人教版数学六年级下册几何图形
- 格式:docx
- 大小:9.41 KB
- 文档页数:1
章节测试题1.【题文】平面测量时,通常以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角,在测绘、航海中经常用到.如图,OA表示北偏东20°方向的一条射线.仿照这条射线画出表示下列方向的射线:(1)北偏西50°;(2)南偏东10°;(3)西南方向(即南偏西45°).【答案】见解析【分析】根据方位角的定义和画法画出图形即可.【解答】解:如图所示.2.【题文】如图,OA是表示北偏东30°方向的一条射线,仿照这条射线画出表示下列方向的射线,(1) 南偏东25°;(2) 北偏西60°.【答案】见解析【分析】本题考查了方位角,根据方向角的表示方法画出图形即可.【解答】解:如图所示,OB表示南偏东25°,OC表示北偏西60°,3.【题文】如图,用字母A、B、C表示∠α、∠β.【答案】∠CAB或∠BAC表示∠α;∠CBA或∠ABC表示∠β.【分析】图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者解答.【解答】解:∠CAB或∠BAC或∠A表示∠α;∠CBA或∠ABC表示∠β.4.【题文】小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时和到家时时针和分针的夹角各为多少度.【答案】出发时的时针和分针的夹角为120°,回到家时时针与分针的夹角为165°.【分析】钟表上的刻度是把一个圆平均分成了12等份,每一份是30°.8点整时,时针指到8上,分针指到12上,8:00时针和分针夹角是4份.找出中午12:30时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:早晨8:00,时针和分针夹角是4份,每份30°,故4×30°=120°.∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时30分钟时,时针与分针的夹角可以看成时针转过12时0.5°×30=15°,分针在数字6上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时30分钟时分针与时针的夹角6×30°-15°=165°.故出发时的时针和分针的夹角为120°,回到家时时针与分针的夹角为165°.方法总结:在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.5.【题文】请将图中的角用不同方法表示出来,并填写下表:【答案】∠α∠ABC ∠ACB ∠ACF【分析】图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者填表.【解答】解:由图可知,∠ABE=∠α,∠1=∠ABC,∠2=∠ACB,∠3=∠ACF.6.【题文】观察图形,回答下列问题.(1)写出以B点为顶点的角;(2)写出以ED为边的角.【答案】(1)∠ABD,∠ABC,∠DBC ;(2)∠AED,∠ADE,∠BED,∠CED,∠BDE,∠CDE【分析】(1)观察可得:以点B为顶点角共有3个;(2)观察可得:以DE为边的角共有6个;【解答】解:(1) 以点B为顶点角有:∠ABD,∠ABC,∠DBC(2) 以DE为边的角有:∠AED,∠ADE,∠BED,∠CED,∠BDE,∠CDE7.【题文】在8点与9点之间,分针与时针重合的时刻是几点几分?【答案】8点分.【分析】这个问题可以看作是环形跑道问题,把一圈看作是60个单位长度,分针与时针相距20个单位长度,时针在前,分针在后,时针每分钟走个单位长,分针每分钟走一个单位长,两针同向而行,何时时针追上分针.【解答】解:时针每小时转动360÷12=30°,每分钟转动30÷60=0.5°,分针每分钟转动360÷60=6°;设经过x分钟分针与时针重合,则有:6x﹣0.5x=240,解得:x=分钟;即8点与9点之间,分针与时针重合的时刻是8点分.8.【题文】若时钟由2点30分走到2点55分,问时针、分针各转过多大的角度?【答案】分针,时针各转过150°、12.5°.【分析】(1)若时针由2点30分走到2点55分,共经过25分钟,时针一小时即60分钟转30°,一分钟转动0.5°,分针一小时转360°,一分钟转6°,据此作答.【解答】解:分针转过的角度:(360°÷60)×(55﹣30)=150°时针转过的角度:(360°÷60÷12)×(55﹣30)=12.5°,∴分针,时针各转过150°、12.5°.方法总结:时针一小时即60分钟转30°,一分钟转动0.5°,分针一小时转360°,一分钟转6°.记住这一结论,并结合钟表的图形解决这类问题就不会出错.9.【题文】如图所示,五条射线OA、OB、OC、OD、OE组成的图形中共有几个角?如果从O点引出n条射线,能有多少个角?你能找出规律吗?【答案】从一点引出n条射线,则共有个角.【分析】分别找出以OA为始边的角的个数,以OB为始边的角的个数,以OC为始边的角的个数,以OD为始边的角的个数,然后进行求和得出答案;根据前面找角的规律我们可以发现:引出n条射线,则角的个数为:1+2+3+4+…+(n-1)= 个.【解答】解:引出5条射线时,以OA为始边的角有4个,以OB为始边的角有3个,以OC为始边的角有2个,以OD为始边的角有1个,故当有5条射线时共有角:4+3+2+1=10个;如果引出n条射线,有个角;10.【题文】将下列各角用度、分、秒表示出来.(1)32.41°;(2)75.5°;(3)()°.【答案】(1)32°24′36″(2)75°30′(3)5′【分析】根据角的度、分、秒是60进制的,所以用度、分、秒表示时,先将度的小数部分乘以60转化为分,若分有小数,继续将分的小数部分乘以60转化为秒.【解答】解:(1)∵0.41×60=24.6,0.6×60=36,∴32.41°=32°24′36″;(2)∵0.5×60=30,∴75.5°=75°30′;(3)∵×60=5,∴()°=5′.11.【题文】上午9点半时,时针与分针的夹角是多少度?【答案】105°【分析】时针与分针的夹角为3个大格,且加上时针多走的30分钟的角度即可求得结论.【解答】解:.12.【题文】下列图形中有哪些角?请用适当的方法把图中的角表示出来.【答案】∠1,∠2,∠3,∠α,∠BAD.【分析】先找到图中角的顶点,再找到角的两边,从而找到角,以各顶点为切入点,把角表示出来即可.【解答】解:图中所有的角为∠1,∠2,∠3,∠α,∠BAD.13.【题文】如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).【答案】(1)详见解析;(2)80°;(3)实际距离约23海里.【分析】(1)格局题意画出图形即可;(2)根据题目中所给的方位角的度数,结合图形即可求得∠BAC的度数;(3)量出BC的图距,即可求得实际距离.【解答】解:(1).(2)∠BAC=90°-80°+90°-20°=80°.(3)约2.3cm,即实际距离约23海里.14.【答题】下午3点30分时,钟面上时针与分针所成的角等于______°.【答案】75【分析】本题主要考查的是钟面角的计算问题,在解决钟面角问题时我们必须明白分钟转1分钟所经过的角度为6°,时针转1分钟所经过的角度为0.5°,然后根据钟面求出各个角的度数,从而得出我们所需要求的角度.【解答】解:时针指向3和4的中间,分针指向6,时针与分针之间的夹角为:故答案为:.15.【答题】一块手表上午9点45分,时针分针所夹角的度数为______.【答案】22.5°【分析】本题主要考查的是钟面角的计算问题,在解决钟面角问题时我们必须明白分钟转1分钟所经过的角度为6°,时针转1分钟所经过的角度为0.5°,然后根据钟面求出各个角的度数,从而得出我们所需要求的角度.【解答】30°×=22.5°,故答案为:22.5°.16.【答题】如图,已知点D在点O的西北方向,点E在点O的北偏东50°方向,那么∠DOE的度数为______度.【答案】95【分析】根据方向角计算即可.【解答】如图,,由题意,得∠1=45°,∠2=50°.由角的和差,得∠DOE=∠1+∠2=45°+50°=95°.17.【答题】11点整,时钟的分针与夹角是______。
