高三文科数学复习课八章直线与圆的方程
- 格式:ppt
- 大小:1.19 MB
- 文档页数:22
高三数学直线与圆知识点复习数学是高中阶段学生最让人头疼的科目之一,而高三阶段的数学更是难度系数加大。
在高三数学课程中,直线与圆是一个非常重要的知识点。
下面我们来复习一下直线与圆的相关知识。
1. 直线方程在平面直角坐标系中,直线可以用一般式或点斜式方程表示。
一般式方程为Ax + By + C = 0,其中A、B和C是常数。
而点斜式方程则是y - y1 = k(x - x1),其中(k是直线的斜率,(x1, y1)是直线上的一点。
直线方程中的斜率对于直线的性质起着重要作用。
斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜,斜率为零表示直线为水平线,斜率不存在表示直线为竖直线。
2. 圆的方程在平面直角坐标系中,圆可以用标准方程表示。
标准方程为(x - a)² + (y - b)² = r²,其中(a, b)是圆心的坐标,r是圆的半径。
圆的方程中,圆心对圆的性质起着重要作用。
圆心坐标(a, b)表示圆心所在的位置,半径r则决定了圆的大小。
3. 直线与圆的关系直线与圆有着紧密的关系,可以分为以下几种情况:- 直线与圆相切:直线与圆相切表示直线与圆只有一个交点,此时直线的斜率与半径的斜率互为相反数。
- 直线与圆相离:直线与圆相离表示直线与圆没有交点,此时直线的斜率与半径的斜率不相等。
- 直线与圆相交:直线与圆相交表示直线与圆有两个交点。
- 直径:直径是连接圆上任意两点,并且经过圆心的线段。
直径的长度等于圆的半径的两倍。
4. 直线与圆的求解方法当我们遇到直线与圆的相交等问题时,可以通过以下几种方法求解:- 列方程求解:将直线和圆的方程列出,根据方程求解交点的坐标。
- 利用性质求解:根据直线和圆的性质,通过几何推理求解交点的坐标。
5. 直线与圆的应用直线与圆的知识在实际生活中有广泛的应用。
例如,在建筑设计中,我们需要确定两条直线是否相交,以确保结构的稳定性。
在电子设备设计中,我们需要确定一条直线是否与一个电子元件的引脚相交,以确保电子元件的正常工作。
高 三 数 学(第15讲)一、本讲进度《直线和圆的方程》复习 二、本讲主要内容1、直线方程的五种表现形式,如何求直线方程;二元一次不等式的几何意义及运用。
2、圆的方程三种形式,如何求圆的方程。
3、直线和圆位置关系的研究。
三、复习指导1、曲线和方程是中学数学的两种常见研究对象。
借助于平面直角坐标系,形和数可 以得到高度的统一,它们最基本的对应关系是点和有序数对的一一对应。
当点运动形成轨迹时,对应坐标便会满足一个方程。
当曲线C 和方程F(x ,y)=0满足如下关系时:①曲线C 上点的坐标都是方程F(x ,y)=0的解;②以方程F(x ,y)=0的解为坐标的点都在曲线C 上,则称曲线C 为方程F(x ,y)=0表示的曲线;方程F(x ,y)=0是曲线C 表示的方程。
从集合角度看,点集(曲线)与方程解集相等。
解析几何研究的内容就是给定曲线C ,如何求出它所对应的方程,并根据方程的理论研究曲线的几何性质。
其特征是以数解形。
坐标法是几何问题代数化的重要方法。
2、直线的倾斜角α和斜率k 是描述直线位置的重要参数,它们之间关系是正切函数关系:k=tan α,α∈[0,),2()2πππ ,当α=2α时,直线斜率不存在,否则由α求出唯一的k 与之对应。
当已知k ,求倾斜角α时:k ≥0时,α=arctank ;k<0时,α=π+arctank 。
或:k=0时,α=0;k ≠0时,cot α=k 1,α=arccot k1。
由正切函数可知,当α∈(0,2π),α递增时,斜率k →+∞。
当α∈(2π,π),α递减时,斜率k →-∞。
当涉及到斜率参数时,通常对k 是否存在分类讨论。
3、直线是平面几何的基本图形,它与方程中的二元一次方程Ax+By+C=0(A 2+B 2≠0)一一对应。
从几何条件看,已知直线上一点及直线方向与已知直线上两点均可确定直线;从对应方程看,直线方程两种典型形式:点斜式(斜截式),两点式(截距式),因此求直线方程,常用待定系数法。
高三数学二轮复习直线和圆的方程知识点总结数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典数学网为大家整理的直线和圆的方程知识点总结,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
一、直线方程1. 直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是[0,180)注:①当倾斜角等于90时,直线l垂直于x轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.二、圆的方程1. ⑴曲线与方程:在直角坐标系中,如果某曲线C上的与一个二元方程f(x,y)=0的实数建立了如下关系:①曲线上的点的坐标都是这个方程的解.②以这个方程的解为坐标的点都是曲线上的点.这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).⑵曲线和方程的关系,实质上是曲线上任一点M(x,y)其坐标与方程f(x,y)=0的一种关系,曲线上任一点(x,y)是方程f(x,y)=0的解;反过来,满足方程f(x,y)=0的解所对应的点是曲线上的点.注:如果曲线C的方程是f(x ,y)=0,那么点P0(x0 ,y)线C上的充要条件是f(x0 ,y0)=01.提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.2.证明基本步骤:假设原命题的结论不成立从假设出发,经推理论证得到矛盾矛盾的原因是假设不成立,从而原命题的结论成立死记硬背是一种传统的教学方式,在我国有悠久的历史。
