初高中数学衔接知识(因式分解)
- 格式:ppt
- 大小:864.00 KB
- 文档页数:11
江苏省泰兴中学高一数学教学案(2)初高中衔接2:乘法公式、因式分解(1)班级 姓名一、基础知识1、乘法公式⑴平方差公式22()()a b a b a b +-=-; ⑵完全平方公式222()2a b a ab b ±=±+. ⑴立方和公式2233()()a b a ab b a b +-+=+; ⑵立方差公式2233()()a b a ab b a b -++=-; ⑶三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;⑷两数和完全立方公式 33223()33a b a a b ab b +=+++;⑸两数差完全立方公式 33223()33a b a a b ab b -=-+-2.因式分解的方法(1) 提取公因式法:把各项都含有的公因式提到括号外面;(2) 运用公式法:逆用乘法公式;(3) 分组分解法:利用分组分解法,关键是选择适当的、合理的分组方法; (4)十字相乘法:①二次项系数为1的二次三项式:))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
②二次项系数不为1的二次三项式 c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++二、例题精讲例1:计算:⑴、)749)(7(2x x x +-+⑵、)93)(3(2++-y y y⑶、)1)(1)(1)(1(22+-+++-a a a a a a例2:⑴、已知4)2()2(2-=---b a a a ,求代数式ab b a -+222的值。
⑵、已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值。
衔接1:乘法公式与因式分解
学习目标:
1、掌握常用的乘法公式,并会逆用公式及十字相乘进行因式分解,会分母、分子有理化;
2、通过学习交流弥补初高中数学知识的脱节,提高观察能力、联想能力和运算能力;
3、在学习的过程中,提高数学素养,培养学习兴趣.
一、课前检测:
1、分解因式
(1) 2524x x +-; (2)226x xy y +-.
二、知识回顾
1、乘法公式
(1)平方差公式: ;
(2)完全平方和公式: ;
(3)完全平方差公式: .
例1 计算:(1))1)(1)(1(2--+a a a (2))132)(132(++--y x y x
例2 已知0122=+-x x ,求x x 1+,221x x +的值.
变式: 已知0132=+-x x ,求
x x 1+,221x x +的值.
例3 (1)化简
3
23+ (2)化简y x y x +-
(3)比较1112-与1011-的大小
2、十字相乘法
例4分解因式
(1)36132---x x (2)25122
--x x
(3)a x a x ++-)1(2(4)6)32(2+++x a ax
三、课堂小结。
初高中数学衔接知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初高中数学衔接知识点初高中数学衔接知识点整理初、高中的数学言语有着显著的区别。
02 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.高中必备知识点1:十字相乘法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项2 pq c 2式x2bx c ,若存在,则x2bx c x p x q .p q b要点诠释:(1)在对x2bx c 分解因式时,要先从常数项c的正、负入手,若c 0,则p、q同号(若c 0,则p、q异号),然后依据一次项系数b 的正负再确定p、q的符号(2)若x2bx c中的b、c 为整数时,要先将c分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为 1 的十字相乘法2在二次三项式ax2bx c(a≠0中),如果二次项系数a可以分解成两个因数之积,即a a1a2 ,常数项c可以分解成两个因数之积,即c c1c2 ,把a1,a2,c1,c2 排列如下:按斜线交叉相乘,再相加,得到a1c2 a2c1 ,若它正好等于二次三项式ax2bx c 的一次项系数b ,即a1c2 a2c1 b ,那么二次三项式就可以分解为两个因式a1x c1与a2x c2之2积,即ax bx c a 1x c 1 a 2x c 2 .要点诠释:( 1)分解思路为 “看两端,凑中间 ”(2)二次项系数 a 一般都化为正数,如果是负数,则提出负号,分解里面的二次三项式,最后结果不要忘记把提出的负号添上典型考题【典型例题】阅读与思考:将式子 分解因式. 法一:整式乘法与因式分解是方向相反的变形 . 由 ,; 分析:这个式子的常数项 ,一次项系数,所以 . 解: .请仿照上面的方法,解答下列问题: (1)用两种方法分解因式: ;(2)任选一种方法分解因式:.【变式训练】阅读材料题:在因式分解中,有一类形如 x 2+(m+n )x+mn 的多项式,其常数项是两个因数 的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成 x 2+( m+n )x+mn =(x+m )(x+n ).例如: x 2+5x+6=x 2+(2+3) x+2×3=( x+2)( x+3). 运用上述方法分解因式: (1)x2+6x+8; (2)x 2﹣x ﹣6;(3)x2﹣5xy+6y2;(4)请你结合上述的方法,对多项式x3﹣2x2﹣3x 进行分解因式.【能力提升】由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8;(2)应用请用上述方法解方程:x2-3x-4=0.高中必备知识点2:提取公因式法与分组分解法1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。
