六年级数学下册图形与几何
- 格式:doc
- 大小:670.50 KB
- 文档页数:5
人教版六年级数学下册《图形与几何》专项训练姓名: ___________班级: ___________考号: ___________一、填空题1. 一个等腰三角形的一条边长是, 另一条边长是, 那么这个等腰三角形的周长是(______)。
2. 钟面上, 经过3小时, 时针旋转了(______);经过30分钟, 分针旋转了(______)。
3. 一个梯形的下底是, 如果下底缩短, 那么面积就减少, 并且得到的新图形是一个平行四边形, 原来梯形的面积是(__________)。
4. 如右图, 直角梯形的周长, 它的面积是(________)。
5. 一个长方体正好可以切成4个棱长为的正方体, 原长方体的棱长总和可能是(______), 也可能是(______)。
6.右图是一个圆柱和一个圆锥, 圆柱的底面直径是圆锥的2倍, 它们的高度相等。
一个这样的圆柱可以熔铸成(________)个这样的圆锥。
7.观察下图, 图①和图②中的三角形均为等边三角形, 图①中小三角形的面积是大三角形面积的。
图③中小正方形的面积占大正方形面积的。
8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图), 这个纸盒的底面积是_____平方厘米, 体积是_____立方厘米.9.如下图所示, 一张长方形铁皮, 切割下阴影部分的两个圆和一个长方形刚好能做一个油桶, 这个油桶的容积是(________)。
10. 右图中圆的面积与长方形面积相等。
圆的周长是, 那么阴影部分的周长是(______)。
二、选择题11. 图中正方形的面积()平行四边形的面积。
A. 大于B. 等于C. 小于D. 无法判断12.用10倍的放大镜看40°的角, 看到的角是()A. 40°B. 400°C. 4°13.一个等腰三角形的一个底角是, 它的顶角是()。
A. B. C. D.14.下列四个图形中, 不能通过基本图形平移得到的是()。
《图形与几何-立体图形》一、选择题1.下面的平面图形中()能围成长方体A.B.C.D.2.如图,把一个高6分米的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米.原来这个圆柱的体积是()立方分米.A.105πB.54πC.36πD.18π3.一个长方体木块,长5分米,它有一组相对的面是正方形,其余4个面的面积和是40平方分米,则这个木块的体积是()立方分米.A.20或50 B.20或48 C.204.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4 B.602.88 C.628 D.904.325.一个物体是由圆柱和圆锥黏合而成的(如图),如果把圆柱和圆锥重新分开,表面积就增加了250.24cm,原来这个物体的体积是()A.3401.92cm 200.96cm B.3301.44cm D.3226.08cm C.3二、填空题1.李叔叔把一根铁丝截成一些小段后,正好焊接成一个长5cm、宽4cm、高3cm的长方体框架,这个长方体的体积是3cm,这根铁丝原有cm.2.将36厘米长的铁丝,做成一个正方体框架,这个正方体的体积是立方厘米,表面积是平方厘米.3.用如图硬纸板做成一个无盖的长方体纸盒.这张硬纸的面积是平方厘米,这个纸盒的容积是立方厘米.4.有一张长方体铁皮(如图),剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为10厘米,那么圆柱的底面积是平方厘米,体积是立方厘米.5.一根圆柱形的木料长5米,把它锯成4段,表面积增加了12平方分米,这根木料的体积是.如果锯成4段用了9分钟,那么把它锯成6段要用分钟.6.一节长2米的通风管,它的横截面是边长4分米的正方形.做10节这样的通风管至少需要铁皮平方米.7.一个长方体木块长、宽、高分别是5cm、4cm、4cm.如果用它锯成一个最大的正方体,体积比原来减少了%.8.一个圆锥体橡皮泥,底面积是15平方厘米,高是6厘米.这个圆锥的体积是立方厘米:如果把它捏成与这个圆锥等底的圆柱,圆柱的高是厘米9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为立方米,若需要一个防尘罩,至少需要布平方米.10.一个圆锥和一个圆柱底面积相等,圆锥高15厘米,圆柱高10厘米,圆柱体积和圆锥体积的最简整数比是.11.一根长方体木料,横截面是边长10厘米的正方形.从这根木料上截下6厘米长的一段,切削成一个最大的圆锥.圆锥的体积是2cm,约占截下这段长方体木料体积的%(百分号前面保留一位小数).12.图中一个小球的体积是立方厘米,一个大球的体积是立方厘米.三、判断题1.长方体的面中可能有正方形,正方体的面中不可能有长方形. ( )2.把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的2倍. ( )3.将圆柱的侧面展开有可能是长方形,也有可能是正方形,还有可能是平行四边形.