小波包变换及代价函数设计综述
- 格式:pdf
- 大小:227.64 KB
- 文档页数:6
小波包分解原理计算公式小波包分解是一种信号处理方法,它可以将信号分解成不同频率的子信号,从而更好地理解信号的特性和结构。
小波包分解的计算公式是其核心,下面我们将介绍小波包分解的原理和计算公式。
1. 小波包分解原理。
小波包分解是基于小波变换的一种信号分解方法。
小波变换是一种多尺度分析方法,它可以将信号分解成不同尺度的子信号,从而揭示信号的局部特征。
小波包分解是小波变换的一种推广,它可以更灵活地选择小波基函数,从而更好地适应信号的特性。
小波包分解的原理是将信号分解成不同频率的子信号。
在小波包分解中,我们首先选择一个小波基函数作为分解的基础,然后根据需要选择不同的尺度和频率,将信号分解成不同频率的子信号。
这样可以更好地理解信号的频率特性,从而更好地分析和处理信号。
2. 小波包分解计算公式。
小波包分解的计算公式是其核心。
在小波包分解中,我们首先需要选择一个小波基函数作为分解的基础。
常用的小波基函数包括Haar小波、Daubechies小波、Symlet小波等。
这些小波基函数具有不同的频率特性和尺度特性,可以根据需要选择合适的小波基函数。
假设我们选择了一个小波基函数ψ(t),我们可以将信号f(t)进行小波包分解。
小波包分解的计算公式如下:\[D_{j,k} = \int_{-\infty}^{\infty} f(t)\psi_{j,k}(t)dt\]其中,\(D_{j,k}\)表示信号f(t)在尺度为j,频率为k的小波基函数ψ(t)上的分解系数。
ψj,k(t)表示小波基函数ψ(t)在尺度为j,频率为k时的尺度变换和平移变换。
通过计算分解系数\(D_{j,k}\),我们可以得到信号f(t)在不同频率和尺度上的子信号。
3. 小波包分解的应用。
小波包分解在信号处理领域有着广泛的应用。
它可以用于信号的去噪、压缩、特征提取等方面。
通过小波包分解,我们可以更好地理解信号的频率特性和尺度特性,从而更好地处理信号。
在实际应用中,我们可以根据需要选择不同的小波基函数和尺度、频率,进行小波包分解。
小波变换分析范文小波变换是一种信号分析技术,可以将信号表示为时频域上的函数。
相比于傅里叶变换,小波变换在时域和频域上都具有更好的局部性和分辨率,能够更好地描述非平稳信号。
本文将从小波变换的基本原理、算法和应用领域等方面进行分析。
一、基本原理小波变换是一种多尺度分析方法,其基本思想是将信号分解成一组基函数(小波基),然后通过对这些基函数与信号的内积运算得到信号在不同尺度上的时频表示。
小波基具有一些特殊的数学特性,如正交性、紧支性和可调节的带宽等,这使得小波变换能够更好地揭示信号的时频信息。
小波变换可以通过离散小波变换(DWT)和连续小波变换(CWT)来实现。
1.离散小波变换(DWT)离散小波变换将信号分解成不同频率域和尺度域的小波基函数,并通过滤波和下采样操作实现。
具体步骤如下:a.将信号通过低通滤波器和高通滤波器分解为近似系数和细节系数;b.对近似系数进一步进行低通滤波和高通滤波,得到第二层的近似系数和细节系数;c.反复重复上述步骤,直到达到所需的尺度。
2.连续小波变换(CWT)连续小波变换通过将信号与不同尺度和位置上的小波基函数进行内积运算来表示信号的时频信息。
具体步骤如下:a.选取一个母小波函数作为基函数;b.将母小波函数进行尺度变换和平移变换,得到一组具有不同尺度和位置的小波基函数;c.将信号与这组小波基函数进行内积运算,得到信号在不同尺度和位置上的时频表示。
小波变换具有多尺度分析能力,可以在不同尺度上观察信号的局部细节特征,并且能够有效地提取信号的边缘、脉冲和突变等特征。
二、常见小波变换算法1.傅里叶变换转换尺度(FBS)小波变换FBS小波变换是比较基础的小波变换算法,通过将傅里叶变换应用于尺度变换的细节部分,将信号分解成自由基函数的线性组合。
2.快速小波变换(FWT)FWT是一种高效的小波变换算法,可以在O(N)的时间复杂度内实现小波变换。
FWT通过迭代地应用滤波器组合和下采样操作来实现信号的分解和重构。
工程振动测试技术小波包变换小波包变换快速算法每次仅仅是对信号的低频分量(近似部分) 进行分解,而没有分解高频分量(细节部分)。
当我们需要把信号分解的很细时,仅仅靠快速算法可能不足以满足分析的需要。
d 1(f s /22-f s /2)a 1 (0-f s /22)a 2 (0-f s /23)d 2(f s /23-f s /22)d 3(f s /24-f s /23)x (t) (0-f s /2)a 3 (0-f s /24)有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)类似与快速算法,小波包分解也是按照分解尺度由低到高逐层向下分解,每层分解信号的所有子带均被一分为二,并传至下一层。
一般情况下,子带的频域将按照由低到高的顺序排列。
因为分解时每一层的小波基个数较多(第j层共有2j 个小波基),所以此算法称为小波包变换。