(完整)高中数学必修内容复习(07)---直线和圆的方程1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修内容复习(07)---直线和圆的方程1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修内容复习(07)---直线和圆的方程1的全部内容。
高中数学必修内容复习(7)———直线和圆的方程一、选择题(每题3分,共54分)1、在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6π B .3π C .65π D .32π 2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是( )A .1)1()2(22=++-y xB .1)1()2(22=-+-y xC .1)2()1(22=++-y xD .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0>>bc abC .0,0>>bc abD .0,0<<bc ab 4、已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为 45,则直线2l 的方程是( ) A .1-=x yB .5331+=x y C .73+-=x y D .73+=x y5、不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .右下方6、直线0943=--y x 与圆422=+y x 的位置关系是( )A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形()A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过直线2x+y+4=0和圆x 2+y 2+2x —4y+1=0的交点,且面积最小的圆方程为A .(x+13/5)2+(y+6/5)2=4/5 B .(x-13/5)2+(y —6/5)2=4/5 C .(x-13/5)2+(y+6/5)2=4/5 D .(x+13/5)2+(y —6/5)2=4/5 9、点)5,0(到直线x y 2=的距离为()A .25B .5C .23D .25 10、下列命题中,正确的是( )A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内11、由点)3,1(P 引圆922=+y x 的切线的长是 ( )A .2B .19C .1D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为 60,则k 的值是 ( )A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-15、若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( )A .3-B .6-C .23-D .3216、由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43π D .23π 17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y xB .1)3(22=+-y xC .14)32(22=+-y xD .21)23(22=++y x18、参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是() A .圆心为)3,3(-,半径为9的圆 B .圆心为)3,3(-,半径为3的圆 C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆二、填空题(每题3分,共15分)19、将直线yx2,0)按顺时针方向旋转30°所得直线方程是 20、设集合M={(x ,y )|x 2+y 2≤25},N={(x,y)|(x-a )2+y 2≤9},若M ∪N=M ,则实数a 的取值范围是 。
高三复习直线与圆的方程复习教学课件一、引言在高三数学复习中,直线和圆的方程是高考的重点和难点。
为了帮助学生更好地掌握和理解这两个部分的知识,本文将重点介绍直线与圆的方程的复习教学内容,通过明确的教学步骤和实际例子,让学生在理解和应用上得到提升。
二、教学内容与目标本复习课件的教学目标是通过系统地梳理直线与圆的方程的基本概念、性质和解题方法,帮助学生建立完整的知识体系,提高解题能力和数学思维。
三、教学环节设计1、回顾基础知识:首先回顾直线和圆的基本定义、性质和方程形式。
通过基础练习,检查学生对基本概念的掌握情况。
2、重点难点解析:解析直线与圆方程中的重点和难点,包括直线的斜率、距离公式,圆的方程形式及其应用等。
通过例题解析,让学生深入理解这些知识点。
3、专题训练:设置专题训练,包括直线与圆的位置关系、圆与圆的位置关系等,让学生在解题中巩固知识,提高应用能力。
4、综合实例解析:通过解析综合实例题,让学生学会如何运用直线和圆的方程解决实际问题,提高解题能力。
5、复习总结:总结复习内容,梳理知识框架,让学生对直线与圆的方程有更清晰的认识。
四、教学策略及方法本复习课件采用讲解、讨论、示范、练习等多种教学方法,以多媒体课件为载体,通过生动的图像、声音和动画效果,帮助学生更好地理解和记忆。
同时,在教学过程中,注重启发式教学,引导学生思考,让学生在解题过程中提高分析问题和解决问题的能力。
五、教学评价与反馈通过课堂小测验、作业和在线答疑等方式进行教学效果评价,及时发现学生的学习困难和问题,进行针对性的辅导和反馈。