()4.四个棱长2厘米的正方体拼一个长方体,长方体表面积最大是96平方厘米( )四、计算题1.求下面立体图形的表面积和体积(单位)cm2.看图计算.(单位:)dm(1)如图1:①求表面积.②求体积(2)如图2:求体积.3.求如图的表面积和体积.单位()dm五、解决问题1.一个长方体的玻璃缸容器,长6dm,宽5dm,高4dm,里面的水深3.2dm,再把一个棱长为3dm的正方体铁块放入水中(完全浸没),玻璃容器里的水会溢出多少升?2.在内侧棱长为20厘米的正方体容器里装满水,将容器如图倾斜放置,流出的水正好装满一个内侧长25厘米、宽8厘米、高5厘米的长方体容器.求图中线段AB的长度.3.一个长方体,如果长增加3厘米,宽和高不变,它的体积增加96立方厘米;如果宽减少2厘米,长和高不变,它的体积减少160立方厘米;如果高增加2厘米,长和宽不变,它的体积增加80立方厘米,求原长方体的表面积.4.如图是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆.(1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?(3)大棚内的空间大约有多大?5.六一儿童节,康康把一块橡皮泥揉成圆柱形,切成三块(如图1),表面积增加了50.24平方厘米;切成四块(如图2),表面积增加了48平方厘米.请你算算圆柱形橡皮泥的体积是多少立方厘米.6.有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30立方厘米.现在瓶中装有一些饮料,正放时饮料的高度是20厘米,倒放时空余部分的高度为5厘米,瓶内现有饮料多少立方厘米?7.有一个高8厘米,容量为50毫升的圆形容器A,里面装满了水,现把长16厘米的圆柱B垂直放入,使B的底和A的底面接触,这时一部分水从容器中溢出,当把B从A拿走后,A中的水的高度只有6厘米,求圆柱体B的体积是多少?答案一、选择题1.D.2.B.3.A4.C.5.A.二、填空题1.60,48.2.27,54.3.432、720.4.314、6280.5.100立方分米,15.6.32.7.20.8.30,2.9.0.5652;4.0506.10.2:1.11.157;26.2.12.30,35.三、判断题1.√.2.√.3.√.4.⨯.四、计算题1.解:(1)表面积:(838333)2334⨯+⨯+⨯⨯+⨯⨯=++⨯+⨯(24249)294=⨯+57236=+11436=(平方厘米);150体积:833333⨯⨯+⨯⨯7227=+=(立方厘米);99答:这个组合图形的表面积是150平方厘米,体积是99立方厘米.(2)表面积:30306430306⨯⨯⨯-⨯⨯=⨯⨯-⨯900649006=⨯-540045400=-216005400=(平方厘米);16200体积:3030304⨯⨯⨯=⨯⨯900304270004=⨯=(立方厘米);108000答:这个组合图形的表面积是16200平方厘米、体积是108000立方厘米.2.解:(1)①表面积:23.14612 3.14(62)2⨯⨯+⨯÷⨯=+226.0856.52=(平方分米)282.6②体积:23.14(62)12⨯÷⨯=⨯⨯3.14912=(立方分米)339.12答:圆柱体的表面积是282.6平方分米,体积是339.12立方分米.(2)21⨯÷⨯+⨯3.14(42)(3 1.2)3=⨯⨯3.144 3.4=(立方分米)42.704答:体积是42.704立方分米.3.解:10106 3.1446⨯⨯+⨯⨯60075.36=+=(平方分米)675.362⨯⨯-⨯÷⨯101010 3.14(42)6=-100075.36924.64=(立方分米)答:这个图形的表面积为675.36平方分米,体积为924.64立方分米.五、解决问题1.解:33365 3.2654⨯⨯+⨯⨯-⨯⨯=+-2796120=-123120=(立方分米)3答:玻璃容器里的水会溢出3立方分米.2.解:如图:2025852(2020)-⨯⨯⨯÷⨯=-⨯÷2010002400=-÷202000400205=-=(厘米)15答:线段AB的长度是15厘米.3.解:(长⨯宽+长⨯高+宽⨯高)2⨯=÷+÷+÷⨯(9631602802)2=++⨯(328040)2=⨯1522=(平方厘米)304答:这个长方体的表面积是304平方厘米.4.解:(1)15230⨯=(平方米),答:这个大棚的种植面积是30平方米.(2)2⨯⨯÷+⨯÷,3.142152 3.14(22)=+,47.1 3.14=(平方米),50.24答:覆盖在这个大棚上的塑料薄膜约有50.24平方米.(2)2⨯÷⨯÷,3.14(22)1523.14152=⨯÷,=(立方米),23.55答:大棚的空间是23.55立方米.5.解:50.24412.56÷=(平方厘米);假设圆柱的底面半径是r,则212.56π=,r所以212.56 3.144r=÷=,所以2r=(厘米);圆柱的高:484(22)÷÷⨯=÷124=(厘米)3体积为:23.1423⨯⨯=⨯12.563=(立方厘米)37.68答:圆柱形橡皮泥的体积是37.68立方厘米.6.解:30[20(205)]⨯÷+,430=⨯,5=(立方厘米);24答:瓶内现有饮料24立方厘米.7.解:圆形容器A的底面积:÷=(平方厘米);508 6.25溢出水的体积,即放入容器A的圆柱B的体积:⨯-,6.25(86)6.252=⨯,=(毫升);12.5圆柱体B的体积是:÷⨯,12.581612.52=⨯,=(立方厘米);25答:圆柱体B的体积是25立方厘米.。