第2讲 因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.在第一节里,我们已经学习了乘法公式中的立方和、立方差公式:2233()()a b a ab b a b +-+=+ (立方和公式);2233()()a b a ab b a b -++=- (立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,就得到:3322()()a b a b a ab b +=+-+;3322()()a b a b a ab b -=-++【例1】用立方和或立方差公式分解下列各多项式: (1) 38x +(2)30.12527b -解:(1) 333282(2)(42)x x x x x +=+=+-+ (2)333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++说明:(1) 在运用立方和(差)公式分解因式时,经常要逆用幂的运算法则,如3338(2)a b ab =,这里逆用了法则()n n n ab a b =;(2) 在运用立方和(差)公式分解因式时,一定要看准因式中各项的符号.【例2】分解因式:(1) 34381a b b - (2) 76a ab -分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+2.2提取公因式法与分组分解法【例3】把22x y ax ay -++分解因式.分析:把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+ 【例4】分解因式:(1)()()255ab a b -+-; (2)32933x x x +++.解:(1)()()255a b a b -+-=(5)(1)a b a --;(2)32933x x x +++32(3)(39)x x x =+++=2(3)3(3)x x x +++=2(3)(3)x x ++.【例5】分解因式: (1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++. (2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或 222456x xy y x y +--+-=22(2)(45)6x xy y x y +---- =(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.【例6】把2222428x xy y z ++-分解因式.分析:先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式. 解:22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-练习:1.多项式xyz xy y x 42622+-中各项的公因式是__________. 2.()()()∙-=-+-y x x y n y x m _____. 3.()()()∙-=-+-222y x x y n y x m ____.4.()()()∙--=-++--z y x x z y n z y x m _________. 5.()()∙--=++---z y x z y x z y x m ______. 6.2105ax ay by bx -+-=_________________ 7.2222()()ab c d a b cd ---【答案】1.2xy ;2.()m n -;3.()m n +;4.()m n -;5.(1)m -.6.21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=-- 7.22222222()()ab c d a b cd abc abd a cd b cd ---=--+2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+2.3 十字相乘法2.3.1 形如2()x p q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++因此,2()()()x p q x pq x p x q +++=++,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. 我们也可以用一个图表示,此方法叫做十字相乘法. 【例7】把下列各式因式分解:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-p qx x1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1中的两个x 用1来表示(如图2所示).(2)由图3,得x 2+4x -12=(x -2)(x +6).(3)由图4,得 22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图5). 练习:把下列各式因式分解(1) 276x x -+ (2) 21336x x ++ (3) 2524x x +- (4) 2215x x -- 解:(1)6(1)(6),(1)(6)7=-⨯--+-=-,∴276[(1)][(6)](1)(6)x x x x x x -+=+-+-=--.(2) 3649,4913=⨯+=,∴21336(4)(9)x x x x ++=++.