六年级下册图形与几何复习
- 格式:ppt
- 大小:7.24 MB
- 文档页数:145
六年级数学大单元整体学习复习学程单元名称:图形与几何专项复习班级___________________小组___________________姓名___________________【学习目标】1.梳理图形与几何的核心概念内在的关系,构建知识网络,体会分类思想和集合思想再认识图形中的应用;2.应用面积、体积公式及相关方法解决不规则图形的面积等问题,体会转化、类比、数形结合等数学思想;3.通过过关活动,熟练应用平面、立体图形的公式解决实际问题,并做好总结反思。
【单元前测】一、填空1.直线、射线与线段:如图共有()条直线,()条射线,()条线段。
A B C D E2.一个直角三角形两个锐角的度数比是2∶3,两个锐角分别是( )度和( )度。
3.已知图中涂色部分的面积为,则圆的面积是( )。
4.如图中圆的面积是,平行四边形的面积是(),三角形的面积是()。
5.一个圆形水池周长是31.4米,在它周围修一条1米宽的水泥路,水泥路面积是()平方米。
6.把一根2m长的圆柱形木料截成4个小圆柱,表面积增加了60cm²,这根木料的体积是( )cm3。
7.一条环形小路,外圆半径是18米,内圆半径是16米,这条环形小路的面积是()平方米。
要在这条小路的外围栽树,两棵树之间的距离是1.57米,要栽()棵树。
8.如图所示,以小汽车为观测点,加油站在小汽车的( )偏( )( )°方向上。
二.计算下列图形的面积及体积1.求下图阴影面积。
(单位:厘米)三、解决问题1.用铁丝做一个长方体框架,长30厘米,宽20厘米,高10厘米。
要用铁丝多少厘米,如果要在这个框架外面包一层铁皮,至少需要铁皮多少平方厘米?(接口处忽略不计)2.一个圆锥形容器,底面直径是8厘米,高9厘米,将它装满水后,倒入底面积是12.56平方厘米的圆柱形容器中,水的高度是多少?3.光明小学操场上有一堆圆锥形的黄沙,测得底面周长是12.56米,高1.5米。
图形与几何一、仔细审题,填一填。
(第1小题3分,其余每小题2分,共21分)1.在括号里填上适当的计量单位。
(1)北京到石家庄的公路长约292()。
(2)学校篮球场的面积是420()。
(3)丽丽家微波炉的容积是23()。
2. 一根长4.8 m的圆柱形木材,将它横截成四段后,表面积增加了18.84 m2,这根木材原来的体积是()m3。
3.如右图所示平行四边形中,甲、乙、丙三个三角形面积的比是()。
4. 如右图,时针从“1”绕点O顺时针旋转90°后指向(),时针从“1”绕点O顺时针旋转180°后指向()。
5.一圆形水池,直径为30米,沿着池边每隔4.71米栽1棵树,最多能栽()棵。
6. 如右图所示,如果正方形的面积是16 cm2,这个圆的周长就是()cm,面积就是()cm2。
7.把三个棱长为3 dm的正方体拼成一个长方体,长方体的表面积是()dm2,体积是()dm3。
8.如右图所示,学校在小芳家北偏西60°的方向上,那么小芳家在学校()偏()60°的方向上。
9.一个立体图形,从正面看到的形状是,从左面看到的形状是,搭一个这样的立体图形至少要()个小正方体,最多要()个小正方体。
10.一个梯形的下底是18 cm,如果下底缩短8 cm,就成为一个平行四边形,并且面积减少28 cm2,原梯形的高是()cm。
二、火眼金睛,判对错。
(对的在括号里画“√”,错的画“×”)(每小题2分,共10分)1.圆柱和圆锥的体积比是3:1时,圆锥和圆柱一定是等底等高的。
()2.棱长之和相等的两个正方体,它们的体积也相等。
()3.锐角三角形中最大的角不小于60°。
()4.明明的位置在第2列第3行,记为(2,3),如果将他往后调3行,他的位置就可记为(2,6)。
()5.不相交的两条直线是平行线。
()三、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题2分,共16分)1.在一个正方形里画一个最大的圆,这个圆的周长是这个正方形周长的()。
第9讲图形与几何(总复习)【考点1】巧数图形【例1】数一数,下图中有()条直线,()条射线,()条线段。