六年级数学下册教案-第6单元:图形与几何-3 图形与位置-人教版一、教学目标1. 让学生理解和掌握图形的位置关系,包括图形的平行、垂直、相交等关系,并能运用这些关系解决实际问题。
2. 培养学生的空间想象能力,提高他们对图形的观察、分析和推理能力。
3. 培养学生运用数学语言进行表达和交流的能力,提高他们的数学思维能力。
二、教学内容1. 图形的平行、垂直、相交关系2. 图形的位置关系的应用三、教学重点和难点1. 教学重点:图形的平行、垂直、相交关系2. 教学难点:图形的位置关系的应用四、教学方法和手段1. 教学方法:采用讲解、示范、练习相结合的方式进行教学,注重启发式教学,引导学生主动参与,培养学生的动手操作能力和解决问题的能力。
2. 教学手段:利用多媒体课件、教具等辅助教学,使教学内容更加直观、生动。
五、教学过程1. 导入:通过生活中的实例,引导学生观察图形的位置关系,激发学生的学习兴趣。
2. 讲解:讲解图形的平行、垂直、相交关系,通过示范和练习,让学生理解和掌握这些关系。
3. 应用:通过解决实际问题,让学生运用图形的位置关系,培养学生的应用能力。
4. 巩固:通过练习和讨论,巩固学生对图形位置关系的理解和应用。
5. 总结:总结本节课的学习内容,强调图形位置关系在实际生活中的应用。
六、课后作业1. 完成课后练习题,巩固图形的位置关系。
2. 观察生活中的图形,运用图形的位置关系解决实际问题。
七、教学反思本节课通过讲解、示范、练习等方式,让学生理解和掌握图形的位置关系,培养学生的空间想象能力和解决问题的能力。
在教学过程中,要注意引导学生的主动参与,注重启发式教学,提高学生的数学思维能力。
同时,要注重培养学生的动手操作能力,使他们在实际操作中理解和掌握图形的位置关系。
在课后作业的布置上,要注重培养学生的应用能力,让他们在实际生活中运用图形的位置关系解决问题。
需要重点关注的细节是“教学过程”部分。
教学过程是教案的核心,它直接关系到教学目标的实现和学生的学习效果。
6.2图形与几何一、选择题(共8小题,每小题2分,共16分)1.圆周率p 表示()A.圆周长与直径的比值B.圆周长与半径的比值C.直径与圆周长的比值D.半径与圆周长的比值2.画一个周长是12.56cm 的圆,圆规两脚之间的距离是()cm .A.2B.3C.43.一根绳子可围成一个半径是6米的圆,若用它围成一个正三角形,它的边长是()米A.pB.4pC.6pD.12p4.小圆半径是3厘米,大圆半径是5厘米,小圆面积是大圆面积的()A.53B.925C.35D.2595.把一个圆平均分成若干份,切拼成一个近似的长方形,长方形与圆比()A.周长、面积都相等B.长方形周长大、圆面积大C.面积都相等、长方形周长大6.一个长方形和一个圆的周长相等.已知长方形的长是9分米,宽是6.7分米,圆的面积是()A.31.4平方分米B.78.5平方分米C.314平方分米D.68.8平方分米7.在一个边长是8厘米的正方形内画一个最大的圆,圆面积占正方形面积的()A.2p B.14C.12D.4p 8.如图,一个三角形的三个顶点分别为三个半径为3厘米的圆的圆心,则图中阴影部分的面积是()平方厘米.A.pB.9p C.4.5p D.3p二、填空题(共12小题,第3题3分,其余每题2分,共25分)1.同一个圆中,周长与半径的比是,直径与半径的比值是.2.画一个周长是6.28厘米的圆,圆规两脚间的距离是厘米,这个圆的面积是平方厘米.3.在一张长6分米,宽4分米的长方形纸里面剪去一个最大的圆,这个圆的直径是分米,周长是分米,面积是平方分米.4.已知小圆的半径是2厘米,大圆的半径是3厘米,小圆和大圆周长的比是,面积的比是.5.把一个直径是5厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加厘米.6.把一个圆沿对称轴分成两个半圆后,周长增加了12厘米.每个半圆的周长是厘米.7.一个挂钟的时针长4厘米,分针长8厘米,从9:00到11:00分针的尖端“走过”了厘米,时针“扫过”的面积是平方厘米.(p取3.14)8.一个圆的周长是31.4cm,半径增加了2cm后,面积增加了%cm.9.一个圆环,内圆周长是25.12cm,外圆半径是6cm,圆环的面积是210.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是平方厘米.cm.11.如图,圆的周长是18.84cm,空白部分是一个正方形.则阴影部分的面积是212.如图,长方形的周长是24厘米,阴影部分的面积是平方厘米.(p取3.14)三、计算题(共4小题,每小题6分,共24分)1.求如图的周长和面积.2.