飞机原理与构造第四讲_高速空气动力学基础(优.选)
- 格式:pdf
- 大小:4.89 MB
- 文档页数:96
我把Introductiontoflight的第四章Basicaerodynamics略读了一遍,提炼了其中的重点要点,将其总结在一起分享给同学们,希望对大家空气动力学的学习有所帮助。
这个文档内容涉及的气流都是无黏的(书134—228页),没有包含黏性研究的部分。
因为领域导论书对黏性没怎么研究,基本都是只给结论,所以就不1、注意公式的限定条件,避免错误地加以应用。
2、大物书上的理想气体方程是Pv=RT,其中的R是普适气体常量(universalgasconstant),领域导论书上的P=ρRT是经过变换的等价形式,其中的R是个别气体常量(specificgasconstant),等于普适气体常量R普适/M,大家变一下马上就懂了。
2、谈谈我的一个理解:本书中的研究好像不太强调质量和体积,可能是因为空气动力学研究没必要也不方便强调。
在一、基本方程——7、能量方程的推导中,v=1/ρ,这里的1应理1,不,同Pv=R1,并利用普适气体常量和个别气体常量的关系,即可3和和c p,(((molarheatcapacityatconstantpressure)。
对比起来有(下式中R个指个别气体常量,R普指普适气体常量,i指分子自由度,γ指热容比):比热摩尔热容c v=R个,c p=R个c v=R普,c p=R普c p-c v=R个c p-c v=R普γ==γ==4、小写v代表体积,大写V代表速度,注意区分,其他字母1、则即2、忽略重力和黏性,朝向x正方向的力为Pdydz压强的变化率为则朝向x负方向的力为(P+dx)dydz则合力F=Pdydz-(P+dx)dydz=-(dxdydz) 又a===V 由3、++即P+ρ在一条流线上是常量,其中用表示,对于不可压缩流,等于总压,我们在方程的应用中会再提及。
4、关于热力学第一定律系统的内能增量=外界传热+外界做功,即de=δq+δw其中δw=-Pdv(压缩,所以v减小,dv是负值,所以有负号) 则δq=de+Pdv定义焓h=e+Pv5、,即系统增加单位温度所吸收的热量等体过程的比热写作可得de=δq=c v dT从e=0和T=0积分得e=c v T我们在大物中学的是e=R普T,m还是要当做单位质量1,推出e=R个T=c v T。
第一章:飞机和大气的一般介绍一、飞机的一般介绍1. 翼型的中弧曲度越大表明A:翼型的厚度越大B:翼型的上下表面外凸程度差别越大C:翼型外凸程度越大D:翼型的弯度越大2. 低速飞机翼型前缘A:较尖B:较圆钝C:为楔形D:以上都不对3. 关于机翼的剖面形状(翼型),下面说法正确的是A:上下翼面的弯度相同B:机翼上表面的弯度大于下表面的弯度C:机翼上表面的弯度小于下表面的弯度D:机翼上下表面的弯度不可比较二、1. 国际标准大气规定的标准海平面气温是A:25℃B:10℃C:20℃D:15℃2. 按照国际标准大气的规定,在高度低于11000米的高度上,高度每增加1000米,气温随季节变化A:降低6.5℃B:升高6.5℃C:降低2℃D:降低2℃3. 在3000米的高度上的实际气温为10℃,则该高度层上的气温比标准大气规定的温度A:高12.5℃B:低5℃C:低25.5℃D:高14.5℃4. 在气温比标准大气温度低的天气飞行,飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度A:偏高B:偏低C:相等D:不确定第二章:飞机低速空气动力学1. 空气流过一粗细不等的管子时,在管道变粗处,气流速度将A:变大B:变小C:不变D:不一定2. 空气流过一粗细不等的管子时,在管道变细处,气流压强将A:增大B:减小C:不变D:不一定3. 根据伯努利定律,同一管道中,气流速度减小的地方,压强将A:增大B:减小C:不变D:不一定4. 飞机相对气流的方向A:平行于机翼翼弦,与飞行速度反向B:平行于飞机纵轴,与飞行速度反向C:平行于飞行速度,与飞行速度反向D:平行于地平线5. 飞机下降时,相对气流A:平行于飞行速度,方向向上B:平行于飞行速度,方向向下C:平行于飞机纵轴,方向向上D:平行于地平线6. 飞机的迎角是A:飞机纵轴与水平面的夹角B:飞机翼弦与水平面的夹角C:飞机翼弦与相对气流的夹角D:飞机纵轴与相对气流的夹角7. 飞机的升力A:垂直于飞机纵轴B:垂直于相对气流C:垂直于机翼翼弦D:垂直于重力8. 飞机的升力主要由产生。
一章1、绝对温度的零度是(C)A、-273℉B、-273KC、-273℃D、32℉2、空气的组成为(C)A、78%氮,20%氢和2%其他气体B、90%氧,6%氮和4%其他气体C、78%氮,21%氧和1%其他气体D、21%氮,78%氧和1%其他气体3、流体的粘性系数与温度之间的关系是? (B)A、液体的粘性系数随温度的升高而增大。
B、气体的粘性系数随温度的升高而增大。
C、液体的粘性系数与温度无关。
D、气体的粘性系数随温度的升高而降低。