(3)24(3)8,(3)85-=-⨯-+=,∴2 524[(3)](8)(3)(8)x x x x x x +-=+-+=-+.(4)15(5)3,(5)32-=-⨯-+=-,∴2215[(5)](3)(5)(3)x x x x x x --=+-+=-+. 【例8】把下列各式因式分解:(1) 226x xy y +-(2) 222()8()12x x x x +-++分析:(1) 把226x xy y +-看成x 的二次三项式,这时常数项是26y -,一次项系数是y ,把26y -分解成3y 与2y -的积,而3(2)y y y +-=,正好是一次项系数;(2) 由换元思想,只要把2x x +整体看作一个字母a ,可不必写出,只当作分解二次三项式2812a a -+.解:(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+-.-1 -2x x图1-1 -21 1图2-2 61 1图3-ay -byx x图4-1 1x y图5(2)22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-.2.3.2 形如一般二次三项式2ax bx c ++型的因式分解我们知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++. 反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++ 我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bxc ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,也叫做十字相乘法.【例9】把下列各式因式分解:(1) 21252x x --(2) 22568x xy y +-解:(1) 21252(32)(41)x x x x --=-+3241-⨯(2) 22568(2)(54)x xy y x y x y +-=+-1 254y y -⨯说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号. 2.4 配方法【例10】把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =--,∴221x x +-=(1(1x x ⎡⎤⎡⎤-----⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.【练习】分解因式2616x x +-解:222222616233316(3)5x x x x x +-=+⨯⨯+--=+-(35)(35)(8)(2)x x x x =+++-=+-说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验. 2.5 拆、添项法【例11】分解因式3234x x -+分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行.细查式中无一次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为0了,可考虑通过添项或拆项解决.解: 323234(1)(33)x x x x -+=+-- 22(1)(1)3(1)(1)(1)[(1)3(1)]x x x x x x x x x =+-+-+-=+-+--22(1)(44)(1)(2)x x x x x =+-+=+-说明:本解法把原常数4拆成1与3的和,将多项式分成两组,满足系数对应成比例,造成可以用公式法及提取公因式的条件.本题还可以将23x -拆成224x x -,将多项式分成两组32()x x +和244x -+.1.把下列各式分解因式: (1) 327a +(2) 38m -(3) 3278x -+(4) 3311864p q --(5) 3318125x y -(6)3331121627x y c + 2.把下列各式分解因式:(1) 34xy x +(2) 33n n xx y +-(3) 2323()a m n a b +-(4) 2232(2)y x x y -+3.把下列各式分解因式: (1) 232x x -+ (2) 23736x x ++(3)21126x x +-(4) 2627x x --(5) 2245m mn n --(6) 2()11()28a b a b -+-+4.把下列各式分解因式: (1) 5431016ax ax ax -+ (2) 2126n n n a a b a b +++- (3) 22(2)9x x -- (4) 42718x x --(5) 2673x x --(6) 2282615x xy y +-(7) 27()5()2a b a b +-+-(8) 22(67)25x x --5.把下列各式分解因式: (1) 233ax ay xy y -+-(2) 328421x x x +-- (3) 251526x x xy y -+-(4) 224202536a ab b -+- (5) 22414xy x y +-- (6) 432224a b a b a b ab +-- (7) 66321x y x --+(8) 2(1)()x x y xy x +-+参考答案1.222(3)(39),(2)(42),(23)(469),a a a m m m x x x +-+-++-++222222211211(2)(42),(2)(4),(2)(24)645525216p q p pq q xy x y xy xy c x y xyc c -+-+-+++-+2.2222()(),()(),nx x y y xy x x x y x xy y +-+-++22222432()[()()],(1)(4321)a m n b m n b m n b y x x x x x +-++++--+++3.