如图,正方形的边长是4厘米,求阴影部分的周长和面积.3.求出下面图形的周长和面积.(单位:厘米)( 3.14)p=4.小圆直径6cm,大圆直径10cm,求下面阴影部分的周长和面积.四、操作题(共2小题,每小题3分,共6分)1.按要求操作与解答.(1)画一个边长为4厘米的正方形.(2)在正方形内画一个最大的圆.(3)假如把正方形内的圆外部分称为“阴影部分”,求阴影部分面积与圆面积的比.2.在如图的长方形中画一个最大的半圆,并涂上阴影,再计算空白部分的面积.五、解决问题(共6小题,第27题4分,其余每题5分,共29分)1.一只钟表的分针长8厘米,那么半小时分针针尖走过的距离是多少厘米?半小时分针扫过的面积是多少?2.一只环形玉佩的外圆半径为2厘米,比内圆半径多1.5厘米,这只环形玉佩的面积是多少平方厘米?3.人民公园内的圆形石桌上刻有一个中国象棋棋盘,石桌的直径是40cm.(1)棋盘的面积是多少?(2)棋盘的面积占石桌面积的几分之几?4.将圆平均分成若干个小扇形,剪拼成一个近似的长方形(如图).(1)如果长方形的长是12.56厘米,圆的面积是多少?(2)如果圆的半径是10厘米,阴影部分的面积是多少?5.如图,草地上有一个长10米,宽8米的关闭着的羊圈,在羊圈的一角A用16米的绳子拴着一只羊P,则这只羊在草地上的活动范围有多大?(p取3.14)6.如图,某中学校园有一块长方形空地ABCD,AD的长为30米,在AD上有一段长24米的旧篱笆墙AE,现利用旧篱笆墙AE以及新购的48米长的篱笆材料围成一个面积最大的半圆形花园,但不能超出长方形ABCD的范围.(1)若AB长为10米,求半圆形花园的面积;(2)若AB长为15米,当围成的半圆形花园面积最大时,直径为多少米?(精确到1米)答案一、选择题1.A.2.A.3.B.4.B.5.C.6.B.7.D.8.C.二、填空题(共12小题)1.2:1p,2.2.1;3.14.3.4;12.56;12.56.4.2:3,4:9.5.5.6.15.42.7.100.48,29875.8.96.9.62.8.10.4.11.10.26.12.6.88.三、计算题1.解:周长是:3.14828´¸+12.568=+20.56()cm =;面积是:283.14(22´¸3.14162=´¸25.12=(平方厘米);答:这个图形的周长是20.56厘米,面积是25.12平方厘米.2.解:周长:4 3.1412.56´=(厘米)面积:244(42) 3.14´-¸´1612.56=-3.44=(平方厘米)答:阴影部分的周长是12.56厘米,面积是3.44平方厘米.3.解:3.1442 3.1422´´+´´25.1212.56=+37.68=(厘米)223.14(42)´-3.14(164)=´-3.1412=´37.68=(平方厘米);答:它的周长是37.68厘米,面积是37.68平方厘米.4.解:3.1462 3.14102106´¸+´¸+-9.4215.74=++29.12=(厘米)223.14(102)2 3.14(62)2´¸¸-´¸¸3.14252 3.1492=´¸-´¸39.2514.13=-25.12=(平方厘米)答:阴影部分的周长是29.12厘米,面积是25.12平方厘米.四、操作题(共2小题)1.解:(1)(2)如图所示,即为所要求画的正方形和圆:;(3)圆的面积:23.14(42)12.56´¸=(平方厘米),阴影部分的面积1612.56=-,3.44=(平方厘米);3.44:12.5643:157=答:阴影部分的面积与圆面积的比是43:157.2.解:如图所示:225 3.1422´-´¸10 6.28=-3.72=(平方厘米)答:空白部分的面积是3.72平方厘米.五、解决问题(共6小题)1.解:3.1482225.12´´¸=(厘米);23.1482´¸,3.14642=´¸,100.48=(平方厘米);答:半小时分针针尖走过的距离是25.12厘米,半小时分针扫过的面积是100.48平方厘米.2.解:2 1.50.5-=(厘米)223.14(20.5)´-3.14 3.75=´11.775=(平方厘米)答:这只环形玉佩的面积是11.775平方厘米.3.解:(1)40402´¸4020=´800=(平方厘米)答:棋盘的面积是800平方厘米.(2)2800[3.14(402)]¸´¸8001256=¸100157=答:棋盘的面积占石桌面积的100157.4.解:(1)圆的半径:12.562(2 3.14)´¸´25.12 6.28=¸4=(厘米)圆的面积:23.144´3.1416=´50.24=(平方厘米)答:圆的面积是50.24平方厘米.(2)阴影部分的面积:233.14104´´33144=´235.5=(平方厘米)答:阴影部分的面积是235.5平方厘米.5.解:2223113.1416 3.14(1610) 3.14(168)444´´+´´-+´´-,602.8828.2650.24=++,681.38=(平方米);答:这只羊在草地上的活动范围有681.38平方米.6.解:(1)211 3.14101015722S p ==´´´=半圆平方米,此时用去篱笆 3.141031.4C r p ==´=半圆米48<米,答:半圆形花园的面积为157平方米.(2)当12r =时, 3.141237.48C r p ==´=半圆米48<米,当15r =时, 3.141547.1C r p ==´=半圆米,47.1653.1l =+=半圆米48>米,所以,半圆的直径应大于24米且小于30米,设半圆的直径新增加a 米,则半圆弧长为242ap +´,根据题意得,24482aa p ++´=,解得,4a =,所以,半圆的直径为24428+=米,答:所设计的半圆形的直径为28米.。