同时,鼓励学生进行自我评价和相互评价,激发学习动力和兴趣。
六、结语通过本复习课件的学习,学生将能够全面掌握直线与圆的方程的基础知识和解题方法,提高解题能力和数学思维。
在教学过程中,注重培养学生的自主学习能力和合作精神,为学生的未来发展奠定良好的基础。
圆与方程复习课件一、引言在数学的世界里,圆是一种非常重要的图形。
第4节 直线与圆、圆与圆的位置关系考试要求 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系设两圆的半径分别为R ,r (R >r ),两圆圆心间的距离为d ,则两圆的位置关系可用下表表示: 位置关系 外离外切相交内切内含图形量的关系d >R +rd =R +rR -r <d <R +rd =R -rd <R -r公切线条数432101.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x +y0y=r2.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出x M+x N和x M·x N,则|MN|=1+k2·(x M+x N)2-4x M·x N.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(4)若直线平分圆的周长,则直线一定过圆心.()答案(1)×(2)×(3)×(4)√解析(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.2.(2021·绍兴一模)设m∈R,则“1≤m≤2”是“直线l:x+y-m=0和圆C:x2+y 2-2x -4y +m +2=0有公共点”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 圆C :(x -1)2+(y -2)2=3-m ,圆心为(1,2),半径r =3-m (m <3).若直线l 与圆C 有公共点,则圆心(1,2)到直线l 的距离d =|3-m |2≤3-m ,解得1≤m <3. 因为{m |1≤m ≤2}{m |1≤m <3},所以“1≤m ≤2”是“直线l :x +y -m =0和圆C :x 2+y 2-2x -4y +m +2=0有公共点”的充分不必要条件.3.(2022·全国百校联盟质检)已知直线l :x -2y +6=0与圆C :x 2+y 2-4y =0相交于A ,B 两点,则CA →·CB →=( ) A.165 B.-165 C.125 D.-125 答案 D解析 由圆的一般方程x 2+y 2-4y =0得标准方程为x 2+(y -2)2=4,故可得圆心C (0,2),半径r =2, 联立得⎩⎪⎨⎪⎧x -2y +6=0,x 2+y 2-4y =0,解得⎩⎪⎨⎪⎧x =-2,y =2或⎩⎪⎨⎪⎧x =65,y =185.不妨设A (-2,2),B ⎝ ⎛⎭⎪⎫65,185,则CA →=(-2,0),CB →=⎝ ⎛⎭⎪⎫65,85,所以CA →·CB →=-2×65+0×85=-125.4.(2021·洛阳模拟)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆方程作差得公共弦所在直线方程为a 2+ay -6=0,原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a -a .∵公共弦长为23, ∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a -a 2,∴a 2=4,a =±2.5.(易错题)若半径为r ,圆心为(0,1)的圆和定圆(x -1)2+(y -2)2=1相切,则r 的值等于________. 答案2+1或2-1解析 由题意,定圆(x -1)2+(y -2)2=1的圆心为A (1,2),半径R =1,半径为r 的圆的圆心为B (0,1), 所以|AB |=(1-0)2+(2-1)2= 2.因为两圆相切,所以|AB |=|R -r |或|AB |=|R +r |, 即|1-r |=2或 |1+r |=2, 解得r =1±2或r =-1±2. 因为r >0,所以r=2+1或r=2-1.6.(易错题)过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为________________.答案5x-12y+45=0或x-3=0解析化圆x2+y2-2x-4y+1=0为标准方程得(x-1)2+(y-2)2=4,其圆心为(1,2),半径为2.∵|OA|=(3-1)2+(5-2)2=13>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x-3=0.当切线斜率存在时,可设所求切线方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心为(1,2),半径r=2,而圆心到切线的距离d=|3-2k|k2+1=2,即|3-2k|=2k2+1,∴k=512,故所求切线方程为5x-12y+45=0或x-3=0.考点一直线与圆的位置关系1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)答案 C解析由题意可得,圆的圆心为(a,0),半径为2,∴|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a ≤1.2.(2022·成都诊断)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交 B.相切 C.相离D.