小波包分解算法-Read
- 格式:ppt
- 大小:1.41 MB
- 文档页数:20
⼩波分解和⼩波包分解这篇⽂章介绍了⼩波分解和⼩波包分解。
⼩波分解(wavelet transform )⼩波傅⾥叶变换的基本⽅程是sin 和cos ,⼩波变换的基本⽅程是⼩波函数(basic wavelet),不同的⼩波在波形上有较⼤的差异,相似的⼩波构成⼀个⼩波族(family)。
⼩波具有这样的局部特性:只有在有限的区间内取值不为0。
这个特性可以很好地⽤于表⽰带有尖锐, 不连续的信号。
⼩波变换其中 表⽰变换得到的⼩波系数,W 是正交矩阵。
是输⼊信号。
正交矩阵构造特定的⼩波函数(basic wavelet )由⼀组特定的⼩波滤波系数(wavelet filter coefficients)构成。
当选定了⼩波函数,其对应的那组⼩波滤波器系数就知道。
⽤⼩波滤波器系数构造不同维度的低通滤波器和⾼通滤波器(下⾯的例⼦中W 就是由这些系数构造出来的)。
低通滤波器可以看作为⼀个平滑滤波器(smoothing filter)。
这两个滤波器,低通和⾼通滤波器,⼜分别被称为尺度(scaling)和⼩波滤波器(wavelet filter)。
⼀旦定义好了这两个滤波器,通过递归分解算法(也称为⾦字塔算法(pyramid algorithm),树算法(tree algorithm)将得到⽔平多分辨率表⽰的信号。
树算法原始信号通过低通滤波器得到低频系数 (approximate coefficients), 通过⾼通滤波器得到⾼频系数(detail coefficients )。
把第⼀层的低频系数作为信号输⼊,⼜得到⼀组approximate coefficients 和detail coefficients 。
再把得到的approximate coefficients 作为信号输⼊,得到第⼆层的approximate coefficients 和detail coefficients 。
以此类推,直到满⾜设定的分级等级。
小波包分解原理计算公式小波包分解是一种信号处理方法,它可以将信号分解成不同频率的子信号,从而更好地理解信号的特性和结构。
小波包分解的计算公式是其核心,下面我们将介绍小波包分解的原理和计算公式。
1. 小波包分解原理。
小波包分解是基于小波变换的一种信号分解方法。
小波变换是一种多尺度分析方法,它可以将信号分解成不同尺度的子信号,从而揭示信号的局部特征。
小波包分解是小波变换的一种推广,它可以更灵活地选择小波基函数,从而更好地适应信号的特性。
小波包分解的原理是将信号分解成不同频率的子信号。
在小波包分解中,我们首先选择一个小波基函数作为分解的基础,然后根据需要选择不同的尺度和频率,将信号分解成不同频率的子信号。
这样可以更好地理解信号的频率特性,从而更好地分析和处理信号。
2. 小波包分解计算公式。
小波包分解的计算公式是其核心。
在小波包分解中,我们首先需要选择一个小波基函数作为分解的基础。
常用的小波基函数包括Haar小波、Daubechies小波、Symlet小波等。
这些小波基函数具有不同的频率特性和尺度特性,可以根据需要选择合适的小波基函数。
假设我们选择了一个小波基函数ψ(t),我们可以将信号f(t)进行小波包分解。
小波包分解的计算公式如下:\[D_{j,k} = \int_{-\infty}^{\infty} f(t)\psi_{j,k}(t)dt\]其中,\(D_{j,k}\)表示信号f(t)在尺度为j,频率为k的小波基函数ψ(t)上的分解系数。
ψj,k(t)表示小波基函数ψ(t)在尺度为j,频率为k时的尺度变换和平移变换。
通过计算分解系数\(D_{j,k}\),我们可以得到信号f(t)在不同频率和尺度上的子信号。
3. 小波包分解的应用。
小波包分解在信号处理领域有着广泛的应用。
它可以用于信号的去噪、压缩、特征提取等方面。
通过小波包分解,我们可以更好地理解信号的频率特性和尺度特性,从而更好地处理信号。
在实际应用中,我们可以根据需要选择不同的小波基函数和尺度、频率,进行小波包分解。
小波包分解变换重组方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!小波包分解变换重组方法是一种在信号处理领域广泛应用的技术,在分析处理非平稳信号方面具有重要意义。
小波的分解和重构算法小波分解是将一个多频率组成的波通过小波分解将所有频率分解出来,重构就是将这些分频率加起来得到最后的重构结果。
小波变换的一级分解过程是,原始信号分别进行低通、高通滤波,再分别进行二元下采样,就得到低频、高频两部分系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。
