为D.(1)求抛物线的解析式;(2)一动点M从点D出发,以每秒1个单位的速度沿抛物线的对称轴向下运动,连OM,BM,设运动时间为t秒(t=0),在点M的运动过程中,当∠OMB=90°时,求t的值.24.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N 分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.2017年天津市河北区中考数学模拟试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.正八边形 D.等边三角形【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称图形,故本选项不符合题意;B、圆是中心对称图形,故本选项不符合题意;C、正八边形是中心对称图形,故本选项不符合题意;D、等边三角形不是中心对称图形,故本选项符合题意.故选D.2.由六个相同的立方体拼成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找出从几何体的正面看所得到的图形即可.【解答】解:它的主视图有两层,下面有3个小正方形,上面中间位置有一个小正方形,故选:C.3.如图中主三视图对应的三棱柱是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱,∵中间为一条实棱,∴从正面能看到这条棱,故选:A.4.已知x1,x2是一元二次方程x2﹣6x﹣15﹣0的两个根,则x1+x2等于()A.﹣6 B.6 C.﹣15 D.15【考点】根与系数的关系.【分析】根据根与系数的关系即可得出x1+x2=﹣,代入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣6x﹣15﹣0的两个根,∴x1+x2=﹣=6.故选B.5.二次函数y=x2﹣4x﹣4的顶点坐标为()A.(2,﹣8)B.(2,8)C.(﹣2,8)D.(﹣2,﹣8)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣4x﹣4=(x﹣2)2﹣8,∴其顶点坐标为(2,﹣8),故选A.6.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()A.15° B.20° C.30° D.40°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=40°,再由圆周角定理即可得出结论.【解答】解:连接CO,如图:∵在⊙O中, =,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选B.7.一副完整的扑克牌,去掉大小王,将剩余的52张混合后从中随机抽取一张,则抽出A 的概率是()A.B.C.D.【考点】概率公式.【分析】先求出一副扑克牌,去掉大小王的张数,再求出A的个数,再根据概率公式解答即可.【解答】解:因为一副扑克牌,去掉大小王,一共还有52张,A有四张,所以恰好抽到的牌是K的概率是: =.故选:C.8.对于函数y=﹣,当x<0时,函数图象位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】反比例函数的性质.【分析】根据比例系数确定反比例函数的图象的位置,然后根据自变量的取值范围确定正确的选项即可.【解答】解:∵反比例函数的比例系数为﹣3<0,∴反比例函数的图象位于二、四象限,∵x<0,∴反比例函数位于第二象限,故选B.9.如图,在4×4的正方形方格网中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.B.C.D.2【考点】勾股定理;勾股定理的逆定理;锐角三角函数的定义.【分析】设小正方形的边长为1,求出AC、BC、AB的长,利用勾股定理的逆定理证明∠ACB=90°,即可解决问题.【解答】解:设小正方形的边长为1,∵AC==2,BC==,AB==5,∵AC2+BC2=(2)2+()2=25,AB2=52=25,∴AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC==,故选A.10.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:25【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到=, ==,结合图形得到=,得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,∴S△BDE与S△CDE的比是1:4,故选:B.11.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n,则m+n=﹣=﹣+,∵a>0,∴>0,∴m+n>0.故选A.二、填空题(本大题共6小题,每小题3分,共18分)13.计算cos60°=.【考点】特殊角的三角函数值.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.14.两个实数的和为4,积为﹣7,则这两个实数为2+和2﹣.【考点】一元二次方程的应用.【分析】设其中一个实数为未知数,根据两实数和表示出另一个实数,根据积列出等量关系求解即可.【解答】解:设其中一个实数为x,则另一个实数为4﹣x,x×(4﹣x)=﹣7,即x2﹣4x﹣7=0,则x==2±,当x=2+时,4﹣x=2﹣.当x=2﹣时,4﹣x=2+.所以这两个实数是2+和2﹣.故答案是:2+和2﹣.15.已知直角三角形的两直角边分别为8和15,则这个三角形的内切圆的直径为 6 .【考点】三角形的内切圆与内心.【分析】先利用勾股定理计算出斜边,然后利用直角三角形的内切圆的半径r=(a、b为直角边,c为斜边)计算出圆的内切圆的半径,从而得到内切圆的直径.【解答】解:直角三角形的斜边==17,所以这个三角形的内切圆的半径==3,所以这个三角形的内切圆的直径为6.故答案为6.16.若二次函数y=x2﹣x﹣2的函数值小于0,则x的取值范围是﹣1<x<2 .【考点】抛物线与x轴的交点.【分析】根据函数解析式可以确定图象与x轴的交点是(﹣1,0),(2,0),又当y<0时,图象在x轴的下方,由此可以确定x的取值范围.【解答】解:当y=0时,即x2﹣x﹣2=0,∴x1=﹣1,x2=2,∴图象与x轴的交点是(﹣1,0),(2,0),当y<0时,图象在x轴的下方,此时﹣1<x<2.