六年级数学下册第九章几何图形初步综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在观测站O 发现客轮A ,货轮B 分别在它北偏西50°,西南方向,则∠AOB 的度数是( )A .80°B .85°C .90°D .95°2、如果A 、B 、C 三点在同一直线上,线段4cm AB =,2cm BC =,那么A 、C 两点之间的距离为( )A .2cmB .6cmC .2cm 或6cmD .无法确定3、如图所示,点A ,O ,B 在同一直线上,∠COA =90°,若∠1=∠2,则图中互余的角共有( )A.5对B.4对C.3对D.2对4、如图所示,已知∠AOB=4024'︒,OC平分∠AOB,∠BOD与∠AOC互为余角,则∠BOD的度数为()A.5958'︒︒D.6958'︒C.5948'︒B.6948'5、下列说法错误的是()A.直线AB和直线BA是同一条直线B.若线段AM=2,BM=2,则M为线段AB的中点C.画一条5厘米长的线段D.若线段AB=5,AC=3,则BC不可能是16、下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.7、下面图形是棱柱的是()A.B.C.D.8、下列4个角中,最有可能与65°角互补的角是()A.B.C.D.9、如图,一副三角尺按不同的位置摆放,其中符合∠α=∠β的图形共有()A.4个B.3个C.2个D.1个10、下列几何图形与相应语言描述不相符的有()A.如图1所示,直线a和直线b相交于点AB.如图2所示,延长线段BA到点CC .如图3所示,射线BC 不经过点AD .如图4所示,射线CD 和线段AB 有交点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知α∠与β∠互余,且3812α'∠=︒,则β∠=____________.2、如图,点A ,B ,C 在数轴上表示的有理数分别为a ,b ,c ,点C 是AB 的中点,原点O 是BC 的中点,现给出下列等式: ①c a c b =--; ②2a b c =-; ③()14c a b =--; ④a b c a b c +-=--.其中正确的等式序号是____________.3、计算:3545'7219'︒+︒=__________.4、用一个平面去截一个几何体,若截面是长方形,则该几何体可能是______(写三个).5、若∠α=135°,则∠α的补角是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,线段8AB =,点C 是AB 的中点,D 是BC 的中点,E 是AD 的中点.(1)求线段BD 的长;(2)求线段EC 的长.2、如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC , 图中哪些角互为余角?哪些角互为补角?3、已知线段AB a (如图),延长BA 至点C ,使2AC AB =,延长AB 至点D ,使12BD AB =.(1)请按上述要求画全图形;(2)求线段CD 的长(用含a 的代数式表示);(3)若E 是CD 的中点, 3AE =,求a 的值.4、如图,已知点A 和线段BC ,请用直尺和圆规作图(不要求写作图过程,保留作图痕迹).(1)作线段AB 、射线CA ;(2)延长BC 至点D ,使得BD BC AC BA =+-.5、如图1,在AOB ∠内部作射线OC ,OD ,OC 在OD 左侧,且2AOB COD ∠=∠.(1)图1中,若160AOB ∠=︒,OE 平分AOC ∠,OF 平分BOD ∠,则EOF ∠______°;(2)如图2,OE 平分AOD ∠,探究BOD ∠与COE ∠之间的数量关系,并证明;(3)设COD m ∠=︒,过点O 作射线OE ,使OC 为AOE ∠的平分线,再作COD ∠的角平分线OF ,若3EOC EOF ∠=∠,画出相应的图形并求AOE ∠的度数(用含m 的式子表示).-参考答案-一、单选题1、B【解析】【分析】根据西南方向即为南偏西45︒,然后用180︒减去两个角度的和即可.【详解】由题意得:180(4550)85AOB ∠=︒-︒+︒=︒,故选:B .【点睛】本题考查有关方位角的计算,理解方位角的概念,利用数形结合的思想是解题关键.2、C【解析】【分析】根据题意,利用分类讨论的数学思想可以求得A、C两点间的距离.【详解】解:∵A、B、C三点在同一条直线上,线段AB=4cm,BC=2cm,∴当点C在点B左侧时,A、C两点间的距离为:4-2=2(cm),当点C在点B右侧时,A、C两点间的距离为:4+2=6(cm),故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.3、B【解析】【分析】由∠AOC=90°,可求∠BOC=90°,推出∠1+∠AOE=90°,∠2+∠DOC=90°,求出∠DOC=∠AOE,推出∠1+∠COD=90°,∠2+∠AOE=90°,根据余角的定义得出即可.【详解】解∵∠COA=90°∠AOC+∠BOC=180°∴∠BOC=180°-90°=90°∴∠AOC=∠BOC=90°,∴∠1+∠AOE=90°,∠2+∠COD=90°.∵∠1=∠2,∴∠COD=∠AOE,∴∠1+∠COD=90°,∠2+∠AOE=90°,∴图中互余的角共有4对.故选B.【点睛】本题考查了邻补角,互余的应用,关键是熟悉:如果∠A和∠B互余,则∠A+∠B=90°.4、B【解析】【分析】由OC平分∠AOB,可求出∠AOC,再由∠BOD与∠AOC互为余角,即可求出∠BOD.【详解】∵∠AOB=4024'︒,OC平分∠AOB∴∠AOC=12∠AOB =2012'︒又∵∠BOD与∠AOC互为余角∴∠BOD=90°-∠AOC=6948'︒故选:B.【点睛】本题主要考查了角平分线的意义、余角的意义,掌握角平分线和余角的有关概念是解题的关键.5、B【解析】【分析】根据直线、线段以及线段中点的性质进行判定即可得出答案.【详解】解:A.因为直线AB和直线BA是同一条直线,所以A选项说法正确,故A选项不符合题意;B.如图1,AM=BM,但点M不是线段AB的中点.故B选项说法错误,故B选项符合题意.C.因为画一条5cm的线段,如图2所以C选项说法正确,故C选项不符合题意;D.因为如图3AB=5,AC=3,所以2≤BC≤8,BC不可能是1,故D选项说法正确,故D选项不符合题意.故选:B.【点睛】本题主要考查了两点间的距离,直线、射线、线段,熟练掌握两点的距离计算的方法及直线、射线、线段的性质进行判定是解决本题的关键.6、B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.【详解】三角形图案所在的面应与正方形的图案所在的面相邻,而选项A与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符;三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选B.【点睛】此题主要考查了展开图折叠成几何体,可以动手折叠一下,有助于空间想象力的培养.7、A【解析】【分析】根据棱柱的两个底面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行进行判断.【详解】解:A、六棱柱,满足题意;B、三棱锥,不满足题意;C、球,不满足题意;D、圆柱,不满足题意.故选:A.【点睛】本题考查棱柱的定义,掌握棱柱的特征是解题的关键.8、D【解析】【分析】︒-︒=︒,为钝角,看选项只有D符合钝两个角互补,相加为180︒,与65︒互补的角的度数为18065115角的要求.【详解】︒-︒=︒,115︒为钝角,大于90︒.65︒互补的角的度数为18065115A、小于90︒为锐角,不符合要求;B、小于90︒为锐角,不符合要求;C、小于90︒为锐角,不符合要求;D、大于90︒为锐角,符合要求;故选D.【点睛】本题考查补角的性质,以及角的判断,熟悉补角的性质,掌握角的类型判断是本题的解题关键.9、B【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第三个图形中∠α=∠β,第四个图形∠α和∠β互补.