分解过程:function [cA,cD] = mydwt(x,lpd,hpd,dim)%函数[cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD] ;%输入参数:x——输入序列;% lpd——低通滤波器;% hpd——高通滤波器;% dim——小波分解级数;% 输出参数:cA——平均部分的小波分解系数;% cD——细节部分的小波分解系数;cA=x; % 初始化cA,cDcD=[ ];for i=1:dimcvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB 提供的卷积函数conv()dnl=downspl(cvl); % 通过下采样求出平均部分的分解系数cvh=conv(cA,hpd); % 高通滤波dnh=downspl(cvh); %通过下采样求出本层分解后的细节部分系数cA=dnl; % 下采样后的平均部分系数进入下一层分解cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cDendfunction y=downspl(x);% 函数Y=DOWMSPL(X) 对输入序列进行下采样,输出序列Y。
% 下采样是对输入序列取其偶数位,舍弃奇数位。
N=length(x); % 读取输入序列长度M=floor(N/2); % 输出序列的长度是输入序列长度的一半i=1:M;y(i)=x(2*i);而重构则是分解的逆过程,对低频系数、高频系数分别进行上采样和低通、高通滤波处理。
重构过程:function y = myidwt(cA,cD,lpr,hpr);% 函数MYIDWT() 对输入的小波分解系数进行逆离散小波变换,重构出信号序列y% 输入参数:cA ——平均部分的小波分解系数;% cD ——细节部分的小波分解系数;% lpr、hpr ——重构所用的低通、高通滤波器。
小波包算法1.1小波包变换在脑电信号处理中的应用小波包技术首先在脑电信号的预处理中有着滤波和去噪的功能,其次小波包变换在脑电信号处理中的一个主要应用就是提取特征。
其主要步骤如下:(1) 选择适当的小波滤波器,对给定的采样脑电信号进行小波包变换,获得树形结构的小波包系数。
(2) 选择信息代价函数,利用最佳小波包基选取算法选取最佳基。
(3) 对最佳正交小波包基对应的小波包系数进行处理。
(4) 对处理后的小波包系数采用小波包重构算法得到重构信号。
对于重构得到的信号我们可以计算其均值,方差和能量和也就是其特征值,然后利用支持向量机分类器根据所得特征值进行分类。
1.2 小波包变换的基本概念及算法研究小波变换是一种分析非平稳信号的有效方法,它能够把信号分解成不同尺度基小波的加权和,主要不足是在高频段的频率分辨率较低,导致在一些应用中,不能满足实际要求。
小波包的概念是在小波变换的基础上提出来的,它提供了一种更为精细的信号分析方法,将信号高频部分进行进一步分解,即对高频部分也用二分滤波器进行分解,所以能根据信号的特征选取相应频带与信号频谱匹配,进一步提高了时频分辨率,因此小波包分析具有更广泛的应用价值。
小波分解是基于尺度函数和小波函数为基函数进行分解的。
用ϕ(t)和ψ(t)分别表示小波变化的尺度函数和小波母函数,在小波包分解中,为了统一函数表示,令ψ0(t)= ϕ(t),ψ1(t)= ψ(t)。
那么根据二尺度方程可以构造如下的小波基:)()()(,,t n h 2t k 221ni n k 21j jji 2i 2kj ∑--ψ=-ψ=ψ(1.1))()()(,,t n g 2t k 221nink 21j jj 1i 21i 2kj ∑--++ψ=-ψ=ψ(1.2)其中:i 为节点号,j 为分解级数,h(n)和g(n)=( −1)n h(1 – n)为一对正交镜像滤波器。
信号f(t)=00d 在第j 级和k 点处的小波包分解系数可以用下述递推公式表示:∑⎰-=ψ=-ni 1j i 2k j i2j n k 2d n h dt t t f k d )()()()()(, (1.3)∑⎰-=ψ=-++nij i k j i jn k dn g dt t t f k d )2()()()()(112,12 (1.4)假设原始信号长度为m·2N 点,则f(t)信号的完全重构可以表示为:∑∑∑∑----⋅=-⋅=++-⋅=-⋅=ψ+ψ=112012012,121201202,2)()()()()(j j N j j N m i m k i k j i j m i m k i k j i jt k dt k dt f (1.5)其中,i k j 2,ψ(t)和12,+i k j ψ(t)为根据二尺度方程构造出的小波包基函数,i j d 2(k)和12+i jd (k )是信号f(t)=在第j 级,k 点处的小波包分解系数。
一、首先,小波包的一些基本的基本要弄懂,就是小波包是从原始信号,分级向下分解。
如下图所示。
这就是小波包树,其中节点的命名规则是从(1,0)开始,叫1号,(1,1)是2号,,,,依此类推,(3,0)是7号,(3,7)是14号。
每个节点都有对应的小波包系数,这个系数决定了频率的大小,也就是说频率信息已经有了,但是时域信息在哪里呢?那就是 order。
这个order就是这些节点的顺序,也就是频率的顺序。
比如,节点的排序是 1,2,3,,,,14,那么频率就按先1号的频率变化,后2号的,再3号的,,,然后14号的。