4、空气的物理性质主要包括(C)A、空气的粘性B、空气的压缩性C、空气的粘性和压缩性D、空气的可朔性5、下列不是影响空气粘性的因素是(A)A、空气的流动位置B、气流的流速C、空气的粘性系数D、与空气的接触面积6、气体的压力<P>、密度<ρ>、温度<T>三者之间的变化关系是(D)A、ρ=PRTB、T=PRρC、P=Rρ/ TD、P=RρT7、在大气层内,大气密度(C)A、在同温层内随高度增加保持不变。
B、随高度增加而增加。
C、随高度增加而减小。
D、随高度增加可能增加,也可能减小。
(压力和密度都是随高度降低,温度变化在不同的大气层不同)8、在大气层内,大气压强(B)A、随高度增加而增加。
B、随高度增加而减小。
C、在同温层内随高度增加保持不变。
D、随高度增加可能增加,也可能减小。
9、空气的密度(A)A、与压力成正比。
B、与压力成反比。
C、与压力无关。
D、与温度成正比。
10、影响空气粘性力的主要因素: (BC)A、空气清洁度B、速度剃度C、空气温度D、相对湿度11、对于空气密度如下说法正确的是(B)A、空气密度正比于压力和绝对温度B、空气密度正比于压力,反比于绝对温度C、空气密度反比于压力,正比于绝对温度D、空气密度反比于压力和绝对温度12、对于音速.如下说法正确的是: 23题(C)A、只要空气密度大,音速就大B、只要空气压力大,音速就大C、只要空气温度高.音速就大D、只要空气密度小.音速就大(同一个介质,音速只随温度的增大而增大)13、假设其他条件不变,空气湿度大16题(B)A、空气密度大,起飞滑跑距离长B、空气密度小,起飞滑跑距离长C、空气密度大,起飞滑跑距离短D、空气密度小,起飞滑跑距离短14、一定体积的容器中,空气压力(D)A、与空气密度和空气温度乘积成正比B、与空气密度和空气温度乘积成反比C、与空气密度和空气绝对湿度乘积成反比D、与空气密度和空气绝对温度乘积成正比15、一定体积的容器中.空气压力(D)A、与空气密度和摄氏温度乘积成正比B、与空气密度和华氏温度乘积成反比C、与空气密度和空气摄氏温度乘积成反比D、与空气密度和空气绝对温度乘积成正比16、对于露点温度如下说法正确的是: ( BC)A、温度升高,露点温度也升高(温度下降,露点温度也升高)B、相对湿度达到100%时的温度是露点温度C、露点温度下降,绝对湿度下降D、露点温度下降,绝对湿度升高17对于音速,如下说法正确的是(AB)A、音速是空气可压缩性的标志B、空气音速高,粘性就越大C、音速是空气压力大小的标志D、空气速度是空气可压缩性的标志18、国际标准大气的物理参数的相互关系是(B)A、温度不变时,压力与体积成正比B、体积不变时,压力和温度成正比C、压力不变时,体积和温度成反比D、密度不变时.压力和温度成反比19、国际标准大气规定海平面的大气参数是(B)A、P=1013 psi T=15℃ ρ=1、225kg/m3B、P=1013 hPA、T=15℃(288.15)ρ=1、225 kg/m3C、P=1013 psi T=25℃ ρ=1、225 kg/m3D、P=1013 hPA、T=25℃ ρ=0、6601 kg/m320、在温度不变情况下,空气的密度与压力的关系? (A)A、与压力成正比。
直升机的飞行原理与空气动力学基础直升机是一种可以垂直起降的飞行器,它通过旋转的主旋翼产生升力,通过尾旋翼产生反扭力,实现悬停、飞行等动作。
直升机的飞行原理和空气动力学基础主要包括旋翼的升力产生、马力的消耗以及稳定性控制等方面。
首先,直升机的飞行原理是基于伯努利定律和牛顿第三定律。
旋翼是直升机实现升力产生的重要装置,其原理与飞机的机翼相似。
旋翼上表面产生了较快的气流速度,下表面产生了较慢的气流速度,由于伯努利定律,产生了下表面的气压高于上表面,因此形成了向上的升力,从而使直升机能够在空中飞行。
其次,直升机的飞行涉及到马力的消耗。
旋翼的旋转需要马力的输入,主要是通过内燃机或者电动机转动旋翼,从而产生升力。
直升机飞行时,需要克服气流的阻力和重力的作用,因此需要马力来提供足够的推力。
在飞行过程中,直升机需要调整主旋翼叶片的迎角和旋翼的转速,以及尾旋翼的工作状态,以获得不同的飞行形态和速度。
此外,直升机的稳定性控制也是直升机飞行的重要方面。
直升机的稳定性主要通过以下几个方面来保证:1.放样。
即调整主旋翼的迎角和旋翼的转速,使得升力与重力平衡,保持飞行高度稳定。
2.塔臂平衡。
传统直升机通过塔臂实现重心的调整,通过调整塔臂长度和位置,使得直升机在飞行过程中保持稳定。
3.尾翼的设计。
尾旋翼产生的反扭力会使直升机旋转,为了抵消这个旋转力矩,需要通过尾翼进行控制。
尾翼可以变化其迎角和转动方向,以产生不同的力矩,从而控制直升机的稳定性。
总的来说,直升机的飞行原理和空气动力学基础主要涉及旋翼的升力产生、马力的消耗以及稳定性控制等方面。
通过合理地调整主旋翼和尾旋翼的工作状态和角度,以及驱动系统的输入,直升机能够实现悬停、飞行和各种飞行动作。
直升机的研究和发展对于航空事业的进步具有重要意义,它不仅广泛应用于军事领域,也被广泛运用于民用领域,如医疗救援、警务巡逻、旅游观光和货运等。