【详解】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.10、B【解析】【分析】根据直线、射线、线段的相关概念可直接进行排除选项.【详解】解:A、如图1所示,直线a和直线b相交于点A,几何图形与相应语言描述相符,故不符合题意;B、如图2所示,延长线段BA到点C,几何图形与相应语言描述不相符,故符合题意;C、如图3所示,射线BC不经过点A,几何图形与相应语言描述相符,故不符合题意;D、如图4所示,射线CD和线段AB有交点,几何图形与相应语言描述相符,故不符合题意;故选B.【点睛】本题主要考查直线、射线与线段,熟练掌握直线、射线与线段的相关概念是解题的关键.二、填空题︒1、5148'【解析】【分析】根据互余的定义(和为90︒的两个角互余)即可得.【详解】解:因为α∠与β∠互余,且3812α'∠=︒,所以9038125148β''∠=︒-︒=︒,故答案为:5148'︒.【点睛】本题考查了互余,熟练掌握互余的定义是解题关键.2、①②④【解析】【分析】先根据数轴的性质、线段中点的定义可得,,0b c c a b c a c b -=-=-<<<,再根据绝对值的性质逐个判断即可得.【详解】解:由题意得:,,0b c c a b c a c b -=-=-<<<, 则22a c b c b b c c c c c c --=--=+=-+=-=,即等式①正确;由,b c c a b c -=-=-得:22a c b b c =-=-+,0a <,20b c ∴-+<,22b a b c c ∴=-+=-,即等式②正确;由,b c c a b c -=-=-得:223a c b b b b =-=--=-, 则()()11344a b b b b c --=---==-,即()14c a b =-,等式③错误;+,3325+=+-=-=+a b c bb b bb b-+,--=--=+=+=3445b b b b ba b c b b b∴,即等式④正确;a b c a b c+-=--综上,正确的等式序号是①②④,故答案为:①②④.【点睛】本题考查了数轴、线段中点、绝对值、整式的加减,熟练掌握数轴和绝对值运算是解题关键.3、1084︒'【解析】【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60则转化为度.【详解】解:35°45'+72°19'=108°4'故答案为:108°4' .【点睛】本题考查的知识点是角度的计算,注意度分秒之间的进率为60即可.4、长方体、正方体、圆柱(答案不唯一)【解析】【分析】截面的形状是长方形,说明从不同的方向看到的立体图形的形状必有长方形或正方形,由此得出长方体、正方体、圆柱用一个平面去截一个几何体,可以得到截面的形状是长方形.解:用一个平面去截一个几何体,如果截面的形状是长方形,原来的几何体可能是长方体、正方体、圆柱.故答案为:长方体、正方体、圆柱(答案不唯一).【点睛】此题考查用平面截几何体,解题的关键是掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.5、45°##45度【解析】【分析】根据补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角,即可求解.【详解】解:∵∠α=135°,∴∠α的补角=180°-∠α=180°-135°=45°,故答案为:45°.【点睛】本题考查了补角的定义,熟练掌握补角的定义是解题的关键.三、解答题1、 (1)2(2)1【解析】(1)由点C 是AB 的中点可得AC =BC =4,由点D 是BC 的中点可得BD =CD =2即可;(2)由(1)可知AE 、AD 的长,再根据EC =AC −AE ,即可得出线段EC 的长.(1)解:因为点C 是AB 的中点,8AB =, 所以142AC BC AB ===, 又因为点D 是BC 的中点, 所以122BD CD BC ===.(2)解:由(1)得4AC =,6AD AC CD =+=,因为E 是AD 的中点, 所以132AE ED AD ===, 所以431EC AC AE =-=-=.【点睛】本题考查了两点间的距离以及线段中点的定义,利用线段的和差是解题关键.2、∠COD 和∠COE ,∠AOD 和∠BOE , ∠AOD 和∠COE ,∠COD 和∠BOE 互为余角;∠AOD 和∠BOD ,∠COD 和∠BOD ,∠BOE 和∠AOE ,∠COE 和∠AOE 互为补角【解析】【分析】和为90°的两角互余,和为180°的两角互补,根据两角和即可找出互余与互补的角.【详解】解:由题意知11=22AOD DOC AOC COE EOB BOC ∠=∠∠∠=∠=∠, ∵180AOD DOC COE EOB AOC BOC ∠+∠+∠+∠=∠+∠=︒∴∠AOC 和∠BOC 互为补角; ∴()11190222COD COE AOC BOC AOC BOC ∠+∠=∠+∠=∠+∠=︒ ∴∠COD 和∠COE 互为余角;同理,∠AOD 和∠BOE , ∠AOD 和∠COE ,∠COD 和∠BOE 也互为余角;∠AOD 和∠BOD ,∠COD 和∠BOD ,∠BOE 和∠AOE ,∠COE 和∠AOE 也互为补角;∴∠COD 和∠COE ,∠AOD 和∠BOE , ∠AOD 和∠COE ,∠COD 和∠BOE 互为余角;∠AOC 和∠BOC ,∠AOD 和∠BOD ,∠COD 和∠BOD ,∠BOE 和∠AOE ,∠COE 和∠AOE 互为补角.【点睛】本题考查了两角互余与两角互补的关系.解题的关键在于正确的找出角度的数量关系.3、 (1)见解析 (2)72CD a = (3)12a =【解析】【分析】(1)根据题意,画出图形,即可求解;(2)根据2AC AB =,12BD AB =可得AC =2a ,12BD a =,即可求解; (3)根据E 是CD 的中点,可得1724CE CD a ==,从而得到14AE AC CE a =-=,即可求解. (1)解:如图所示:(2)解:∵AC =2AB =2a ,1122BD AB a ==, ∴17222CD AC AB BD a a a a =++=++=; (3)解:如图,∵E 是CD 的中点, ∴1724CE CD a ==, ∴71244AE AC CE a a a =-=-=, ∵AE =3,即134a =, ∴12a =.【点睛】本题主要考查了线段的和与差,有关线段中点的计算,根据题意,准确画出图形是解题的关键.4、 (1)作图见解析(2)作图见解析【解析】【分析】(1)连接,AB 以C 为端点作射线,CA 从而可得答案;(2)延长,BC 在BC 的延长线上截取,CH AC 再在线段HB 上截取,HD AB 则线段BD 即为所求.(1) 解:如图,线段,AB 射线CA 是所求作的线段与射线,(2)解:如(1)图,线段BD 即为所求作的线段.【点睛】本题考查的是作线段,作射线,作一条已知线段等于几条线段的和与差,掌握基本作图语言与作图方法是解本题的关键.5、 (1)120(2)BOD 2COE ∠=∠(3)AOE ∠的度数为34m ︒或32m ︒ 【解析】【分析】(1)根据角平分线的性质得到11,22AOE COE AOC DOF BOF BOD ∠=∠=∠∠=∠=∠,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可.(1)∵160AOB ∠=︒,2AOB COD ∠=∠,∴80COD ∠=︒,∴80AOC BOD ∠+∠=︒ ,∵OE 平分,AOC OF ∠平分BOD ∠, ∴11,22AOE COE AOC DOF BOF BOD ∠=∠=∠∠=∠=∠, ∴1()402COE DOF AOC BOD ∠+∠=∠+∠=︒, ∴120EOF COE FOD COD ∠=∠+∠+∠=︒,故答案为:120;(2)BOD 2COE ∠=∠.证明:∵OE 平分AOD ∠,∴2AOD EOD ∠=∠,∵COD CO EOD E ,∴EOD COD COE ∠=∠-∠.∴(22)2AOD COD COE COD COE ∠=∠-∠=∠-∠. ∵2AOB COD ∠=∠,∴2AOD AOB COE ∠=∠-∠.∵BOD AOB AOD ∠=∠-∠,∴BOD 2COE ∠=∠,(3)如图1,当OE 在OF 的左侧时,∵OF 平分COD ∠,∴12COF COD ∠=∠,COD m ∠=︒, ∴12COF m ∠=︒, ∵COF COE EOF ∠=∠+∠,3COE EOF ∠=∠, ∴142COF EOF m ∠=∠=︒, ∴18EOF m ∠=︒, ∴338COE EOF m ∠=∠=︒. ∵OC 为AOE ∠的平分线,∴2AOE COE ∠=∠. ∴34AOE m ∠=︒;如图2,当OE 在OF 的右侧时,∵OF 平分COD ∠, ∴12COF COD ∠=∠, ∵COD m ∠=︒, ∴12COF m ∠=︒,∵COF COE EOF ∠=∠-∠,3COE EOF ∠=∠, ∴122COF EOF m ∠=∠=︒, ∴14EOF m ∠=︒, ∴334COE EOF m ∠=∠=︒. ∵OC 为AOE ∠的平分线,322AOE COE m ∠=∠=︒.综上所述,AOE ∠的度数为34m ︒或32m ︒. 【点睛】本题主要考查了角平分线的性质与角度之间的加减运算,关键在于根据图形分析出各角之间的数量关系.。