(2)(1),(36)(1),(13)(2),(9)(3)x x x x x x x x --+++--+(9)(3),(5)(),(4)(7)x x m n m n a b a b -+-+-+-+4.322(2)(8),(3)(2),(3)(1)(23),(3)(3)(2)nax x x a a b a b x x x x x x x --+--+-+-++2(23)(31),(2)(415),(772)(1),(21)(35)(675)x x x y x y a b a b x x x x -+-++++-+--+5.2()(3),(21)(21),(3)(52),(256)(256)x y a y x x x x y a b a b -++--+---+23333(12)(12),()(),(1)(1),()(1)x y x y ab a b a b x y x y x x y x y -++-+----+-++.。
第1章 乘法公式与因式分解【知识衔接】————初中知识回顾————1.乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 2.因式分解因式分解是代数式的一种重要的恒等变形,初中课本涉及到的常用方法主要有:提取公因式法和公式法(平方差公式和完全平方公式),因式分解与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.————高中知识链接————我们知道乘法公式可以使多项式的运算简便,进入高中后,我们会用到更多的乘法公式:(3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-. 我们用多项式展开证明式子(3),其余请自行证明:证明:3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等. 【经典题型】初中经典题型1.如果,那么代数式的值是( )A . 6B . 2C . -2D . -6【答案】A【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2.若n满足(n-2011)2+(2012-n)2=1,则(2012-n)(n-2011)等于()A.-1 B. 0 C. D. 1【答案】B【解析】分析:首先设a=n-2011,b=2012-n,然后根据完全平方公式得出ab的值,从而得出答案.详解:设a=n-2011,b=2012-n,∴a+b=1,,∴∴ab=1,即(n-2011)(2012-n)=1,故选B.【点睛】本题主要考查的是完全平方公式的应用,属于中等难度的题型.解决这个问题的关键就是得出两个代数式的和为1,这是一个隐含条件.3.已知:,则代数式的值是______.【答案】8【解析】分析:先将所求式子化简,然后将a2+a=4整体代入计算即可求答案.详解:==,∵,∴原式=4+4=8.故答案为:8.【点睛】本题考查了整式的加减运算、整体思想.正确进行计算,并利用整体思想将式子的值直接代入是解题的关键.4.已知x 2﹣2x ﹣1=0.求代数式(x ﹣1)2+x (x ﹣4)+(x ﹣2)(x+2)的值. 【答案】0【解析】分析:根据整式的运算法则即可求出答案. 详解:原式=x 2-2x-1+x 2-4x+x 2-4 =3x 2-6x-3 ∵x 2-2x-1=0∴原式=3(x 2-2x-1)=0【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 5.把下列各式分解因式:(1)224y x - (2)338y x - (2)22312123xy y x x +- (4)2232n mn m -+ (5)b b a a 44222+-- (6)2222ab axy ay ax --+6.把下列各式因式分解:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.【解析】(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x-2). 说明:今后在分解与本例类似的二次三项式时,可以直接将图1中的两个x 用1来表示(如图2所示). (2)由图3,得x 2+4x -12=(x -2)(x +6).(3)由图4,得 22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图5).7.求证:四个连续正整数3,2,1,+++n n n n (其中n 表示正整数)的积与1的和是完全平方数. 证明:(方法一)由题意,1)]2)(1)][(3([1)3)(2)(1(++++=++++n n n n n n n n2222222)13(1)3(2)3(1]2)3)[((3(++=++++=++++=n n n n n n n n n n所以得证.说明:将n n 32+看成整体进行配方即可.(方法二)由题意得,161161)3)(2)(1(234++++=++++n n n n n n n n 要证明上式是完全平方数,只要证明上式等于一个式子的平方. 令上式22)1(++=an n ,从而求得3=a ,所以得证.高中经典题型1.计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++-1 -2x x图1-1 -21 1图2-2 61 1图3-ay -byx x图4-1 1x y图5说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构. (2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.2.