不确定答案 A解析 法一 (代数法)由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0,因为Δ=16m 2+20>0,所以直线l 与圆相交.法二 (几何法)由题意知,圆心(0,1)到直线l 的距离d =|-m |m 2+1<1<5,故直线l 与圆相交.法三 易得直线l 过定点(1,1), 把点(1,1)代入圆的方程有1+0<5, ∴点(1,1)在圆的内部,故直线l 与圆C 相交.3.“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件.感悟提升判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.考点二圆的弦长问题例1 (1)(2022·河南名校联考)已知圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆C与直线x-y-4=0相交所得弦长为()A.1B. 2C.2D.2 2(2)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4答案(1)D(2)B解析(1)根据题意,圆C:(x-a)2+y2=4的半径r=2.圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆心C到直线x-y+22-2=0的距离为2,即|a+22-2|2=2,解得a=2或a=2-42(舍去),所以圆C的方程为(x-2)2+y2=4,则圆心C(2,0)到直线x-y-4=0的距离d=|2-4|2=2,所以圆C与直线x-y-4=0相交所得弦长为222-d2=2 2.(2)圆的方程可化为(x-3)2+y2=9,故圆心的坐标为C(3,0),半径r=3.如图,记点M(1,2),则当MC与直线垂直时,直线被圆截得的弦的长度最小,此时|MC |=22, 弦的长度l =2r 2-|MC |2=29-8=2.感悟提升 弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. (2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.训练1 (2022·南昌摸底测试)若直线x +ay -a -1=0与圆C :(x -2)2+y 2=4交于A ,B 两点,当|AB |最小时,劣弧AB 的长为( ) A.π2 B.πC.2πD.3π答案 B解析 圆C :(x -2)2+y 2=4的圆心为C (2,0),半径r =2.直线的方程可化为x -1+a (y -1)=0,可知直线恒过点D (1,1). 因为点D (1,1)的坐标满足(1-2)2+12<4, 所以点D (1,1)恒在圆C 内,且|CD |=2,易知,当CD ⊥AB 时,|AB |取得最小值,且最小值为2r 2-|CD |2=2 2.此时,劣弧AB 对应的圆心角为π2,所以劣弧AB 对应的弧长为π2×2=π. 考点三 圆的切线问题例2 (经典母题)过点P (2,4)引圆C :(x -1)2+(y -1)2=1的切线,则切线方程为________________.答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0.∵直线与圆相切,∴圆心到直线的距离等于半径,即d=|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0, 即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.迁移1 在例2中,若点P 坐标变为⎝ ⎛⎭⎪⎫22+1,22+1,其他条件不变,求切线方程.解 易知点P ⎝ ⎛⎭⎪⎫22+1,22+1在圆C :(x -1)2+(y -1)2=1上,则k PC =22+1-122+1-1=1,∴所求切线方程的斜率为-1,则切线方程为y -⎝ ⎛⎭⎪⎫22+1=-⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫22+1,即x +y -2-2=0.迁移2 在例2中,已知条件不变,设两个切点为A ,B ,求切点弦AB 所在的直线方程.解 由题意得,点P ,A ,C ,B 在以PC 为直径的圆上,此圆的方程为(x -2)(x -1)+(y -4)(y -1)=0,整理得x 2+y 2-3x -5y +6=0.①圆C :(x -1)2+(y -1)2=1展开得x 2+y 2-2x -2y +1=0,② 由②-①得x +3y -5=0,即为直线AB 的方程.感悟提升 求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.训练2 (1)过直线y =2x +3上的点作圆C :x 2+y 2-4x +6y +12=0的切线,则切线长的最小值为( )A.19B.2 5C.21D.555(2)(2021·晋中模拟)过点P (2,3)作圆C :x 2+y 2-2x =0的两条切线,切点分别为A ,B ,则P A →·PB →=________.答案 (1)A (2)32解析 (1)圆的方程可化为(x -2)2+(y +3)2=1,要使切线长最小,只需直线y =2x +3上的点和圆心之间的距离最短,此最小值即为圆心(2,-3)到直线y =2x +3的距离d ,d =|2×2+3+3|5=25,故切线长的最小值为d 2-r 2=19.(2)由x 2+y 2-2x =0得(x -1)2+y 2=1,所以圆心C (1,0),半径为1,所以|PC |=2,|P A |=|PB |=3,∠APB =60°, 所以P A →·PB →=|P A →||PB →|cos 60°=32. 