图形与几何(一)图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。
常用的长度单位有千米、米、分米、厘米、毫米。
二、长度单位:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米1米=100厘米 1米=1000毫米三、面积单位是用来测量物体的表面或平面图形的大小的。
常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积是1平方千米。
六、面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米七、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升九、常用的质量单位有:吨、千克、克。
十、质量单位:1吨=1000千克 1千克=1000克十一、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)1世纪=100年 1年=12个月 1年=4个季 1个季度=3个月 1个月=3旬大月=31天小月=30天平年二月=28天闰年二月=29天 1天=24小时1小时=60分 1分=60秒十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:千米:km 米:m 分米:dm 厘米:cm 毫米:mm 吨:t 千克:kg 克:g 升:l 毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
六年级数学下册《图形与几何》练习题及答案解析(北师大版) 学校:___________姓名:___________班级:___________考号:___________一、选择题(16分)1.计算鱼缸能装水多少升,是求鱼缸的()。
A.表面积B.棱长总和C.体积D.容积2.营养学家建议:儿童每天水的摄入量应不少于1500mL。
要达到这个要求,小明每天用底面直径6cm,高10cm的圆柱形水杯喝水,至少喝水()杯。
A.4 B.5 C.6 D.73.两个圆柱形容器内原来的水面高度都是6cm。
它们的底面直径都是10cm。
①号容器内放入一个小球后,水面高度为10cm。
②号容器内放入一个小球和一个大球,水面高度为16cm。
两个容器内的小球完全相同,水也均未溢出,小球的体积与大球的体积的比是()。
A.5∶8 B.2∶5 C.2∶3 D.5∶124.制作一个无盖的圆柱形容器,应该选择()。
A.①和③B.①和④C.②和③D.②和④5.下面各图中,()是不正确的。
A.B.C.D.6.如图是由7个立方体摆成的几何体,从右面观察到的图形是()。
A.B.C.D.7.一个三角形,三个内角度数比是2∶3∶1,这个三角形按角分是()。
A.钝角三角形B.锐角三角形C.直角三角形D.无法确定8.如图,甲与乙的周长相比,()。
A.甲的周长>乙的周长B.甲的周长<乙的周长C.甲的周长=乙的周长D.无法比较二、填空题(26分)9.如图,有两个边长是6厘米的正方形,把其中一个正方形的顶点固定在另一个正方形的中心点上。
旋转其中一个正方形,重叠部分的面积是( )平方厘米。
10.将一个长方体的高增加3厘米后变成一个正方体,它的表面积比原来增加84平方厘米,原来长方体的体积是( )立方厘米。
11.在一幅比例尺为1∶3000的图纸上,量得一个三角形菜地的底是20厘米,高15厘米,这块菜地的实际面积是( )公顷。
12.一顶帽子,上面是直径2dm,高1dm的圆柱形(有帽顶),帽檐部分是一个宽1dm的圆环,做这顶帽子,至少要用( )的布料。
【精选】苏教版六年级下册数学期末复习《图形与几何》专项练习(含答案)一、填空。
(每空3 分,共27 分)1.在同一平面内,如果直线b 和c都与直线a垂直,那么直线b和c的位置关系是( )。
2.一个圆形花坛的直径是6 米,现在沿花坛的外围铺上一条宽 1 米的水泥路,水泥路的面积是( )平方米。
3.一个立体图形,从前面看到的形状是,从左面看到的形状是,搭一个这样的立体图形至少要( )个小正方体。
(至少有一个面相接) 4.豆豆有9 根a厘米长的小棒和6 根b厘米长的小棒(a与b不相等,且均不为0),他用其中的12 根搭成一个长方体框架,长方体框架的棱长和是( )厘米。
(接口处忽略不计)5.右图中三角形ABC 的面积是30 平方厘米,平行四边形BCDE的面积是( )平方厘米。