已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--,试确定c b a ,,的值. 解:由题设,得)3)(32(1437622c y x b y x a y x y xy x +++-=+++--bc y c b x c b y xy x +-+++--=)3()23(37622比较对应项系数,得⎪⎩⎪⎨⎧==-=+a bc c b c b 131423,所以⎪⎩⎪⎨⎧===144c b a .3.把2105ax ay by bx -+-分解因式.【解析】把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试. 4.把2222()()ab c d a b cd ---分解因式.【解析】按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.22222222()()ab c d a b cd abc abd a cd b cd ---=--+2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由此例可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用. 5.把22x y ax ay -++分解因式.【解析】把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+6.把2222428x xy y z ++-分解因式.【解析】先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.【实战演练】————先作初中题 —— 夯实基础————A 组1.如果多项式29x mx -+是一个完全平方式,则m 的值是 2.如果多项式k x x ++82是一个完全平方式,则k 的值是3.()()22_________a b a b +--= ()222__________a b a b +=+-4.已知17x y +=,60xy =,则22x y += 5.把下列各式因式分解(1) 276x x -+ (2) 21336x x ++ (3) 2524x x +- (4) 2215x x -- 6.把下列各式因式分解: (1) 226x xy y +-(2) 222()8()12x x x x +-++————再战高中题 —— 能力提升————B 组1.填空,使之符合立方和或立方差公式或完全立方公式:(1)3(3)()27x x -=-; (2)3(23)()827x x +=+ (3)26(2)()8x x +=+; (4)3(32)()278a a -=-(5)3(2)()x +=; (6)3(23)()x y -=2.运用立方和与立方差公式计算:(1)2(3)(39)y y y +-+ (2)224224()()x y x x y y -++ 3.计算: (1) 2(34)x y z --(2) 2(21)()(2)a b a b a b +---+(3) 222()()()a b a ab b a b +-+-+(4) 221(4)(4)4a b a b ab -++4.若112x y -=,则33x xy yx xy y +---的值为( )A .35B .35-C .53-D .535.若2210x x +-=,则221x x +=____________;331x x -=____________.6.已知2310x x -+=,求3313x x++的值.7.展开3(2)x -8.计算(1)(2)(3)x x x ---9.计算()()()()x y z x y z x y z x y z ++-++-++- 10.把下列各式分解因式:(1) 2222()()ab c d cd a b -+-(2) 22484x mx mn n -+-(3) 464x + (4) 32113121x x x -+-(5) 3223428x xy x y y --+11.已知2,23a b ab +==,求代数式22222a b a b ab ++的值.12.证明:当n 为大于2的整数时,5354n n n -+能被120整除.13.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.第1章 乘法公式与因式分解答案1.乘法公式答案A 组1.6± 2.16 3.4ab ; 2ab 4.169 5.(1)6(1)(6),(1)(6)7=-⨯--+-=-,∴ 276[(1)][(6)](1)(6)x x x x x x -+=+-+-=--.6.(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-.B 组1.(1)239x x ++ (2)2469x x -+ (3)4224x x -+(4)2964a a ++ (5)326128x x x +++ (6)32238365427x x y xy y -+-2.(1)327y - (2)66x y -3. (1) 2229166824x y z xy xz yz ++--+ (2) 22353421a ab b a b -++-+(3) 2233a b ab --(4)331164a b - 4. D5.解:2210x x +-=,0≠∴x ,212x x ∴-=-,12x x∴-=-. (1)222211()2(2)26x x x x +=-+=-+=; (2)331x x -2211()(1)2(61)14x x x x=-++=-⨯+=-.6.