考点四 圆与圆的位置关系例3 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为 (x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m -11=5,解得m=25-1011.(3)由(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,得两圆的公共弦所在直线的方程为4x+3y-23=0,故两圆的公共弦的长为2(11)2-(|4×1+3×3-23|42+32)2=27.感悟提升 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.训练3 (1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)(2022·东北三省三校联考)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有()A.1条B.2条C.3条D.4条答案(1)B(2)D解析(1)由题意得圆M的标准方程为x2+(y-a)2=a2,圆心(0,a)到直线x+y=0的距离d=a2,所以2a2-a22=22,解得a=2.圆M,圆N的圆心距|MN|=2小于两圆半径之和1+2,大于两圆半径之差1,故两圆相交.(2)x2-4x+y2=0⇒(x-2)2+y2=22,圆心坐标为(2,0),半径为2;x2+y2+4x+3=0⇒(x+2)2+y2=12,圆心坐标为(-2,0),半径为1,圆心距为4,两圆半径和为3.因为4>3,所以两圆的位置关系是外离,故两圆的公切线共有4条.阿波罗尼斯圆公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆.如图,点A ,B 为两定点,动点P 满足|P A |=λ|PB |.则λ=1时,动点P 的轨迹为直线;当λ>0且λ≠1时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设|AB |=2m (m >0),|P A |=λ|PB |,以AB 的中点为原点,直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(图略),则A (-m ,0),B (m ,0).又设P (x ,y ),则由|P A |=λ|PB |得(x +m )2+y 2=λ(x -m )2+y 2, 两边平方并化简整理得(λ2-1)x 2-2m (λ2+1)x +(λ2-1)y 2=m 2(1-λ2).当λ=1时,x =0,轨迹为线段AB 的垂直平分线;当λ>0且λ≠1时,⎝ ⎛⎭⎪⎪⎫x -λ2+1λ2-1m 2+y 2=4λ2m 2(λ2-1)2,轨迹为以点⎝ ⎛⎭⎪⎪⎫λ2+1λ2-1m ,0为圆心,⎪⎪⎪⎪⎪⎪2λm λ2-1为半径的圆. 例1 如图所示,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =x -1,y =2x -4,得圆心为C (3,2). 由题意知切线的斜率存在,设切线方程为y =kx +3,圆心C 到切线的距离d =|3k +3-2|1+k2=r =1,得k =0或k =-34. 故所求切线方程为y =3或3x +4y -12=0.(2)设点M (x ,y ),由|MA |=2|MO |, 知x 2+(y -3)2=2x 2+y 2,化简得x 2+(y +1)2=4,即点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .又因为点M 也在圆C 上,故圆C 与圆D 的关系为相交或相切,故1≤|CD |≤3,其中|CD |=a 2+(2a -3)2, 解得0≤a ≤125. 即圆心C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125. 例2 在平面直角坐标系xOy 中,设点A (1,0),B (3,0),C (0,a ),D (0,a +2),若存在点P ,使得|P A |=2|PB |,|PC |=|PD |,则实数a 的取值范围是________. 答案 [-22-1,22-1]解析设P(x,y),则(x-1)2+y2=2·(x-3)2+y2,整理得(x-5)2+y2=(22)2,即动点P在以(5,0)为圆心,22为半径的圆上运动. 另一方面,由|PC|=|PD|知动点P在线段CD的垂直平分线y=a+1上运动,因而问题就转化为直线y=a+1与圆(x-5)2+y2=(22)2有交点.所以|a+1|≤2 2.故实数a的取值范围是[-22-1,22-1].1.(2022·兰州质检)“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若直线l与圆相切,则有|2k|k2+1=1,解得k=±33,所以“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的充分不必要条件.2.(2021·福州调研)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得的弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8答案 B解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=2-a,圆心到直线x+y+2=0的距离d=|-1+1+2|2=2,故r2-d2=4,即2-a-2=4,所以a=-4.3.