6.下面的立体图形①、②、③的底面积相等,④、⑤的底面积都是①的3 倍,③的高是其他立体图形的3 倍。
和②的体积相等的是立体图形( )和( )。
7.如右图,半径为20 厘米的圆的外面和里面各有一个正方形,外面正方形的面积是( )平方厘米,里面正方形的面积是( )平方厘米。
二、选择。
(将正确答案的字母填在括号里)(每小题3 分,共15 分)1.一种牛奶采用长方体纸盒密封包装,从外面量,长7 厘米,宽4 厘米,高10 厘米。
下面哪个盒上的标注是合理的?( )。
A.260±10 毫升B.270±10 毫升C.280±10 毫升D.280 毫升2.如右图,一张顶角为40°的等腰三角形纸片,剪去顶角后得到一个四边形,则∠ 1+ ∠2=( )°。
A.140 B.180 C.200 D.2203.把绕点O顺时针旋转90°后得到的图形是( )。
4.一个圆柱的侧面展开图是正方形,这个圆柱的底面直径与高的比是( )。
A.2π ∶ 1 B.1 ∶ 1 C.1 ∶π D.π ∶ 15.下列说法中,正确的有( )个。
小学数学单元作业设计一、单元信息二、单元分析本单元是空间与图形领域的内容,教材将“图形的认识"和“测量”两部分内容整合起来进行复习,“图形与变换”与“图形与位置”两部分则单列复习。
本单元通过问题情境,联系实际或联系数学实例,加深对已学知识的理解,加强对相关知识内在联系的认识。
注重对所学知识的运用,在“用”的过程中,促使对本学期知识的理解和掌握。
三、单元学习与作业目标掌握所学几何形体的特征。
能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用。
巩固掌握所学的简单画图、测量等技能。
巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识。
能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
四、单元作业设计思路分层设计作业。
每课时均设计“基础性作业”(面向全体,体现课标,题量2-5大题,要求学生必做)和“发展性作业”(体现个性化,探究性、实践性,题量为2-6大题,要求学生有选择的完成)。
具体设计体系如下:五、课时作业图形的认识与测量基础性作业一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是()平方分米,三角形的面积是()平方分米。
用一副三角板能拼成()度的角。
一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
一个梯形的上底是12厘米,下底是20厘米,高是30厘米,用两个这样的梯形拼成一个平行四边形,拼成的平行四边形的底是()厘米,面积是()平方厘米。
一个正方体木块,从顶点上挖去一个小正方体后,表面积(),体积()。
用五块同样大小的木板(长都是5分米,宽都是3分米)制作成一个长方体木箱,每个面只许用一块木板(不许拼接),这个木箱的体积最大是多少?锯下来的废料是多少平方分米?发展性作业等底等高的圆锥和圆柱容器各一个,将圆柱容器内装满水后,再倒入圆锥容器内,当圆柱容器的水全部倒光时,结果溢出36.2这升。
图形与几何一线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
* 射线射线只有一个端点;长度无限。
* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
* 平行线在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b) s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c= 4as=a23三角形(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
教学笔记第4课时立体图形的认识与测量(2)教学内容教科书P87第5题,完成教科书P87“做一做”第1题,P89~90“练习十八”中第9、10、11、13、15、16题。
教学目标1.进一步理解立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强沟通知识之间的内在联系,将所学知识进一步条理化和系统化,发展空间观念。
2.感受数学与生活的联系,体会数学的价值,体会转化、类比、数形结合等数学思想和方法,增强创新意识,发展数学思考能力,提高解决实际问题的能力。
3.学会整理数学知识的方法,培养学习能力。
教学重点理解立体图形的特征,沟通表面积和体积计算公式之间的联系。
教学难点立体图形表面积、体积计算方法的熟练掌握。
教学准备课件。
教学过程一、谈话引入,明确目标课件出示立体图形。
师:上节课我们已经复习了这几种立体图形的特征,今天这节课我们将共同复习它们的表面积和体积。
[板书课题:立体图形的认识与测量(2)]【设计意图】开门见山,揭示复习的内容,明确复习任务,让学生很快进入整理复习的学习氛围中。
二、整理知识,沟通联系1.复习表面积。