解:2310x x -+= 0≠∴x 31=+∴xx原式=22221111()(1)3()[()3]33(33)321x x x x x x x x+-++=++-+=-+=7.326116x x x -+-8.43210355024x x x x -+-+ 9.444222222222x y z x y x z y z ---+++10.22()(),(42)(2),(48)(48),bc ad ac bd x m n x n x x x x +--+--+++ 2(1)(3)(7),(2)(2)x x x x y x y ----+. 11.28312.5354(2)(1)(1)(2)n n n n n n n n -+=--++ 13.322322()()a a c b c abc b a ab b a b c ++-+=-+++。
初中、高中衔接课第1课时因式分解学习目标 1.理解提取公因式法、分组分解法.2.掌握十字相乘法.3.对于复杂的问题利用因式分解简化运算.知识点一常用的乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2.(2)立方差公式:(a-b)(a2+ab+b2)=a3-b3.(3)立方和公式:(a+b)(a2-ab+b2)=a3+b3.(4)完全平方公式:(a±b)2=a2±2ab+b2.(5)三数和平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(6)完全立方公式:(a±b)3=a3±3a2b+3ab2±b3.知识点二因式分解的常用方法(1)十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,即运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算进行因式分解.(2)提取公因式法:当多项式的各项有公因式时,可以把这个公因式提到括号外面,将多项式写成因式乘积形式的方法.(3)公式法:把乘法公式反过来用,把某些多项式因式分解的方法.(4)求根法:若关于x的方程ax2+bx+c=0(a≠0)的两个实数根是x1,x2,则二次三项式ax2+bx+c(a≠0)就可分解为a(x-x1)(x-x2).(5)试根法:对于简单的高次因式,可以通过先试根再分解的方法分解因式.如2x3-x-1,试根知x=1为2x3-x-1=0的根,通过拆项,2x3-x-1=2x3-2x2+2x2-2x+x-1提取公因式后分解因式.1.a3+b3=(a+b)(a2+ab+b2).()2.a2+2ab+b2+c2+2ac+2bc=(a+b+c)2.()3.a3-3a2b-3ab2+b3=(a-b)3.()4.多项式ax2+bx+c(a≠0)一定可以分解成a(x-x1)·(x-x2)的形式.()突破一配方法因式分解例1把下列关于x的二次多项式分解因式:(1)x2+2x-1;(2)x2+4xy-4y2.跟踪训练1分解因式x2+6x-16..突破二十字相乘法因式分解命题角度1形如x2+(p+q)x+pq型的因式分解这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.x2+(p+q)x+pq=x2+px+qx+pq=x(x+p)+q(x+p)=(x+p)(x+q).因此,x2+(p+q)x+pq=(x+p)(x+q),运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.我们也可以用一个图表,此方法叫做十字相乘法.例2把下列各式因式分解:(1)x2-3x+2;(2)x2+4x-12;(3)x2-(a+b)xy+aby2;(4)xy-1+x-y.反思感悟十字相乘法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项,其实质是乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算.跟踪训练2把下列各式因式分解:(1)x2+xy-6y2;(2)(x2+x)2-8(x2+x)+12.命题角度2形如一般二次三项式ax2+bx+c型的因式分解我们知道,(a1x+c1)(a2x+c2)=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2)我们发现,二次项系数a分解成a1a2,常数项c分解成c1c2,把a1,a2,c1,c2写成a1a2×c1c2,这里按斜线交叉相乘,再相加,就得到a1c2+a2c1,如果它正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解成(a1x+c1)·(a2x+c2),其中a1,c1位于上一行,a2,c2位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,也叫做十字相乘法.例3 把下列各式因式分解: (1)12x 2-5x -2;(2)5x 2+6xy -8y 2.跟踪训练3 把下列各式因式分解: (1)6x 2+5x +1;(2)6x 2+11x -7; (3)42x 2-33x +6;(4)2x 4-5x 2+3.1.分解因式x 2-3x +2为( ) A.(x +1)(x +2) B.(x -1)(x -2) C.(x -1)(x +2) D.(x +1)(x -2)2.分解因式x 2-x -1为( ) A.(x -1)(x +1) B.(x +1)(x -2)C.⎝⎛⎭⎫x -1+52⎝⎛⎭⎫x -1-52 D.⎝⎛⎭⎫x +1-52⎝⎛⎭⎫x -1+52 3.分解因式:m 2-4mn -5n 2=________.4.