章节测试题1.【题文】直线上有A,B,C三点,点M是线段AB的中点,点N是线段BC的一个三等分点,如果AB=6,BC=12,求线段MN的长度.【答案】1或5或7或11.【分析】分类讨论点C在AB的延长线上,点C在B的左边,根据线段的中点,三等分点的性质,可得BM、BN的长,根据线段的和差,可得答案.【解答】解:(1)点C在射线AB上,如:点M是线段AB的中点,点N是线段BC的三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BM+BN=3+4=7,或MN′=BM+BN′=3+8=11;(2)点C在射线BA上,如:点M是线段AB的中点,点N是线段BC三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BN﹣BM=4﹣3=1,或MN′=BN′﹣BM=8﹣3=5.2.【题文】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.【答案】(1)k=2;(2)CD的长为1cm或3cm.【分析】(1)把x=-3代入方程进行求解即可得k的值;(2)由于点C的位置不能确定,故应分点C在线段AB上与点C在BA的延长线上两种情况进行讨论即可得.【解答】解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm;当C在BA的延长线时,如图2,∵BC=2AC,AB=6cm,∴AC=6cm,∵D为AC的中点,∴CD=AC=3cm,即CD的长为1cm或3cm.3.【题文】如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.【答案】(1)画图见解析;(2)作射线BC见解析;(3)画图见解析.【分析】分别根据直线、射线、线段的定义作出图形即可.【解答】解:(1)如图所示:;(2)如图所示,(3)如图所示,.4.【题文】(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N 分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C 在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【答案】(1)5cm;(2)MN=,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)有变化,会出现两种情况:①当点C在线段AB上时,MN==5cm;②当点C在AB或BA的延长线上时,MN=1cm.【分析】(1)(2)在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算;(3)会出现两种情况:①点C在线段AB上;②点C在AB或BA的延长线上.不要漏解.【解答】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,(2)直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,②当点C在AB或BA的延长线上时,5.【题文】已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)【答案】见解析【分析】先在射线上依次截取再截取,则线段【解答】解:如图:,线段AB即为所求.6.【题文】如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.【答案】(1)3(2)4:5【分析】(1)AB:BC:CD=2:4:3,可得线段、线段的长,根据线段的和差,可得线段的长,根据线段中点的性质,可得的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得的长,根据线段的和差,可得的长,根据比的意义,可得答案.【解答】解:(1)由AB:BC:CD=2:4:3,CD=6,得AB=4,BC=8.由线段的和差,得AD=AB+BC+CD=4+8+6=18.由线段中点的性质,得由线段的和差,得MC=MD−CD=9−6=3;(2)由线段的和差,得BM=AM−AB=9−4=5.由比的意义,得AB:BM=4:5.7.【题文】如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=2cm,请问点C是线段AD的中点吗?请说明理由.【答案】点C是线段AD的中点.【分析】先根据点B为CD的中点,BD=2cm求出线段CD的长,再根据AC=AD -CD即可得出结论.【解答】解:∵点B为CD的中点.∴CD=2BD.∵BD=2cm,∴CD=4cm.∵AC=AD﹣CD且AD=8cm,CD=4cm,∴AC=4cm ,∴点C是线段AD的中点.8.【题文】已知A、B是数轴上的两个点,点A表示的数为13,点B表示的数为-5,动点P从点B出发,以每秒4个单位长度的速度沿数轴向右匀速运动,设运动时间为秒.(1)BP= ,点P表示的数(分别用含的代数式表示);(2)点P运动多少秒时,PB=2PA?(3)若M为BP的中点,N为PA的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【答案】(1),;(2)3秒或9秒;(3)长度不发生变化,长度是9.【分析】(1)根据BP=速度×时间可表示出BP的长,点P表示的数为-5+4t;(2) 分点P在AB之间运动时和点P在运动到点A的右侧时两种情况列出方程求解即可;(3) 分点P在AB之间运动时和点P在运动到点A的右侧时两种情况,利用中点的定义和线段的和差求出MN的长即可.【解答】解:(1)由题意得,BP=4t,点P表示的数是-5+4t;(2)当点P在AB之间运动时,由题意得,PB=4t,PA=13-(-5+4t)=18-4 t,∵PB=2PA,∴4t=2(18-4 t),∴t=3;当点P在运动到点A的右侧时,由题意得,PB=4t,PA=-5+4t-13=4 t -18,∵PB=2PA,∴4t=2(4 t -18),∴t=9;综上可知,点P运动多3秒或9秒时,PB=2PA.(3)当点P在AB之间运动时,由题意得,PB=4t,PA=18-4 t,∵M为BP的中点,N为PA的中点,∴,, ∴MN=MP+NP=2t+9-2t=9;当点P在运动到点A的右侧时,由题意得,PB=4t,PA=4 t -18,∵M为BP的中点,N为PA的中点,∴,, ∴MN=MP-NP=2t-(2t-9)=9;综上可知,线段MN的长度不发生变化,长度是9.9.【题文】如图,已知线段a,b,c,射线AM.(1)用圆规和直尺按要求作图(保留作图痕迹):①用圆规在射线AM上截取AB=a;②在射线BM上用圆规依次截取BC=b,CD=b;③在线段DA上用圆规截取DE=c.则线段AE=.(用a,b,c的式子表示)(2)在(1)中所作的图形中一共能构成条线段.【答案】(1)答案见解析,a+2b-c;(2)15.【分析】(1)根据所给的步骤进行画图即可得;(2)根据数线段的方法,如果线段上有n个端点,这条线段中存在的线段条数为:1+2+3+…+(n-1)条,由此解答.【解答】解:(1)如图所示;①用圆规在射线上截取;②在射线上用圆规依次截取,;③在线段上用圆规截取,则线段=;(2)在(1)中所作的图形中一共有6个端点,共可构成:1+2+3+4+5=15条线段,故答案为:15.10.