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个答案 C解析圆的方程可化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线的距离d=|-1-2+1|=2,半径是22,结合图形(图略)可知有3个符合条件的点.24.(2021·南昌模拟)已知圆O:(x-1)2+(y-1)2=1,则下列选项所对应的图形中,与圆O相切的是()A.x2+y2=1B.(x-4)2+(y-5)2=16C.x+y=1D.x-y=2答案 B解析圆O:(x-1)2+(y-1)2=1的圆心坐标为(1,1),半径r=1.对于选项A,x2+y2=1表示的是圆心坐标为(0,0),半径r1=1的圆,此圆与圆O的圆心距为12+12=2<r+r1=2,所以两圆不相切,不符合题意.对于选项B,(x-4)2+(y-5)2=16表示的是圆心坐标为(4,5),半径r2=4的圆,此圆与圆O的圆心距为(4-1)2+(5-1)2=5=r+r2=5,所以两圆相切.对于选项C,圆心(1,1)到直线x+y=1的距离为22<1,故直线x+y=1与圆O 相交.对于选项D,圆心(1,1)到直线x-y=2的距离为2>1,故直线x-y=2与圆O 相离.5.过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB 所在直线的方程为()A.y=-34 B.y=-12C.y=-32 D.y=-14答案 B解析由题意知,点P,A,C,B在以PC为直径的圆上,易求得这个圆为(x-1)2+(y+1)2=1,此圆的方程与圆C的方程作差可得AB所在直线的方程为y=-12.6.(2022·宜宾诊断)已知直线l:y=3x+m与圆C:x2+(y-3)2=6相交于A,B 两点,若∠ACB=120°,则实数m的值为()A.3+6或3- 6B.3+26或3-2 6C.9或-3D.8或-2答案 A解析由题意知圆心C(0,3)到直线l的距离d=|0-3+m|3+1=|m-3|2.因为∠ACB=120°,所以|m-3|2×2=6,解得m=3±6.7.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2 5解析根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则|AB|=(-2-0)2+(-1-3)2=25,|AC|=(-2-0)2+(-1-m)2=4+(m+1)2,|BC |=|m -3|.∵直线2x -y +3=0与圆C 相切于点A ,∴∠BAC =90°,∴|AB |2+|AC |2=|BC |2.即20+4+(m +1)2=(m -3)2,解得m =-2.因此r =|AC |=4+(-2+1)2= 5.8.(2021·长春模拟)已知点P (1,2)和圆C :x 2+y 2+kx +2y +k 2=0,过点P 作圆C 的切线有两条,则实数k 的取值范围是________.答案 ⎝⎛⎭⎪⎫-233,233 解析 因为C :x 2+y 2+kx +2y +k 2=0为圆, 所以k 2+4-4k 2>0,解得-233<k <233.又过点P 作圆C 的切线有两条,所以点P 在圆的外部,故1+4+k +4+k 2>0,解得k ∈R ,综上可知-233<k <233.故k 的取值范围是⎝⎛⎭⎪⎫-233,233. 9.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为______.答案 10 2解析 圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =10,圆心(1,3)与E (0,1)距离(1-0)2+(3-1)2=5.由题意知AC ⊥BD ,且|AC |=210,|BD |=210-5=25,所以四边形ABCD 的面积为S =12|AC |·|BD |=12×210×25=10 2.10.已知圆M :x 2+y 2-2ax +10ay -24=0,圆N :x 2+y 2+2x +2y -8=0,且圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上.(1)求圆M 的方程;(2)证明圆M 和圆N 相交,并求两圆公共弦的长度l .(1)解 圆M :x 2+y 2-2ax +10ay -24=0的圆心为M (a ,-5a ),∵圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上,∴直线x +y +4=0经过M ,则a -5a +4=0,解得a =1.∴圆M 的方程为x 2+y 2-2x +10y -24=0.(2)证明 ∵圆M 的圆心M (1,-5),半径r 1=52,圆N 的圆心N (-1,-1),半径r 2=10,∴|MN |=(1+1)2+(-5+1)2=2 5.∵52-10<25<52+10,∴圆M 和圆N 相交.由圆M ,圆N 的方程左右两边分别相减,得x -2y +4=0,∴两圆公共弦的直线方程为x -2y +4=0.∵M 到直线x -2y +4=0的距离d =|1+10+4|5=35, ∴公共弦长度l =2h 2-d 2=2 5.11.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由;②若OM →·ON →=12(O 为坐标原点),求直线l 的方程.解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧(2-a )2+(4-b )2=r 2,(1-a )2+(3-b )2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1.