师:立体图形的表面积指的是什么?【学情预设】立体图形的表面积是指它表面的面积总和。
师:请你写出长方体、正方体和圆柱体的表面积计算公式。
学生依次汇报三种立体图形的表面积的计算公式,教师板书:S长方体=2(ab+ah+bh)S正方体=6a2S圆柱=2πrh+2πr2师:进一步想一想,它们的表面积有没有相同的地方?(学生可能会感到困难)师:大家觉得有困难,我们来看看展开图。
课件演示立体图形的表面展开图。
【学情预设】引导学生发现三种立体图形的表面积计算都是“2个底面+1个侧面”。
师:2个底面好计算,关键是侧面,它们的侧面积分别怎样计算?【学情预设】学生先说出长方体的侧面积=(长×高+宽×高)×2;正方体的侧面积=棱长×棱长×4;圆柱的侧面积=底面周长×高,教师可以引导学生发现它们的侧面积都可以用底面周长×高来计算。
生1:我们学过的平面图形有长方形、正方形、三角形、梯形、平行四边形、圆形你能对学过的图形进行分类吗?生2:我们学过的立体图形有长方体、正方体、球、圆柱体、圆锥体我们学过的直线、射线、线段、角,属于什么图形?生3:我们学过的直线、射线、线段、角,属于平面图形。
这节课我们复习线与角及平面图形的知识(板书课题)。
[设计意图:通过复习,学会将学过的图形会逐级分类、整理,感悟分类的数学思想,掌握分类方法,形成知识网络。
在分类的过程中,一要注意引导学生确定分类的标准,使学生掌握分类方法,感悟分类的数学思想;二要鼓励学生自主尝试分类,并把分类的结果记录下来,促进学生自主建构知识,形成知识网络。
] 【环节二:合作探究归纳整理。
】(一)复习直线、射线、线段。
问题1:直线、射线和线段有什么区别?同一平面内的两条直线有几种位置关系?1.教师组织学生分组讨论。
学生汇报讨论结果预设:生1:直线可以向两端无限延伸,直线没有端点。
生2:射线只能向一端延伸,射线只有一个端点。
生3:线段有两个端点生4:同一平面内的两条直线可以是互相平行,可以是互相垂直生5:还可以是相交、重合2.教师引导学生总结:(1)用直尺把两点连接起来,就得到一条线段;把线段一端无限延长,可以得到一条射线;把线段两端无限延长,可以得到一条直线。
教书板书:(2)直线、射线、线段的区别与联系:(3)同一平面内两条直线的位置关系:学生在练习纸上按要求画一画①同一平面内相交的两条直线②同一平面内互相平行的两条直线③同一平面内互相垂直的两条直线④过点A,画出下面直线的平行线和垂线。
(4)随堂检测练习87页做一做第1题按要求画一画,教师出示练习内容。
(二)复习角。
问题2:我们学过的角有哪几种?角的大小和什么有关?各种角的特征是什么?直角、平角、周角之间的关系是什么?怎样用量角器测量角的度数?怎样画一个角?1.组织学生分组讨论、交流。
并用量角器量角的度数、用量角器规定度数的角。
人教版六年级数学下册《图形与几何》专项训练卷(附答案)1. 一个等腰三角形的一条边长为4cm,另一条边长为8cm,求这个等腰三角形的周长。
2. 钟面上,经过3小时,时针旋转了多少度?经过30分钟,分针旋转了多少度?3. 一个梯形的下底为18cm,下底缩短8cm后得到一个平行四边形,面积减少28cm2,原来梯形的面积是多少?4. 如图,直角梯形的周长为40cm,它的面积是多少?5. 一个长方体正好可以切成4个棱长为2cm的正方体,原长方体的棱长总和可能是多少?又可能是多少?6. 如图,一个圆柱和一个圆锥,圆柱的底面直径是圆锥的2倍,它们的高度相等。
一个这样的圆柱可以熔铸成多少个这样的圆锥?7. 观察下图,图①和图②中的三角形均为等边三角形,图①中小三角形的面积是大三角形面积的多少?③中小正方形的面积占大正方形面积的多少?8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图),这个纸盒的底面积是多少平方厘米,体积是多少立方厘米?9. 如下图所示,一张长方形铁皮,切割下阴影部分的两个圆和一个长方形刚好能做一个油桶,这个油桶的容积是多少L?10. 如图,圆的面积与长方形面积相等。
圆的周长是25.12cm,那么阴影部分的周长是多少?11. 图中正方形的面积是大于、等于还是小于平行四边形的面积?12. 用10倍的放大镜看40度的角,看到的角是多少度?13. 一个等腰三角形的一个底角是a度,它的顶角是多少度?14. 下列四个图形中,不能通过基本图形平移得到的是哪个?15. 如图,D、E分别是BC、AD边上的中点,那么阴影部分面积是ABC面积的多少?16. 一个平行四边形相邻的两边分别是8cm、10cm,其中一边上高是4cm,求这个平行四边形的面积。
答案:这个平行四边形的面积是36cm2。
2. 选B3. 选A4. 选C5. 选B6. 选D7. 选A8. 选C9. 选B10. 选C11. 选A12. 选C13. 选B14. 选D15. 选B16. 选C17. 无法呈现展开图,删除该题18. 改写:将大长方体切成两个完全一样的小长方体,每个小长方体的长、宽、高分别为5cm、2cm、1.5cm。
图形与几何
一线和角
(1)线
* 直线
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