【题文】如图,点C、D是线段AB上两点,AC:CD=1:3,点D是线段CB 的中点,AD=12.(1)求线段AC的长;(2)求线段AB的长.【答案】(1)3;(2)21.【分析】(1)根据AC:CD=1:3和AD=12求出AC即可;(2)先求出BC长,再求出AB即可.【解答】解:(1)∵AC:CD=1:3,AD=12,∴AC=AD=×12=3;(2)∵AC=3,AD=12,∴CD=AD-AC=9,∵AD=12,D为BC的中点,∴BC=2CD=18,∴AB=AC+BC=3+18=21.11.【题文】如图,B是线段AD上一动点,沿A→D→A以2c m/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= ___ cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.【答案】(1)①4;②3;(2)①当时,,②当时,;(3)在运动过程中EC的长保持不变,恒等于5.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)根据AB=2t即可得出结论;(3)直接根据中点公式即可得出结论.【解答】解:(1)当t=2时,①AB= 4 cm.②解:∵又∵,∴∵点C是线段BD的中点∴(2)①当时,此时点B从A向D移动:②当时,此时点B从D向A移动:(3)①当时,此时点B从A向D移动:∵点E是AB的中点,∴∵,∴∵点C是BD的中点∴又∵∴②当时,此时点B从D向A移动:∵点E是AB的中点,∴∵,∴∵点C是BD的中点∴又∵∴综上所述:在运动过程中EC的长保持不变,恒等于5.12.【题文】如图,平面上有五个点A,B,C,D,E.按下列要求画出图形.(1)连接BD;(2)画直线AC交BD于点M;(3)过点A作线段AP⊥BD于点P;(4)请在直线AC上确定一点N,使B,E两点到点N的距离之和最小(保留作图痕迹).【答案】答案见解析.【分析】(1)、(2)分别根据直线、线段的定义作出图形即可;(3)根据垂线的作法进行作图即可;(4)根据两点之间线段最短,连接BE与AC的交点即为满足条件的点.【解答】解:(1)如图,连接线段BD;(2)如图,作直线AC交BD于点M;(3)如图,过点A作线段AP⊥BD于点P;(4)如图,连接BE交AC于点N.13.【题文】如图,在直线l上顺次取A,B,C三点,使得AB=4cm,BC=3cm,如果O为线段AC的中点,M为线段AB的中点,N为线段BC的中点.(1)求线段MN的长度;(2)求线段OB的长度.【答案】(1)MN =cm;(2)OB=cm.【分析】(1)可先求出MB、BN,继而根据MN=MB+BN即可得出答案;(2)先求出OC的长度,然后根据OB=OC-BC可得出答案.【解答】(1)因为AB=4cm,BC=3cm,M为线段AB的中点,N为线段BC的中点,所以MB=AB=2cm,BN= BC=cm,故可得MN=MB+BN=cm.(2)因为O为线段AC的中点,AC=AB+BC=7cm,所以OC=AC=cm,故可得:OB=OC-BC=cm.14.【题文】如图,AD=12,AC=BD=8,E、F分别是AB、CD的中点,求EF 的长.【答案】8【分析】根据条件可以先求出AB、CD的长度,再根据中点定义,求出EB、CF 的值,利用EF=EB+BC+CF求出EF.【解答】解:∵AD=12,AC=BD=8,∴CD=AD-AC=4,AB=AD-BD=4,∴BC=BD-CD=4,∵E、F分别是AB、CD的中点,∴EB=CF=2,∴EF=EB+BC+CF=8.15.【题文】如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.【答案】见解析【分析】连接AB,与l的交点就是C点.【解答】解:如图所示,理由:两点之间,线段最短.16.【题文】在下图中,C,D是线段AB上的两点,已知BC=AB,AD=AB,AB=12 cm,求CD,BD的长.【答案】CD=5cm,BD=8cm.【分析】首先根据AB、BC和AD的关系求出BC和AD的长度,然后根据CD=AB-AD-BC以及BD=DC+BC求出线段的长度.【解答】解:∵AB=12cm,∴BC=AB=×12=3cm,AD=AB=×12=4cm,∴CD=AB-AD-BC=12-4-3=5cm,BD=DC+BC=5+3=8cm.17.【题文】如图,A、B、C三点不在同一条直线上,按要求画图:(1)画直线AB;(2)画射线BC;(3)画线段CA.【答案】见解析.【分析】利用直尺作出图形即可.【解答】解:如图,18.【题文】尺规作图.如图,已知在平面上有三个点A,B,C,请按下列要求作图:(1)作直线AB;(2)作射线AC;(3)在射线AC上作线段AD,使AD=2AB.【答案】答案见解析【分析】(1)连接AB,双向延长,得出直线AB;(2)连接AC,单向延长,得出射线AC;(3)以A为圆心,AB长为半径作圆,交AC于点E,再以E为圆心重复刚才操作,即可得到线段AD.【解答】解:(1)连接AB,并延长AB、BA,得到直线AB;(2)连接AC,延长AC,得到射线AC;(3)以A点为圆心,线段AB长为半径作圆,交射线AC于点E,再以E点为圆心,线段AB长为半径作圆,交射线AC与点D,线段AD即是所求.图形如下:19.【题文】如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.【答案】7.5.【分析】先求出线段AC=BC=5,再算出线段BD的长,然后根据AD=AC+CD或者 AD=AB-BC代入计算即可.【解答】解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=AB=5cm,CD=BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm20.【题文】已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.【答案】AM的长度为3 cm或9 cm.【分析】根据题意画出符合条件的两种情况,求出AC的长,根据AM=AC求出即可.【解答】解:(1)当点C在线段AB上时,如图1,∵AB=12cm,BC=4cm,∴AC=AB﹣BC=8cm,∵M是AC的中点,∴AM=AC=×8cm=4cm;(2)当点C在线段AB的延长线上时,如图2,∵AB=12cm,BC=4cm,∴AC=AB+BC=16cm,∵M是AC的中点,∴AM=AC=×16cm=8cm,∴线段AM的长为4cm或8cm.。
图形与几何(一)图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。
常用的长度单位有千米、米、分米、厘米、毫米。
二、长度单位:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米1米=100厘米 1米=1000毫米三、面积单位是用来测量物体的表面或平面图形的大小的。
常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积是1平方千米。
六、面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米七、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升九、常用的质量单位有:吨、千克、克。
十、质量单位:1吨=1000千克 1千克=1000克十一、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)1世纪=100年 1年=12个月 1年=4个季 1个季度=3个月 1个月=3旬大月=31天小月=30天平年二月=28天闰年二月=29天 1天=24小时1小时=60分 1分=60秒十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:千米:km 米:m 分米:dm 厘米:cm 毫米:mm 吨:t 千克:kg 克:g 升:l 毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
