飞机原理与构造第四讲高速空气动力学基础
- 格式:pdf
- 大小:4.63 MB
- 文档页数:95
空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。
空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。
空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。
根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。
在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。
空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。
这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。
空气动力学原理空气动力学原理是研究空气在物体表面作用下产生的力的学科,主要用于飞行器、汽车、建筑物等工程设计中。
空气动力学原理的理论基础包括气体力学、流体力学和运动学,它们解释了空气对物体的压力、阻力和升力产生的原理。
本文将介绍空气动力学原理的基础概念和应用。
1. 气体力学气体力学是研究气体的性质和行为的学科。
在空气动力学中,气体力学的基本原理包括气体的状态方程、气体分子的速度分布和气体分子与物体之间的碰撞。
根据气体力学的原理,我们能够计算流经物体表面的气体的压力和温度分布,从而理解空气对物体表面产生的力。
2. 流体力学流体力学是研究流体(液体和气体)的运动规律和性质的学科。
在空气动力学中,流体力学的基本理论包括连续性方程、动量方程和能量方程。
这些方程描述了空气在不同速度和压力下的流动方式,通过解析这些方程,我们可以预测空气在物体表面的流动情况。
3. 升力和阻力在空气动力学中,升力和阻力是两个重要的概念。
升力是空气对物体垂直于运动方向的力,而阻力是空气对物体平行于运动方向的力。
升力和阻力的产生与物体表面的形状、大小和运动状态有关。
对于飞行器来说,升力的产生是通过翼型的气动性能,而阻力则与飞行器的阻力系数和速度有关。
4. 翼型与气动力性能翼型是飞行器上机翼的横截面形状。
在空气动力学中,翼型的形状决定了空气在其上表面和下表面的流动情况,进而影响了升力和阻力的产生。
常见的翼型包括对称翼型、半对称翼型和非对称翼型,它们具有不同的气动力性能。
通过对翼型的气动力学性能进行研究和优化,可以提高飞行器的升力和降低阻力。
5. 应用领域空气动力学原理在多个领域有广泛的应用。
在航空航天工程中,空气动力学原理被用于设计和改善飞机、火箭和卫星的气动外形,以提高其飞行性能。
在汽车工程中,空气动力学原理被用于减少汽车在高速行驶时的空气阻力,从而提高燃油经济性。
在建筑工程中,空气动力学原理被用于对高层建筑、桥梁和其他结构物的风载荷进行估算和设计。
飞机空气动力学原理
飞机空气动力学原理是研究飞机在空中飞行时受到的空气力学力的学科。
飞机在飞行过程中,必须克服引起阻力的空气阻力,同时利用空气动力学力来产生升力和推进力。
首先,了解空气动力学原理的基础是空气的流体特性。
空气是一种气体,在空间中可以自由流动。
当飞机运动时,空气会被迫与其接触,并对其产生作用力。
这些作用力可以分为阻力、升力和推力。
阻力是飞机在空气中运动时受到的阻碍力量。
主要有两种形式,即废气阻力和气动阻力。
废气阻力是由于飞机的发动机排放废气产生的。
气动阻力是由于空气与飞机表面摩擦产生的。
为了减小阻力,飞机的外形设计通常会采用流线型,以减少气流的阻碍。
升力是使飞机脱离地面、保持在空中飞行的力量。
它是通过飞机机翼上的气动力学原理产生的。
机翼的设计使得上表面的气压比下表面低,从而产生一个向上的升力。
此外,机翼上的襟翼也能够改变机翼形状,进一步调节升力的大小。
推力是飞机在空中前进的力量。
通常是由发动机产生的,通过喷射燃烧产物来产生反作用力推动飞机。
推力的大小取决于发动机的性能以及喷气速度。
除了上述三种主要的空气动力学力以外,还有其他一些影响飞机飞行的因素。
例如重力会使飞机朝下落,需要通过升力来抵
消。
风也会对飞机产生侧向的力量,需要通过控制飞机的舵面来调整方向。
总的来说,飞机空气动力学原理是飞机在空中飞行时受到的各种空气力学力的研究。
了解这些原理可以帮助我们更好地设计和改进飞机,提高飞行性能和安全性。
飞机的工作原理飞机作为现代航空交通工具,其工作原理是基于空气动力学和牛顿力学的基本原理。
飞机的工作原理主要包括空气动力学、发动机推力和机翼升力三个方面。
一、空气动力学1.1 空气动力学基础飞机的运行依赖于空气动力学的基本原理。
空气是一种流体,其分子不断运动形成气流。
当飞机通过大气中运动时,会使得空气分子发生相对运动,产生气流。
1.2 机翼的作用飞机的机翼是实现升力的主要构件。
机翼上方的气流流速较快,下方流速较慢,根据伯努利定律,快速气流产生的动压小于慢速气流产生的动压,从而形成了上升的升力。
机翼的横截面呈现出翼型,可以通过改变翼型的设计来调节升力。
1.3 升降舵和方向舵飞机上的升降舵和方向舵用于调整飞机在空气中的姿态和方向。