分解因式:(a -b )2+11(a -b )+28=________.5.分解因式:x 2-y 2-x +3y -2=____________.一、选择题1.计算(-2)100+(-2)101的结果是( ) A.2 B.-2 C.-2100 D.21002.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( ) A.120 B.60 C.80 D.403.下列各式中,能运用两数和(差)的平方公式进行因式分解的是()A.x2+4xB.a2-4b2C.x2+4x+1D.x2-2x+14.将代数式x2+4x-5因式分解的结果为()A.(x+5)(x-1)B.(x-5)(x+1)C.(x+5)(x+1)D.(x-5)(x-1)5.要在二次三项式x2+()x-6的括号中填上一个整数,使它能按公式x2+(a+b)x+ab=(x+a)(x+b)分解因式,那么这些数只能是()A.1,-1B.5,-5C.1,-1,5,-5D.以上答案都不对6.已知多项式x2+bx+c因式分解的结果为(x-1)(x+2),则b+c的值为()A.-3B.-2C.-1D.07.下列变形正确的是()A.x3-x2-x=x(x2-x)B.x2-3x+2=x(x-3)-2C.a2-9=(a+3)(a-3)D.a2-4a+4=(a+2)28.若2m+n=25,m-2n=2,则(m+3n)2-(3m-n)2的值为()A.200B.-200C.100D.-100二、填空题9.因式分解:ax+ay+bx+by=______________________.10.因式分解:(x+y)2-2y(x+y)=_________________________________________________.11.分解因式:(a2+1)2-4a2=__________________.三、解答题12.分解因式:(1)x2+6x+8;(2)x2-x-6.14.若x(x+1)+y(xy+y)=(x+1)·M,则M=_______________________________________.15.分解因式:(1)(x-y)2+4(x-y)+3;第2课时 二次函数、二次方程及简单的一元二次不等式学习目标 理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式.知识点一 一元二次方程的根的判别式一元二次方程ax 2+bx +c =0(a ≠0),用配方法将其变形为⎝⎛⎭⎫x +b 2a 2=b 2-4ac 4a 2. (1)当b 2-4ac >0时,右端是正数.因此,方程有两个不相等的实数根:x 1,2=-b ±b 2-4ac2a ;(2)当b 2-4ac =0时,右端是零.因此,方程有两个相等的实数根:x 1,2=-b2a;(3)当b 2-4ac <0时,右端是负数.因此,方程没有实数根.由于可以用b 2-4ac 的取值情况来判定一元二次方程的根的情况.因此,把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,表示为Δ=b 2-4ac . 知识点二 一元二次方程的根与系数的关系 一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a ,所以:x 1+x 2=-b +b 2-4ac 2a +-b -b 2-4ac2a=-ba ,x 1x 2=-b +b 2-4ac 2a ·-b -b 2-4ac 2a=(-b )2-(b 2-4ac )2(2a )2=4ac 4a 2=c a .一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为“韦达定理”.定理:如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca.知识点三 二次函数的图象与性质 仅讨论y =ax 2+bx +c (a >0)的情况: 1.x 的取值范围为一切实数.2.y 的取值范围为⎣⎡⎭⎫4ac -b 24a ,+∞ 当x =-b2a 时,y 取得最小值4ac -b 24a.3.二次函数的三种表达方式: ⎩⎪⎨⎪⎧y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -h )2+k .4.对称轴x =-b 2a (图象关于x =-b2a 对称). 5.(1)当x 1<x 2≤-b2a 时,则y 1>y 2.(2)当x 2>x 1≥-b2a时,则y 1<y 2.6.有相异两实根x,==x1.方程ax2+bx+c=0如果有实数根,则Δ=b2-4ac≥0.()2.二次函数y=ax2+bx+c(a≠0)在x=-b2a时取得最值.()3.一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根,则ax2+bx+c>0的范围为x>x2或x<x1.()突破一一元二次方程的相关知识的应用例1已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.反思感悟(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大于21”求出m的值,取满足条件的m的值即可.(2)在今后的解题过程中,如果仅仅由根与系数的关系解题时,还要考虑到根的判别式Δ是否大于或等于零.因为,根与系数的关系成立的前提是一元二次方程有实数根.跟踪训练1若x1和x2分别是一元二次方程2x2+5x-3=0的两根,(1)求|x1-x2|的值;(2)求1x21+1x22的值;(3)x31+x32.突破二二次函数的图象与性质例2已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.