图形与几何一线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
* 射线射线只有一个端点;长度无限。
* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
* 平行线在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b) s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c= 4as=a23三角形(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
教学笔记第4课时立体图形的认识与测量(2)教学内容教科书P87第5题,完成教科书P87“做一做”第1题,P89~90“练习十八”中第9、10、11、13、15、16题。
教学目标1.进一步理解立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强沟通知识之间的内在联系,将所学知识进一步条理化和系统化,发展空间观念。
2.感受数学与生活的联系,体会数学的价值,体会转化、类比、数形结合等数学思想和方法,增强创新意识,发展数学思考能力,提高解决实际问题的能力。
3.学会整理数学知识的方法,培养学习能力。
教学重点理解立体图形的特征,沟通表面积和体积计算公式之间的联系。
教学难点立体图形表面积、体积计算方法的熟练掌握。
教学准备课件。
教学过程一、谈话引入,明确目标课件出示立体图形。
师:上节课我们已经复习了这几种立体图形的特征,今天这节课我们将共同复习它们的表面积和体积。
[板书课题:立体图形的认识与测量(2)]【设计意图】开门见山,揭示复习的内容,明确复习任务,让学生很快进入整理复习的学习氛围中。
二、整理知识,沟通联系1.复习表面积。
师:立体图形的表面积指的是什么?【学情预设】立体图形的表面积是指它表面的面积总和。
师:请你写出长方体、正方体和圆柱体的表面积计算公式。
学生依次汇报三种立体图形的表面积的计算公式,教师板书:S长方体=2(ab+ah+bh)S正方体=6a2S圆柱=2πrh+2πr2师:进一步想一想,它们的表面积有没有相同的地方?(学生可能会感到困难)师:大家觉得有困难,我们来看看展开图。
课件演示立体图形的表面展开图。
【学情预设】引导学生发现三种立体图形的表面积计算都是“2个底面+1个侧面”。
师:2个底面好计算,关键是侧面,它们的侧面积分别怎样计算?【学情预设】学生先说出长方体的侧面积=(长×高+宽×高)×2;正方体的侧面积=棱长×棱长×4;圆柱的侧面积=底面周长×高,教师可以引导学生发现它们的侧面积都可以用底面周长×高来计算。
生1:我们学过的平面图形有长方形、正方形、三角形、梯形、平行四边形、圆形你能对学过的图形进行分类吗?生2:我们学过的立体图形有长方体、正方体、球、圆柱体、圆锥体我们学过的直线、射线、线段、角,属于什么图形?生3:我们学过的直线、射线、线段、角,属于平面图形。
这节课我们复习线与角及平面图形的知识(板书课题)。
[设计意图:通过复习,学会将学过的图形会逐级分类、整理,感悟分类的数学思想,掌握分类方法,形成知识网络。
在分类的过程中,一要注意引导学生确定分类的标准,使学生掌握分类方法,感悟分类的数学思想;二要鼓励学生自主尝试分类,并把分类的结果记录下来,促进学生自主建构知识,形成知识网络。
] 【环节二:合作探究归纳整理。
】(一)复习直线、射线、线段。
问题1:直线、射线和线段有什么区别?同一平面内的两条直线有几种位置关系?1.教师组织学生分组讨论。
学生汇报讨论结果预设:生1:直线可以向两端无限延伸,直线没有端点。
生2:射线只能向一端延伸,射线只有一个端点。
生3:线段有两个端点生4:同一平面内的两条直线可以是互相平行,可以是互相垂直生5:还可以是相交、重合2.教师引导学生总结:(1)用直尺把两点连接起来,就得到一条线段;把线段一端无限延长,可以得到一条射线;把线段两端无限延长,可以得到一条直线。
教书板书:(2)直线、射线、线段的区别与联系:(3)同一平面内两条直线的位置关系:学生在练习纸上按要求画一画①同一平面内相交的两条直线②同一平面内互相平行的两条直线③同一平面内互相垂直的两条直线④过点A,画出下面直线的平行线和垂线。
(4)随堂检测练习87页做一做第1题按要求画一画,教师出示练习内容。
(二)复习角。
问题2:我们学过的角有哪几种?角的大小和什么有关?各种角的特征是什么?直角、平角、周角之间的关系是什么?怎样用量角器测量角的度数?怎样画一个角?1.组织学生分组讨论、交流。
并用量角器量角的度数、用量角器规定度数的角。
9.1 几何图形第三课时9.1.1立体图形与平面图形(三)——立体图形的展开图一、教学目标(一)学习目标1.直观认识简单立体图形的平面展开图.2.探究并掌握正方体的平面展开图.3.知道多面体可由平面图形围成.(二)学习重点了解直棱柱、棱锥、圆柱、圆锥的平面展开图.(三)学习难点根据平面展开图想象相应的几何体.二、教学设计(一)课前设计1.预习任务(1)有些立体图形是由一些平面图形围成的,可以将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图.(2)准备一个正方体包装盒,为学习正方体的展开图做准备.2.预习自测(1)圆柱的侧面展开图形是( )A.圆B.长方形C.梯形D.扇形【知识点】立体图形的展开图.【数学思想】【解题过程】解:圆柱的侧面展开图形是以底面周长为长、圆柱的高为宽的长方形.【思路点拨】实际操作或由小学知识解答.【答案】B.(2)把一个圆锥的侧面沿图所示的线剪开,得到的图形是( )A.三角形B.圆C.圆弧D.扇形【知识点】立体图形的展开图.【数学思想】【解题过程】解:如图,圆锥的侧面展开图形是以点A为圆心、母线AB为半径的扇形. 【思路点拨】实际操作或由小学知识解答.【答案】D.(3)下列图形中可以作为一个三棱柱的展开图的是()【知识点】立体图形的展开图.【数学思想】【解题过程】解:三棱柱的底面是三角形,侧面是长方形即可确定答案为A.【思路点拨】分清三棱柱的底面是三角形,侧面是长方形即可判定.【答案】A.(4)下面四个图形中,可以折叠成三棱锥的是( )【知识点】立体图形的展开图.【解题过程】解:A折叠成三棱柱;B折叠成三棱锥;C折叠成四棱锥;D不能折叠成棱锥. 【思路点拨】抓三棱锥底面和侧面都是三角形的特点作答.【答案】B.(二)课堂设计1.知识回顾(1)回忆小学学过的正方体、圆锥、圆柱及展开图,初步体会立体图形与平面图形的关系. (2)回顾立体图形从不同方向看,可以得到不同的平面图形.(3)观察立体图形通过平面图形折叠得到,体会平面图形与立体图形的相互转化.2.问题探究探究一探究圆柱、棱柱(长方体)的展开图★▲●活动①师问:你能说出圆柱的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:圆柱的展开图底面是两个圆,侧面是长方形.师问:你能说出长方体的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:长方体的展开图底面是两个长方形,侧面是四个长方形.总结:圆柱的底面是圆,侧面是长方形;棱柱的底面是多边形,侧面是长方形.【设计意图】学生通过回顾小学的知识,了解圆柱、棱柱的平面展开图:区分圆柱的底面是圆,侧面是长方形;棱柱的底面是多边形,侧面是长方形.体会立体图形与相应平面图形之间的对应关系,培养学生的空间观念和想象能力.探究二探究立体图形的展开图★▲●活动①探究圆锥、棱锥的展开图师问:你能说出圆锥的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:圆锥的展开图底面是一个圆,侧面是扇形.师问:你能说出四棱锥的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:四棱锥的展开图底面是一个四边形,侧面是四个三角形.总结:锥体的平面展开图:圆锥的底面是圆,底面是扇形;棱锥的底面是多边形(几棱锥底面是几边形),侧面是三角形(三角形的个数与底面多边形的边数相同).【设计意图】通过学生独立思考、小组交流、师生点拨,了解锥体的平面展开图:圆锥的底面是圆,棱锥的底面是多边形(几棱锥底面是几边形),侧面是三角形(三角形的个数与底面多边形的边数相同).