【考点2】图形与格点【例1】如图是用橡皮筋在钉子板上围成的一个三角形,计算它的面积是多少?(每相邻两个小钉之间的距离都等于1个单位长度)【例2】右图中有28个点,其中每相邻的三点“∵”或“∴”所形成的三角形都是面积为1的等边三角形,试计算四边形ABCD的面积。
【规律总结】1.正方形格点多边形面积公式:2.三角形格点多边形面积公式:【实战练习】1.如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD的面积。
2.如图,每相邻三个点构成的三角形的面积都是1平方厘米,求阴影格点多边形的面积。
【考点3】用底高倍数法接图形题【例1】如图所示,三角形ABC的每边长都是96cm,用折线把这个三角形分割成面积相等的4个三角形,求线段CE与CF的长度之和。
【例2】如图,三角形ABC的面积为10厘米,AD与BF交于点E,且AE=ED,BD=CD,求图中阴影部分的面积和。
【例3】如图,把四边形ABCD的各边延长,使得AB=AE,BC=BF,CD=CG,DA=DH,得到一个大的四边形EFGH,若四边形ABCD的面积是5,试求四边形EFGH的面积。
【实战练习】1.如图,△ABC中,BD:DF:FC=2:3:4,已知△AFC的面积为48平方厘米,E为AF的中点。
求四边形ABDE的面积。
2.如图所示,=1,==,则=( )A. B. C. D.3.如图所示,直线DE把大三角形分成甲、乙两部分,甲与乙的面积比是。
4.如图所示,已知梯形ABCD的上底CD=3cm,下底AB=9cm,CF=2cm,.求梯形ABCD的面积。
【考点4】活用公式解图形问题【例1】用一块面积为36平方厘米的大圆铝板下料,如图,裁出7个同样大小的小圆形铝板,则余下的边角料的总面积是多少平方厘米?【例2】如图,等边△ABC的边长是1,现依次以A、C、B为圆心,以AB,CD,BE为半径画扇形,则阴影部分的面积为多少?(结果保留π)【实战练习】1.如图,半圆的直径为50厘米,阴影部分的周长是多少厘米?(结果保留π)2.如图,半圆的面积是14.13平方厘米,圆的面积是19.625平方厘米,那么长方形(阴影部分)的面积是多少平方厘米?课后巩固一、求下面各图中阴影部分的面积二.填空题1.经过一点可以画()条直线。
六年级下册总复习《图形和几何》复习精选题(二)一、选择题1.一个圆柱与圆锥体的体积相等,圆柱的底面积是圆锥体的底面积的3倍,圆锥体的高与圆柱的高的比为()A.3:1 B .1:3 C.9:1 D.1:92.三角形的面积一定,它的底和高()。
A.成正比例 B.成反比例C.不成比例D.无法确定3.下面的立体图形,与选项中的哪个立体图形从左侧面看到的形状相同()。
A.B.C.D.4.淘气从学校出发,步行去图书馆(如下图)。
行走路线正确的是()。
A.向东偏北35°行走600米 B.向西偏南40°行走600米C.向南偏西35°行走600米 D.向南偏东40°行走600米5.如图,边长相等的两个正方形中,画了甲、乙两个三角形(用阴影表示),它们的面积相比()A.甲的面积大B.乙的面积大C.相等6.下图中的正方体、圆柱体和圆锥体的底面积相等,高也相等.下面说法正确的是().A.圆锥的体积是圆柱体积的3倍.B.圆柱的体积比正方体的体积小一些.C.圆锥的体积是正方体体积的.D.以上说法都不对.二、填空题7.一个圆柱的侧面展开图是个正方形,这个圆柱的高是底面直径的(______)倍。
8.将一个圆柱平均分成若干等份后,拼成一个近似长方体,这个长方体的高10厘米,表面积比圆柱多40平方厘米,圆柱的体积是(________)立方厘米。
9.一个高45cm的圆锥体容器,盛满水后再倒入和它等底等高的圆柱体容器里,水面的高度是(______)cm。
10.一个圆柱和一个圆锥的底面周长之比是1:3,它们的体积比是1:1,圆柱和圆锥高的比是(____)。
11.等腰的三角形的顶角与底角的比是3:1,那么它的顶角是_____度.12.把一根长4米的圆柱体木料截成3段小圆木,表面积增加4平方分米,这根圆木原来的体积是(______)立方分米。
13.仔细数一数,填一填.(1)下图是由________个小三角形拼成的.(2)下图有________个三角形.(3)下图共有________个正方形.14.一个用小正方体搭成的几何体,下面是它的两个不同方向看到的形状,要符合这两个条件,最少需要摆(______)块,最多能摆(_______)块,共有(______)种摆法。