图1来看一个实例:采样频率为1024Hz,采样时间是1秒,有一个信号s是由频率100和200Hz的正弦波混合的,我们用小波包来分解。
clear allclcfs=1024; %采样频率f1=100; %信号的第一个频率f2=300; %信号第二个频率t=0:1/fs:1;s=sin(2*pi*f1*t)+sin(2*pi*f2*t); %生成混合信号[tt]=wpdec(s,3,'dmey'); %小波包分解,3代表分解3层,像图1那样,'dmey'使用meyr小波plot(tt) %这个就是画出图1那个图,可以用鼠标在上面点wpviewcf(tt,1); %画出时间频率图,如图2图2现在开始解释:x轴很简单,就是1024个点,对应1秒,每个点就代表1/1024秒,x轴诡异一下,最后一个数就是1. y轴上显示的数字对应于图1 中的节点,从下面开始,顺序是7号节点,8号,10号,9号,,,,11号节点,这个顺序是这么排列的,这是小波包自动排列的,不用管。
只要知道怎么查看这个order就可以了。
然后,y轴是频率啊,怎么不是100Hz和300Hz呢?原因就是MATLAB这里没有显示频率,显示的是order,频率我们要自己算,怎么算呢。
我们的采样频率是1024Hz,根据采样定理,奈奎斯特采样频率是512Hz,我们分解了3层,最后一层就是 2^3=8个频率段,每个频率段的频率区间是512/8=64Hz,对吧,那看图2,颜色重的地方一个是在8那里,一个在13那里,8是第二段,也就是 65-128Hz之间,13是第五段,也就是257-320Hz之间。
小波包分解的详细原理与公式推导
小波包分解的详细原理和公式推导可以参考信号处理相关教材或者研究论文。
在这里,我简单介绍一下小波包分解的基本概念和原理。
小波包分解是一种信号处理方法,其基本原理是将信号通过一系列的小波基函数进行展开,从而得到信号在不同频率和时间分辨率下的表示。
与传统的傅里叶变换不同,小波包分解能够提供更加灵活和精细的信号分析方法,因为它能够同时考虑时间和频率的局部化特性。
小波包分解的基本步骤如下:
1.选择一个小波基函数,并将其平移和伸缩以适应不同的频率和
时间分辨率。
2.将信号通过所选的小波基函数进行展开,得到信号在不同尺度
下的表示。
3.对展开后的信号进行滤波处理,将信号的不同部分分别通过不
同频率的滤波器,得到不同频率成分的信号。
4.重复步骤2和3,直到达到所需的分解层次。
小波包分解的公式推导可以根据具体的小波基函数和展开方式进行推导。
具体来说,假设我们选择一个小波基函数为φ(t),那么对于一个给定的信号x(t),我们可以将其表示为:
x(t) = ∑ c(n) φ(2t-n)
其中c(n) 是展开系数,可以通过对信号进行小波变换得到。
通过选择不同的小波基函数和变换方式,可以得到不同的小波包分解公式。
需要注意的是,小波包分解在实际应用中需要选择合适的小波基函数
和分解层次,以获得最佳的信号分析效果。
同时,小波包分解也存在一些挑战和限制,例如计算复杂度较高、稳定性问题等。
因此,在实际应用中需要根据具体情况进行选择和应用。
信号的小波包分解程序1.引言1.1 概述概述部分的内容:信号的小波包分解程序是一种用于信号处理的重要工具。
随着数字信号处理技术的不断发展,小波包分解在信号处理领域中得到了广泛的应用。
小波包分解是一种多尺度分析的方法,通过将信号分解成多个子频带信号,并对每个子频带信号进行进一步的分解,最终得到信号的频谱特征。
与传统的傅里叶变换相比,小波包分解具有更好的局部性和时频分辨能力,能够有效地提取信号的局部特征。
本篇文章将介绍信号的小波包分解原理,并详细讲解小波包分解程序的设计与实现。
在小波包分解原理部分,将介绍小波包分解的基本原理,包括小波基函数的选择、分解层数的确定等。
在小波包分解程序的设计与实现部分,将介绍如何编写一个小波包分解程序,包括程序的输入输出、算法的实现过程等。
在本文的结论部分,将分析小波包分解程序的优缺点。
虽然小波包分解具有较好的局部性和时频分辨能力,但在处理非平稳信号时可能存在一定的局限性。
同时,本文将对小波包分解程序进行总结,并展望其在信号处理领域的应用前景。
通过本文的研究,我们可以更深入地了解信号的小波包分解原理和其在信号处理中的应用。
希望本文对读者在设计和实现小波包分解程序的过程中能够提供一定的参考和帮助。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文主要分为引言、正文和结论三个部分。
以下是各部分的内容概述:1. 引言1.1 概述:介绍信号处理领域中小波包分解的应用背景和意义。
1.2 文章结构:简要介绍本文的结构和各部分内容安排。
1.3 目的:明确本文的目标和研究内容。
2. 正文2.1 信号的小波包分解原理:详细介绍小波包分解的基本概念、原理和数学模型。
2.2 小波包分解程序的设计与实现:阐述小波包分解算法实现的步骤和关键技术,包括信号的预处理、小波基函数的选取、小波包分解的计算过程以及结果的分析与展示。
3. 结论3.1 分析小波包分解程序的优缺点:评估小波包分解程序在实际应用中的优势和局限性,并提出改进的可能方向。