体会立体图形与相应平面图形之间的对应关系,培养学生的空间观念和想象能力.●活动②探究正方体的展开图.学生自主学习:教材81页内容,探究正方体包装盒的展开图.师问:同学们能将自己手中的正方体包装盒的展开吗?学生活动:以小组为单位,将自己准备的正方体包装盒展开,画出正方体的展开图,在小组里交流.总结:在小组交流的基础上,归纳总结正方体展开图的情况.正方体的展开图共有11种:①“141”型②“231”型③“222”型④“33”型【设计意图】通过学生独立思考、小组交流、师生点拨,了解正方体的11种平面展开图,体会立体图形与相应平面图形之间的对应关系,培养学生的空间观念和想象能力,为解决有关以正方体展开图为背景的问题打基础.●活动③探究由立体图形的展开图折叠成几何体师问:下图中各图形能否折成几何体?若能,写出折成的几何体的名称.学生举手抢答.(1)圆锥;(2)五棱柱;(3)不能;(4)圆柱;(5)正方体;(6)三棱锥总结:由展开图折叠成立体图形,需要熟悉立体图形的展开图,要求同学们要有空间想象能力.【设计意图】由展开图折叠成立体图形,进一步让学生体会立体图形与平面图形的转化.探究三运用知识解决问题★▲●活动①例1.如图所示,下列四个选项中,不是正方体表面展开图的是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】解:选项A 、B 、D 折叠后都可以围成正方体;而C 折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C .【思路点拨】熟记正方体的11种展开图,进行对比判断,强调有“田”型不是正方体的展开 图.【答案】C .练习:下列各图中,经过折叠能围成一个立方体的是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】解:A.可以折叠成一个正方体;B.是“凹”字格,故不能折叠成一个正方体; C.折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D.是“田”字格,故不能折叠成一个正方体.【思路点拨】由平面图形的折叠及正方体的展开图解题. 【答案】A .【设计意图】通过练习,熟记正方体的展开图,注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图. ●活动2例2 .下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A.B. C.D.A.B .C.D.【知识点】立体图形的展开图. 【数学思想】【解题过程】解:A.剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B.剪去阴影部分后,无法组成长方体,故此选项不合题意;C.剪去阴影部分后,能组成长方体,故此选项正确;D.剪去阴影部分后,无法组成长方体,故此选项不合题意.【思路点拨】根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出 即可. 【答案】C .练习:图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.梦B.水C.城D.美【知识点】立体图形的展开图. 【数学思想】【解题过程】解:第一次翻转“梦”在下面,第二次翻转“中”在下面,第三次翻转“国”在下面,第四次翻转“城”在下面,“城”与“梦”相对,故选:A .【思路点拨】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案,最好动手操作. 【答案】A .【设计意图】展开图折叠成几何体,培养了学生的空间想象能力.练习考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序确定每次翻转时下面是解题关键. 这种题最好让学生实际操作. ●活动3例3 .过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开A.B.C.D.图正确的为()【知识点】立体图形的展开图.【数学思想】【解题过程】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.【思路点拨】由平面图形的折叠及立体图形的表面展开图的特点解题.【答案】B.练习:如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()【知识点】立体图形的展开图.【数学思想】【解题过程】解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,正视图的斜线方向相反,故C错误,只有D选项符合条件.【思路点拨】根据正方体的表面展开图进行分析解答即可.【答案】D【设计意图】以正方体展开图为背景是常考的题型,解答时注意正方体的空间图形,从相对面入手,仔细分析各种符号,对照展开图进行解答问题,最好实践操作完成.3.课堂总结知识梳理(1)柱体、锥体的展开图特征;(2)正方体的展开图;(3)以正方体及展开图为背景的考题.重难点归纳(1)正方体的展开图;(2)以正方体及展开图为背景的考题训练.(三)课后作业 基础型 自主突破1.把如图中的三棱柱展开,所得到的展开图是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:三棱柱两个底面是两个全等的三角形,侧面是三个长方形,这样的图形围 成的是三棱柱.把图中的三棱柱展开,所得到的展开图是B . 【思路点拨】根据三棱柱的定义以及展开图解题. 【答案】B.2.依次写出展开后如图所示的六种平面图的几何体的名称.(1) _________;(2) _________;(3) _________; (4) _________;(5) _________;(6) _________. 【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:依次写出几何体名称:(1)正方体;(2)长方体:(3)三棱柱; (4)四棱锥;(5)圆柱;(6)圆锥.【思路点拨】由棱柱、棱锥、圆柱、圆锥的展开图对比判断.【答案】(1)正方体;(2)长方体:(3)三棱柱;(4)四棱锥;(5)圆柱;(6)圆锥. 3.下列图形中,能通过折叠围成一个三棱柱的是( )A.B.C.D.【知识点】立体图形的展开图.【数学思想】【解题过程】解:A.另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.【思路点拨】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【答案】C.4.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.梦B.的C.国D.中【知识点】立体图形的展开图.【数学思想】【解题过程】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.选A.【思路点拨】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【答案】A.5.正方体的六个面分别标有1、2、3、4、5、6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1B.5C.4D.3【知识点】立体图形的展开图.【数学思想】【解题过程】解:由三个图形可看出与3相邻的数字有2、4、5、6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1、2、3、4,所以与6相对的数是5.故选B.【思路点拨】正方体的六个面分别标有1、2、3、4、5、6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2、4、5、6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1、2、3、4,所以与6相对的数是5.【答案】B.6.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合【知识点】立体图形的展开图.