六年级下册图形和几何测试试卷一、填空题。
1、一个平行四边形的面积是1.2平方分米,它的高是0.6分米,底是()分米。
2、一个长方体的长、宽、高分别是3cm、2cm、4cm,这个长方体的棱长总和是( ),表面积是(),体积是()。
3、一个半圆的直径是6厘米,它的面积是()平方厘米,周长是()厘米。
4、6时整时,钟面上分针和时针所组成的角是( )°,它是一个()角;9时整时,分针和时针所组成的夹角是()°,它是一个()角,能形成这样的角的时刻还有()时整。
5、两个正方形的边长比是1∶2,它们的周长比是(),面积比是();两个圆的周长比是1∶3,则它们的半径比是(),面积比是()。
6、圆柱的体积一定,它的底面积和高成()比例关系。
7、把长为8cm,宽为6cm,高为4cm的长方体木块切成棱长是2cm的小正方体,能切出()块。
8、0.6dm3=( )cm3 3.02公顷=( )平方米530dm2=()m2二、选择题。
1、下面的图形中,不能折成正方体的是()C.2、一个正方体的棱长缩小到原来的21,表面积就会缩小到原来的( ),体积缩小到原来的( )。
A.21 B.41 C.81 3、小朋友喜欢玩的跷跷板的运动是( )。
A.旋转B.平移C.轴对称C.三、判断题。
1、在同一幅地图上,图上距离越大,实际距离也就越大。
( )2、长方体、正方体、圆柱和圆锥的体积计算公式可以统。
( )3、只有两个角是锐角的三角形一定是钝角三角形。
( )4、把一个长方形框架拉成一个平行四边形,它的周长不变,面积变大了。
( )5、甲在乙的东偏北30°方向,乙在甲的西偏南30°方向。
( )四、我会画。
(1)在下图中找出各点位置,并按顺序进行连线。
(5,1)(2,1)(2,4) (1,4)(3,6)(5,6)2、以图中的虚线为对称轴,画出图形的另一半。
五、解答题。
1、李叔叔家里要进行房屋装修,其中客厅长为5米,宽为4米,高为3米。
六年级数学下册图形与几何练习题班级考号姓名总分一、填空题。
1. 3.5平方米=()平方分米2立方分米3立方厘米=()立方分米5.02升=()升()毫升公顷=()平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是(),是一个()角。
3.一个三角形中,∠1=∠2=35°,∠3=(),按边分是()三角形。
4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是()平方分米。
5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是()平方厘米。
把它沿着底面直径垂直切成两半,表面积会增加()平方厘米。
6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。
7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。
长方体的表面积是()平方厘米,体积是()立方厘米。
8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
二、判断题。
(对的画“√”,错的画“✕”)1.平角是一条直线。
()2.三角形具有稳定性,四边形不具有稳定性。
()3.两个面积相等的梯形,可以拼成一个平行四边形。
()4.一个玻璃容器的体积与容积相等。
()5.一个棱长是6厘米的正方体的表面积和体积相等。
()三、选择题。
(把正确答案的序号填在括号里)1.射线()端点。
A.没有B.有一个C.有两个2.下面图形中对称轴最少的是()。
A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是()。
4.下图中,甲和乙两部分面积的关系是()。
A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。
A.πB.2πC.r四、计算题。
1.计算下面图形中阴影部分的面积。
(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。