反思感悟在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.跟踪训练2求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y随x的增大而增大(或减小)?画出该函数的图象,并指出y>0时x的取值范围.突破三一元二次不等式的解法例3求不等式4x2-4x+1>0的解.跟踪训练3求不等式-3x2+6x>2的解.1.不等式9x2-6x+1≤0的解为()A.全体实数B.无解C.x≠13 D.x=132.不等式-4x2+4x<-15的解为()A.-32<x<52 B.-52<x<32C.x>52或x<-32 D.x>32或x<-523.函数y=x2-2x,当-1≤x≤t时,该函数的最大值为3,则t的最大值为__________.4.方程x2-ax+1=0的两根为x1,x2,若|x1-x2|=5.则a=________.5.不等式ax2+bx+1>0的解为-12<x<13,则a+b=________.一、选择题1.若关于x的方程(a+1)x2-3x-2=0是一元二次方程,则a的取值范围是()A.a≠0B.a≠-1C.a>-1D.a<-12.若一元二次方程x2-2x+1-a=0无实根,则a的取值范围是()A.a<0B.a>0C.a<34 D.a>343.若m,n是一元二次方程x2+x-2=0的两个根,则m+n-mn的值是()A.-3B.3C.-1D.14.不等式2x2-x-1>0的解是()A.-12<x<1 B.x>1C.x<1或x>2D.x<-12或x>15.关于二次函数y=-2x2+1,下列说法中正确的是()A.它的开口方向是向上B.当x<-1时,y随x的增大而增大C.它的顶点坐标是(-2,1)D.当x=0时,y有最大值是26.若二次函数y=x2-mx的对称轴是x=-3,则关于x的方程x2+mx=7的解是()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=-7D.x1=-1,x2=77.y=ax2+ax-1对于任意实数x都满足y<0,则a的取值范围是()A.a≤0B.a<-4C.-4<a<0D.-4<a≤0二、填空题8.已知关于x的不等式x2+ax+b<0的解为1<x<2,则关于x的不等式bx2+ax+1>0的解为_______________.9.函数y=-x2+1,当-1≤x≤2时,函数y的最小值是________.10.不等式x2-5x+6≤0的解为________________.11.x1,x2是方程x2+2x-3=0的两个根,则代数式x21+3x1+x2=________.三、解答题12.画出函数y=2x2-4x-6的草图.13.已知关于x的一元二次方程x2-2(k-1)x+k2-1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.14.将抛物线y=(x-1)2+1向左平移1个单位,得到的抛物线解析式为()A.y=(x-2)2+1B.y=x2+1C.y=(x+1)2+1D.y=(x-1)215.解关于x的不等式x2-ax-2a2<0.。
初高中数学衔接教材第二课时课前练习:解下列不等式:(1)21x -< (2)213x +> (3)13x x -+->4.1.1乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+;(2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-例题解析:例1 计算:(1)22(1)(1)(1)(1)x x x x x x +--+++.(2)42(2)(2)(416)a a a a +-++例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.例3.已知3321,013x x x x +=+-求的值. 针对训练:1.填空,使之符号立方和或立方差公式:(1)(x-3)( )=x 3-27; (2)(2x+3)( )=8x 3+27;(3)(x 2+2)( )=x 6+8; (4)(3a-2)( )=27a 3-82.填空,使之符号立言和或立方差公式:(1)( )(a 2+2ab+4b 2)=__________; (2)( )(9a 2-6ab+4b 2)=__________;(3) ( )(41 -xy+4y 2)=__________; (4)( )(m 4+4m 2+16)=__________ 3.计算:(1)(y+3)(y 2-3y+9); (2)(c+5)(25-5c+c 2);(3)(2x-5)(4x 2+25+10x) (4)(2a+b)(4a 2-4ab+b 2)(5) (6) 3.已知x 2+y 2=6,xy=2,求x 6+y 6的值.1.2 分解因式1.分组分解法例1 分解因式:(1)32933x x x +++; (2)12422+--a b a(3)ay bx by ax +-- (4)x x x x -+-235 (5)14424---a a a2.立方差公式例2.分解因式:(1)66b a - (2)3232)(b m b a m -+ 3.十字相乘法例3.分解因式:(1)226y xy x -- (2)12)(8)(222++-+x x x x(3)25122--x x (4)2675x x -+ 针对训练:(1)232)2(a x a --(2)8a 3-b 3; (3)6466y x - (4)4)4)(2(2-++-x x x(5))(22a a x x --+ (6)y x xy -+-1 \\(7)2265a ax x +- (8)22352x xy y +- (9)m m x m x +++-22)12(。