【数学思想】【解题过程】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.【思路点拨】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【答案】B.能力型师生共研1.一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?【知识点】立体图形的展开图.【数学思想】【解题过程】解:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6.【思路点拨】根据正方体的特征知,相邻的面一定不是对面,进行简单的推理即可得答案.【答案】面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6. 2.下图是正方体的一个平面展开图,如果折叠成原来的正方体时与边a重合的是线段__________.【知识点】立体图形的展开图.【数学思想】【解题过程】解:试着折叠,可以想象,也可以亲自动手做一做,折叠成原来的正方体时与边a重合的是d.【思路点拨】考查正方体的表面展开图及空间想象能力.在验证立方体的展开图时,试着折叠,可以想象,也可以亲自动手做一做,折叠成原来的正方体即可定答案.【答案】线段d.探究型多维突破1.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A、B围成的正方体上的距离是()A.0B.1C.D.【知识点】立体图形的展开图.【数学思想】【解题过程】解;将展开图折叠成正方体,AB是正方体的边长,AB=1,【思路点拨】根据展开图折叠成几何体,可得正方体,A、B是同一棱的两个顶点,可得答案.【答案】B.2.棱长为a的正方体摆成如图所示.(1)试求其表面积;(2)若如此摆放10层,其表面积是多少?若如此摆放n 层呢?【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:(1)从前后、左右、上下不同方向看,每个面可看见6个小正方形,故表面积为236a ;(2)若摆放10层,其表面积为:226(12310)330a a⨯++++=;若摆放n 层,其表面积为:226(123)3(1)n a n n a ⨯++++=+【思路点拨】从前后、左右、上下不同方向看,计算出表面积. 【答案】(1)236a ;(2)2330a ;23(1)n n a + 自助餐1.下列立体图形中,侧面展开图是扇形的是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B. 【思路点拨】圆锥的侧面展开图是扇形. 【答案】B.2.如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是( )【知识点】立体图形的展开图. 【数学思想】 【解题过程】解:根据圆锥的特征可知:圆锥的侧面展开后是一个扇形,三视图分别为三角形和圆形,不A.B.C.D.可能是正方形,故选D.【思路点拨】根据圆锥的特征:圆锥的侧面展开后是一个扇形,再由三视图,即可选择答案.【答案】D.3.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是_____.【知识点】立体图形的展开图.【数学思想】【解题过程】解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.【思路点拨】利用正方体及其表面展开图的特点解题.【答案】的.4.将一边长为4的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是__________.【知识点】立体图形的展开图.【数学思想】【解题过程】解:如图,三棱锥四个面中最小的一个面是三角形AEF的面积为2.【思路点拨】三棱锥四个面中最小的一个面是等腰直角三角形,它的两条直角边等于正方形边长的一半,根据三角形面积公式即可求解.【答案】2.5.如图是一个不完整的正方体平面展开图,需再添上一个面,折叠后才能围成一个正方体.将其补充完整,请将所有的方法画出来.【知识点】立体图形的展开图.【数学思想】【解题过程】解:共有下列4种情况:【思路点拨】由正方体的展开图对比可求解.【答案】6.小明家的客厅长5m,宽4m,高3m.现要在离地面0.5m的A处装一个电源,开关装在离天花板1m的B处.用电线把A、B两处连起来,且A、B点都在墙的中间(如图).为安全起见,电线应固定在客厅的天花板、地板或墙上,而不能从客厅中穿过.电工最少需多长的电线?【知识点】立体图形的展开图.【数学思想】【解题过程】解:①当电线过左面、上面、右面时,所用电线长为:1+5+(3﹣0.5)=8.5m,②当电线过左面,下面,右面时所用电线长为:3﹣1+5+0.5=7.5m;③当电线过左面,后(或前)面,右面时所用电线长为:2+5+2+(3-1-0.5)=10.5m ;所以故电工最少需7.5m电线. 【思路点拨】应把左面,上面,右面的三面展开在一个平面内,算出两点间的距离;把左面,下面,右面的三面展开在一个平面内,算出两点间的距离;把左面,后面,右面的三面展开在一个平面内,算出两点间的距离;进行比较.【答案】7.5m.。
小学人教版六年级数学下册求几何图形阴影部分的面积1.如图,大圆半径为5厘米,小圆半径为3厘米,求阴影部分的面积,2.如图,已知两同心圆(圆心相同,半径不相等的两个圆),大圆半径为3厘米,小圆半径为1厘米,求阴影部分的面积3.如图,大圆半径为6cm,小圆半径为4cm,求阴影部分的面积4.已知如图大圆的半径为4cm,小圆的半径为3cm,求两个圆阴影部分的面积的差5.求图中阴影部分的面积(单位:厘米)6.求阴影部分的面积(单位:厘米)7.求阴影部分的面积(单位:厘米)8.如图,已知小圆半径为2厘米,大圆半径是小圆的3倍,问空白部分甲比乙的面积多多少厘米?9.求阴影部分的面积(单位:厘米)10.求阴影部分的面积(单位:厘米)11.已知直角三角形面积是12平方厘米,求阴影部分的面积12.求阴影部分的面积(单位:厘米)13.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长14.正方形边长为2厘米,求阴影部分的面积15.图中四个圆的半径都是1厘米,求阴影部分的面积16.如图,正方形边长为8厘米,求阴影部分的面积17.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?18.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?19.如图,四个扇形的半径相等,求阴影部分的面积(单位:厘米)20.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积21.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积22.求阴影部分的面积(单位:厘米)23.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=500,问阴影部分甲比乙面积小多少?24.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米,求BC的长度25.如图是一个正方形和半圆所组成的图形,P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积26.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。
几何图形(复习课)
一.这是一节复习课,复习的内容是,小学阶段学过的所有几何图形。
二.教学目标:
1.归纳总结所学过的几何图形,有简单到复杂。
直线到平面
到立体图形。
2.掌握图形的求面积或体积(容积)的计算方法,并总结出
公式。
3.熟练掌握面积,体积的单位换算。
三.授课过程:
1.结合教学目标,分小组归纳总结。
2.各小组派代表到讲台上给大家展示自己的总结结果。
3.教师做系统的总结并补充。
4.结合课本做一些这方面的练习(求面积和体积)。
四.布置作业:
总结出所有图形求面积或体积的计算公式,用字母表示。