升降舵位于尾翼上,通过改变升降舵的角度来调整飞机的俯仰姿态。
方向舵位于垂尾部分,通过改变方向舵的角度来调整飞机的偏航姿态。
二、发动机推力2.1 发动机的作用飞机的发动机负责提供足够的推力,以克服飞机的重力和空气阻力,使其能够在空中飞行。
发动机通常采用内燃机或喷气发动机。
2.2 内燃机原理内燃机是一种燃烧内部产生高温高压气体,通过气缸和活塞的工作循环将燃烧能量转化为机械能的燃烧机械装置。
内燃机可分为往复内燃机和涡轮内燃机两种。
2.3 喷气发动机原理喷气发动机是一种通过将空气经压缩后混合燃料燃烧,产生高温高压气体,并通过喷嘴将高速喷出的气体产生的反作用力来产生推力的发动机。
常见的喷气发动机有涡扇发动机和涡轮引气发动机。
三、机翼升力3.1 升力的原理机翼产生升力的原理是基于伯努利定律和牛顿第三定律。
通过机翼上方的气流流速较快,下方流速较慢,从而形成气流上升的压差,产生向上的升力。
3.2 翼型的选择翼型的选择对机翼升力的产生和飞行性能有着重要影响。
常见的翼型有对称翼型和非对称翼型,不同的翼型设计能够满足不同的飞行需求。
3.3 襟翼和襟翼的作用襟翼和襟翼是机翼上的可调节部件,用于增加机翼表面积,从而增加升力。
我把Introduction to flight 的第四章Basic aerodynamics 略读了一遍,提炼了其中的重点要点,将其总结在一起分享给同学们,希望对大家空气动力学的学习有所帮助。
这个文档内容涉及的气流都是无黏的(书134—228 页),没有包含黏性研究的部分。
因为领域导论书对黏性没怎么研究,基本都是只给结论,所以就不总结了。
本文档包括两部分,一是一些基本方程,二是这些方程的一些应用。
我读书只是蜻蜓点水,对一些公式的理解可能有错误;写的只是大致的推导过程,难免有不细致严谨之处;对一些英文的翻译可能不标准,同时可能输入有误。
希望大家批评指正、私下交流。
真心希望我们共同为之润色添彩,使其更加准确无误。
同时,大家有什么学习资料都记得共享啊,让我们共同进步!大家可以再看看领域导论书,看了这个总结,再看书就比较简单了。
看书最好也看看例题,例题不仅是对公式的简单应用,而且有些还包含新的知识,能增进我们对公式的理解。
这些内容只能算是一些变来变去的简单代数问题,大家不要有压力。
不过有几条注意事项:1、注意公式的限定条件,避免错误地加以应用。
2、大物书上的理想气体方程是Pv= 'RT,其中的R 是普适气体常量(universal gas constanl,领域导论书上的P=p RT是经过变换的等价形式,其中的R是个别气体常量(specific gas constant)等于普适气体常量R普适/M,大家变一下马上就懂了。
2、谈谈我的一个理解:本书中的研究好像不太强调质量和体积,可能是因为空气动力学研究没必要也不方便强调。
在一、基本方程——7、能量方程的推导中,v=1/ P,这里的1应理解为单位质量,后面的能量方程中的-V2也包含单位质量1,不然与h的量纲就不统一了;在二、公式应用——3、空速测定C、高速亚声速流中,我们可以看出在本书中,Pv=RT同样把大物书上的状态方程Pv= ,R普适T中的m当成单位质量1,并利用普适气体常量和个别气体常量的关系R个别=R普适/M,即可推出Pv=RT3、本书中涉及到比热(specific heat),用C v (对于等体过程)和c p (对于等压过程)在表示。
直升机的飞行原理与空气动力学基础直升机是一种可以垂直起降的飞行器,它通过旋转的主旋翼产生升力,通过尾旋翼产生反扭力,实现悬停、飞行等动作。
直升机的飞行原理和空气动力学基础主要包括旋翼的升力产生、马力的消耗以及稳定性控制等方面。
首先,直升机的飞行原理是基于伯努利定律和牛顿第三定律。
旋翼是直升机实现升力产生的重要装置,其原理与飞机的机翼相似。
旋翼上表面产生了较快的气流速度,下表面产生了较慢的气流速度,由于伯努利定律,产生了下表面的气压高于上表面,因此形成了向上的升力,从而使直升机能够在空中飞行。
其次,直升机的飞行涉及到马力的消耗。
旋翼的旋转需要马力的输入,主要是通过内燃机或者电动机转动旋翼,从而产生升力。
直升机飞行时,需要克服气流的阻力和重力的作用,因此需要马力来提供足够的推力。
在飞行过程中,直升机需要调整主旋翼叶片的迎角和旋翼的转速,以及尾旋翼的工作状态,以获得不同的飞行形态和速度。
此外,直升机的稳定性控制也是直升机飞行的重要方面。
直升机的稳定性主要通过以下几个方面来保证:1.放样。
即调整主旋翼的迎角和旋翼的转速,使得升力与重力平衡,保持飞行高度稳定。
2.塔臂平衡。
传统直升机通过塔臂实现重心的调整,通过调整塔臂长度和位置,使得直升机在飞行过程中保持稳定。
3.尾翼的设计。
尾旋翼产生的反扭力会使直升机旋转,为了抵消这个旋转力矩,需要通过尾翼进行控制。
尾翼可以变化其迎角和转动方向,以产生不同的力矩,从而控制直升机的稳定性。
总的来说,直升机的飞行原理和空气动力学基础主要涉及旋翼的升力产生、马力的消耗以及稳定性控制等方面。
通过合理地调整主旋翼和尾旋翼的工作状态和角度,以及驱动系统的输入,直升机能够实现悬停、飞行和各种飞行动作。
直升机的研究和发展对于航空事业的进步具有重要意义,它不仅广泛应用于军事领域,也被广泛运用于民用领域,如医疗救援、警务巡逻、旅游观光和货运等。