* 射线
射线只有一个端点;长度无限。
* 线段
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
* 平行线
在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
* 垂线
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角
(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形
1长方形
(1)特征
对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式
c=2(a+b) s=ab
2正方形
(1)特征:
四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式
c= 4a
s=a2
3三角形
(1)特征
由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式
s=ah/2
(3)分类
按角分
锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分
不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形
(1)特征
两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式
s=ah
5 梯形
(1)特征
只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式
s=(a+b)h/2=mh
6 圆
(1)圆的认识
平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);
把有针尖的一只脚固定在一点(即圆心)上;
把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3)圆的周长
围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。
用字母π表示。
(4)圆的面积
圆所占平面的大小叫做圆的面积。
(5)计算公式
d=2r r=d/2 c=πd c=2πr s=πr2
7扇形
(1)扇形的认识
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
圆上AB两点之间的部分叫做弧,读作“弧AB”。
顶点在圆心的角叫做圆心角。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
扇形有一条对称轴。
(2) 计算公式
s=nπr2/360
8环形
(1) 特征
由两个半径不相等的同心圆相减而成,有无数条对称轴。
(2) 计算公式
s=π(R2-r2)
9轴对称图形
(1) 特征
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
正方形有4条对称轴,长方形有2条对称轴。
等腰三角形有2条对称轴,等边三角形有3条对称轴。
等腰梯形有一条对称轴,圆有无数条对称轴。
菱形有4条对称轴,扇形有一条对称轴。
三立体图形
(一)长方体
1 特征
六个面都是长方形(有时有两个相对的面是正方形)。
相对的面面积相等,12条棱相对的4条棱长度相等。
有8个顶点。
相交于一个顶点的三条棱的长度分别叫做长、宽、高。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
把长方体放在桌面上,最多只能看到三个面。
长方体或者正方体6个面的总面积,叫做它的表面积。
2 计算公式
s=2(ab+ah+bh)
V=sh
V=abh
(二)正方体
1 特征
六个面都是正方形
六个面的面积相等
12条棱,棱长都相等
有8个顶点
正方体可以看作特殊的长方体
2 计算公式
S表= 6a 2
v=a3
(三)圆柱
1圆柱的认识
圆柱的上下两个面叫做底面。
圆柱有一个曲面叫做侧面。
圆柱两个底面之间的距离叫做高。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
2计算公式
s侧=ch
s表=s侧+s底×2
v=sh/3
(四)圆锥
1 圆锥的认识
圆锥的底面是个圆,圆锥的侧面是个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
把圆锥的侧面展开得到一个扇形。
2计算公式
v= sh/3
(五)球
1 认识
球的表面是一个曲面,这个曲面叫做球面。
球和圆类似,也有一个球心,用O表示。
从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。
通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。
2 计算公式d=2r。