(2)①AM →·AN →为定值,理由如下:过点A (0,1)作直线AT 与圆C 相切,切点为T ,易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos 0°=|AT |2=7.根据圆的弦切角定理及相似三角形,∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,即4k (1+k )1+k 2=4,解得k =1.又当k =1时,Δ>0,∴k =1,∴直线l 的方程为y =x +1.12.(2022·宝鸡模拟)过点P (x ,y )作圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y -2)2=1的切线,切点分别为A ,B ,若|P A |=|PB |,则x 2+y 2的最小值为( )A. 2B.2C.2 2D.8 答案 B解析 由(x 2+y 2-1)-(x 2+y 2-4x -4y +7)=0得x +y -2=0,则P 点在直线l :x +y -2=0上,原点到直线l 的距离d =2,所以(x 2+y 2)min =d 2=2.13.(2022·南阳联考)阿波罗尼斯(约公元前262~公元前190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k >0,且k ≠1)的点的轨迹是圆,后人将此圆称为阿氏圆.若平面内两定点A ,B 间的距离为4,动点P 满足|P A ||PB |=3,则动点P 的轨迹所围成的图形的面积为________;P A →·PB →的最大值是________. 答案 12π 24+16 3解析 以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系, 则A (-2,0),B (2,0).设P (x ,y ),∵|P A ||PB |=3,∴(x +2)2+y 2(x -2)2+y 2=3,得x 2+y 2-8x +4=0,即(x -4)2+y 2=12,所以点P 的轨迹为圆,其面积为12π.P A →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=|OP |2-4,如图,当P 位于点D 时,|OP |2最大,|OP |2的最大值为(4+23)2=28+163, 故P A →·PB →的最大值是24+16 3.14.(2021·北京海淀区模拟)已知A (2,0),直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,且P 为圆C 上任意一点.(1)求|P A |的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径. 解 (1)∵直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,∴圆心到直线的距离d =|-12+3m +1|5=(13)2-(23)2=1.∵m <3,∴m =2,∴|AC |=(-3-2)2+(2-0)2=29, ∴|P A |的最大值与最小值分别为29+13,29-13.(2)由(1)可得圆C 的方程为(x +3)2+(y -2)2=13,令x =0,得y =0或4; 令y =0,得x =0或-6,∴圆C 与坐标轴相交于三点M (0,4),O (0,0),N (-6,0),∴△MON为直角三角形,斜边|MN|=213,∴△MON内切圆的半径为4+6-2132=5-13.。
城东蜊市阳光实验学校直线、圆的方程一.【课标要求】1.直线与方程〔1〕在平面直角坐标系中,结合详细图形,探究确定直线位置的几何要素;〔2〕理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;〔3〕根据确定直线位置的几何要素,探究并掌握直线方程的几种形式〔点斜式、两点式及一般式〕,体会斜截式与一次函数的关系;2.圆与方程回忆确定圆的几何要素,在平面直角坐标系中,探究并掌握圆的标准方程与一般方程。
二.【命题走向】直线方程考察的重点是直线方程的特征值〔主要是直线的斜率、截距〕有关问题,可与三角知识联络;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。
预测2021年对本讲的考察是:〔1〕2道选择或者者填空,解答题多与其他知识结合考察,本讲对于数形结合思想的考察也会是一个出题方向;〔2〕热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程三.【要点精讲】1.倾斜角:一条直线L向上的方向与X轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)π,0。
2.斜率:当直线的倾斜角不是900时,那么称其正切值为该直线的斜率,即k=tanα;当直线的倾斜角等于900时,直线的斜率不存在过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:k=tan 1212x x y y --=α〔假设x1=x2,那么直线p1p2的斜率不存在,此时直线的倾斜角为900〕。
4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。
确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。
直线的点斜式与斜截式不能表示斜率不存在〔垂直于x 轴〕的直线;两点式不能表示平行或者者重合两坐标轴的直线;截距式不能表示平行或者者重合两坐标轴的直线及过原点的直线。
5.圆的方程圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 。