设 x (t )为一时间信号,p i j 表示第 j 层上的第 i 个小波包,称为小波包系数,G 、H 为小波分解滤波器,H 与尺度函数有关,G 与小波函数有关。
二进小波包分解的快速算法为:1021121()()()(2)()()(2)()i i jj ki i j j kp t x t p t H k t pt p t G k t pt −−−==−=−∑∑其中 21,2,...,2;1,2,...,2;log J jjt i J N −==。
二进小波包分解树形原理图原始信号经过以分析频率fs 的n 层小波包分解后,频域将被分成2n 段,各小波包分量对应的频段分别为2(1)(22)(21)(21)[0,],[,],...,[,],...,[,],[,]22222222nnns s s s s s s s s n n n n n n n nf f f k f kf f f f f −−−−二进小波包分解树形原理图应注意:分解得到的p是小波包系数,不是原信号在某个频段的分量,根据小波变换理论,可将信号的原始数据作为处于最低层的小波包系数。
⼩波包变换(WaveletPacketTransform)的学习笔记对于⼀个连续的周期信号,可以将其分解为⼀组频率不同的三⾓函数信号的线性组合,这就是傅⾥叶级数的本质,将信号从时域投影到频域中的不同频段上来完成分解。
当这个周期信号的周期趋近于⽆穷⼤时,傅⾥叶级数就变成了傅⾥叶变换。
此时的信号本质上是⼀个连续⾮周期信号,傅⾥叶变换的意义就在于对其进⾏分解,同样也是以⼀组三⾓函数作为正交基,并通过这组三⾓函数基的线性组合来表⽰原信号。
数学表达为:由于三⾓函数是⼀个⽆限长的信号,在时域上不具有局部性,因此以其作为正交基对信号进⾏拟合时,具有以下两个不⾜:第⼀,对于突变信号,如阶跃信号或尖峰信号,其需要⼤量的三⾓函数基进⾏组合才能完成较好的信号拟合;第⼆,由于三⾓函数不具备在时域上的局部性,因此在对信号进⾏傅⾥叶变换时,仅仅只能获取到信号在频域上的分布信息,并不能获取到这些不同频率的信号分量在时域上出现的位置。
因此傅⾥叶变换对于⾮平稳信号的分解会遗失其在时域上的变化信息。
⼩波变换就是为了解决对⾮平稳信号的分解问题⽽产⽣的数学⽅法。
相⽐于傅⾥叶变换使⽤⼀组⽆限长的三⾓函数基进⾏信号拟合,⼩波变换使⽤的是⼀组正交的、迅速衰减的⼩波函数基进⾏信号拟合。
这种⼩波函数基可通过其尺度变量和平移变量,获得不同的频率和时间位置。
因此在利⽤这种⼩波函数基对信号进⾏分解时,可以⽤较少的⼩波函数基就拟合出突变信号(稀疏编码特性),同时也能获得不同频率的信号分量在时域上的出现位置。
⽤于⽣成⼀组不同频率和时移的⼩波函数的⼩波函数,称为基本⼩波(Basic Wavelet),由其⽣成的⼀组⼩波函数,是该基本⼩波的⼀个⼩波族(Wavelet Family),表⽰为:,其中为尺度参数,通过伸缩控制⼩波的尺度(频率),为平移参数,通过移位控制⼩波在时域中的出现位置。
这两个参数的作⽤顺序是先作平移,再作伸缩。
对这⼀族⼩波函数进⾏归⼀化,即得到⼀组⼩波函数基。
基于DSP的最优小波包基算法的实现王靖琰【摘要】小波包分析能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对多分辨分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带,使之与信号频谱相匹配,从而提高时-频分辨率.为了能在DSP嵌入式设备中应用小波包分析方法进行信号处理,首先讨论小波包分解的过程和最优基及代价函数的选择方法,然后提出一种在DSP上实现香农熵代价函数的小渡包分解算法的方法,并在浮点型DSP TMS320C6713B上实现了此算法.最后针对具体的数字信号进行小波包分解和最优基选择的实验,实验结果证明了该方法的正确性和高效性.【期刊名称】《现代电子技术》【年(卷),期】2008(031)022【总页数】4页(P161-163,166)【关键词】小波包;代价函数;最优基;DSP【作者】王靖琰【作者单位】中国科学院,上海应用物理研究所,上海,201800【正文语种】中文【中图分类】TP274在小波分析是一维及二维信号数据分析与处理的有力工具,其主要优点就是提供了时频局部分析与细化的能力[1]。
它可以对信号进行有效的时频分解,但在高频频段其频率分辨率较差,而在低频频段其时间分辨率较差。
小波包分析能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对多分辨分析没有细分的高频部分进一步划分,并能够根据被分析信号的特征,选择相应频带,使之与信号频谱相匹配,从而提高了时-频分辨率。
数字信号处理器(Digital Signal Processor,DSP) 以其适合信号处理的独特结构和快速的指令周期,而应用于各种实时信号处理的场合。
将小波包分析与DSP 相结合用于实时信号处理必将产生巨大的实用价值。
1 最优基小波包分解1.1 小波包理论小波变换的分辨率在时-频平面中随频率不同而变化,子带的频率越高,其频率分辨变换没有对高频子带进行再分解,不利于对高频子带的数据压缩。