第10章 均衡交通分配模型的扩展
- 格式:ppt
- 大小:174.50 KB
- 文档页数:8
tt =[0 0 0 ];xx= [0 0 0]t1 = 10 * (1 + 0.15 *(xx(1,1)/2)^4);t2 = 20 * (1+ 0.15 * (xx(1,2)/4)^4) ;t3 = 25 * (1 + 0.15 * (xx(1,3)/3)^4);%一个OD对,起点到终点的三条路段的走行时间函数Q = 10;N=8 ; % 迭代次数,本例只设置最大迭代次数。
也可另外设置收敛条件tt(1,1)= t1 ;tt(1,2) = t2;tt(1,3) = t3 ;y = [0 0 0]; %置初值Min = 50000;for j = 1 : 3if tt(1 ,j) <Min %计算最小走行时间的路段,用全有全无法分配流量Min = tt(1,j);index = j;endendxx(1,index) =Q;for i =1 :Ny = [0 0 0];t1 = 10 * (1 + 0.15 *(xx(1,1)/2)^4);t2 = 20 * (1+ 0.15 * (xx(1,2)/4)^4) ;t3 = 25 * (1 + 0.15 * (xx(1,3)/3)^4);tt(1,1)= t1 ;tt(1,2) = t2;tt(1,3 ) = t3 ;fprintf('第%d 次迭代的路径时间值:' , i);ttMin = 50000;for j = 1 : 3if tt(1 ,j) <Min %计算最小走行时间的路段,用全有全无法分配流量Min = tt(1,j);index = j;endendy(1,index) = Q; % 分配流量给辅助流fprintf('第%d 次迭代的辅助流量值是:' , i);yzz = xx + lambda * (y-xx); % 按方向(y-xx)进行一维搜索,步长为lamda t1 = 10 * (1 + 0.15 *(zz(1,1)/2)^4);t2 = 20 * (1+ 0.15 * (zz(1,2)/4)^4) ;t3 = 25 * (1 + 0.15 * (zz(1,3)/3)^4);f =( y(1,1) -xx(1,1)) * t1 + (y(1,2) -xx(1,2))* t2 +(y(1,3) -xx(1,3))* t3 ;lambda1 =double( solve(f)) ; %求解方程,确定步长。
专适于城市道路网络的交通均衡分配模型刘灿齐同济大学道路与交通工程系,上海,200092摘要:由于已有的均衡分配理论中的阻抗公式不包含车流在交叉口的延误,其研究成果并不真正适用于城市道路网络。
本文提出了流向、流向阻抗、流向流量的概念,找到了包含交叉口分流向延误的阻抗公式、基于新阻抗公式的交通均衡分配模型。
这个模型较真实地描述了城市道路网络上的交通分配情况。
关键词:城市道路网络,流向,延误,阻抗公式,均衡分配Traffic Equilibrium Assignment Model Special forUrban Road NetworkLIU CanqiRoad & Traffic Department, Tongji University, Shanghai 200092Abstract: The cost formula in the existing equilibrium theory does not include the delay time at nodes. So, the researching results of the theory are unsuitable for urban road network. The conceptions of traffic direction, cost on traffic direction, and volume on traffic direction are given. The cost formula including the delay time at nodes is expressed. At last, a new equilibrium assignment model based on the cost formula is posed, which is suitable for urban road network.Key words: Urban road network, Flow-direction, delay, cost formula, equilibrium assignment关于交通分配,1952年Wardrop 提出了道路网均衡分配的概念,其定义是: 在道路网的用户都知道网络的状态并试图选择最短路径时,网络会达到这样一种均衡状态,每对产生——吸引点(PA 点对)之间各条被利用的路径的走行时间都相等而且是最小的走行时间,而没有被利用的的路径的走行时间都大于或等于这个最小的走行时间。
城市交通供需平衡的优化模型与算法在当今城市化进程迅速发展的背景下,城市交通供需平衡成为了一个日益重要的问题。
如何在城市中优化交通供需,提高交通效率,降低交通压力,已成为城市规划和交通管理的重要课题。
为了解决这一问题,学者们提出了许多优化模型和算法,旨在为城市交通供需平衡提供科学依据。
一、城市交通供需分析首先,我们需要进行城市交通供需分析。
交通需求是指人们对交通出行的需求,包括通勤、购物、娱乐等方面;而交通供给是指城市交通系统所能提供的交通能力。
通过对城市居民出行行为、交通网络特征等进行综合分析,可以得到城市交通供需关系。
二、城市交通供需平衡模型在城市交通供需平衡模型中,我们需要考虑各种因素,如道路拥堵、公共交通运力等。
一种常用的城市交通供需平衡模型是动态交通分配模型,其基本思想是通过对交通需求进行预测,并将交通需求分配到路网中,以优化整个交通系统的运行效果。
在动态交通分配模型中,我们可以采用多目标优化方法。
通过建立数学模型,将交通供需平衡问题转化为一个多目标优化问题。
例如,我们可以引入出行时间、交通成本、可靠性等指标作为目标函数,以求得一个最优的交通供需平衡方案。
此外,我们还可以考虑场景分析和风险评估。
通过对不同场景下的交通需求和交通供给进行分析,可以对城市交通供需平衡的调控方案进行策划和优化。
同时,还可以对不同交通供需方案的风险进行评估,避免出现过度供给或供给不足的情况。
三、城市交通供需平衡算法为了有效解决交通供需平衡问题,我们需要开发相应的算法。
一种常用的算法是基于强化学习的交通供需平衡算法。
通过将交通供需平衡问题转化为一个强化学习问题,可以建立智能代理与环境的交互关系,以求得一个最优的交通供需平衡策略。
此外,还可以采用遗传算法、模拟退火算法等优化算法,通过不断迭代和搜索,寻找一个最优的交通供需平衡解。
这些算法在解决交通供需平衡问题时具有较好的效果和鲁棒性,能够快速收敛,并能应对不同规模和复杂度的问题。