故填空答案:﹣1<x<2.17.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2= 4:9 .【考点】正方形的性质.【分析】设大正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设大正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2: x2=4:9.故答案是:4:9.18.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.【考点】圆周角定理;轴对称﹣最短路线问题.【分析】首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.【解答】解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时PA+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∴弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的度数是30°,则∠AOC=90°,又OA=OC=1,则AC=.三、解答题(本大题共6小题,共66分)19.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.【考点】勾股定理.【分析】先根据题意得出AAD=BD,再由勾股定理得出AB的长,在Rt△ADC中,根据直角三角形的性质得出AC及CD的长,进而可得出结论.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴AD=BD=1,AB=.在Rt△ADC中,∵∠C=30°,∴AC=2AD=2,∴CD=,BC=BD+CD=1+,∴AD+AC+BC=++3.20.如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).21.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4,如图2,正方形ABCD顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.例如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D,若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B,…设游戏者从圈A起跳.(1)若随机掷一次骰子,求落回到圈A的概率P1;(2)若随机掷两次骰子,用列表法或树状图法求出最后落回到圈A的概率P.【考点】列表法与树状图法.【分析】(1)由一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4,且落回到圈A时,需掷得4,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4,且落回到圈A时,需掷得4,∴随机掷一次骰子,求落回到圈A的概率P1=;(2)画树状图得:∵共有16种等可能的结果,最后落回到圈A的有4种情况,∴最后落回到圈A的概率P==.22.如图,在矩形ABCD中,点O在对角线AB上,以OA的长为半径的圆O与AD交于点E,且∠ACB=∠DCE,求证:CE是⊙O的切线.【考点】切线的判定;矩形的性质.【分析】连接OE,根据矩形的性质求出∠CAE=∠BCA=∠DCE,求出∠DCE+∠CED=90°,即可求出∠AEO+∠CED=90°,求出∠OEC=90°,根据切线的判定推出即可.【解答】证明:连接OE,∵OA=OE,∴∠CAD=∠OEA,∵四边形ABCD是矩形,∴∠D=90°,BC∥AD,∴∠BCA=∠CAD,∵∠ACB=∠DCE,∴∠CAE=∠DCE,∵∠DCE+∠CEB=180°﹣∠D=90°,∴∠OEA+∠CED=90°,∴∠OEC=180°﹣90°=90°,∴CE是⊙O的切线.23.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为D.(1)求抛物线的解析式;(2)一动点M从点D出发,以每秒1个单位的速度沿抛物线的对称轴向下运动,连OM,BM,设运动时间为t秒(t=0),在点M的运动过程中,当∠OMB=90°时,求t的值.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)把A(1,0)、B(3,0)代入y=ax2+bx﹣2,即可得到结果;(2)由y=x2+x﹣2=(x﹣2)2+,得到D(2,),设M(2,m),根据勾股定理列方程得到M(2,﹣),于是得到结论.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=﹣x2+x﹣2;(2)∵y=﹣x2+x﹣2=﹣(x﹣2)2+,∴D(2,),设M(2,m),∵O(),0),B(3,0),∵∠OMB=90°,∴OM2+BM2=OB2,即m2+22+(3﹣2)2+m2=9,∴m=,∵>,∴M(2,﹣),∴DM=+,∴t=+.24.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N 分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN,于是得到结论;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明.【解答】解:(1)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,∴∠NPD=∠EAC,∠MPA=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,∴△PMN为等腰直角三角形;(2)①中的结论成立,理由:设AE与BC交于点O,如图②所示:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD.∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∴AE⊥BD,∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN.∵AE⊥BD,∴PM⊥PN,∴△PMN为等腰直角三角形.。