反应堆堆型及相关名词术语
- 格式:doc
- 大小:32.50 KB
- 文档页数:5
各种核反应堆热堆的概念中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。
这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。
堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。
热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。
由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。
慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。
热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。
链式反应就是在堆芯中进行的。
反应堆必须用冷却剂把裂变能带出堆芯。
冷却剂也是吸收中子很少的物质。
热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。
核电站的内部它通常由一回路系统和二回路系统组成。
反应堆是核电站的核心。
反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。
因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。
为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。
由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。
轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。
它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。
目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。
轻水堆又分为压水堆和沸水堆。
核科技通用术语核科技:nuclear science and technology 核科学与核技术的简称。
1896年法国物理学家贝可勒尔发现了铀的天然放射性,从此人类开始了对原子核的研究,这种研究领域就称为核科学。
核科学的研究对象包括核结构、放射性、核裂变和核聚变等。
涉及到的研究学科有核物理、核化学、加速器、反应堆、核聚变、辐射防护与屏蔽物理、同位素生产与分离、核材料、核医学、核农学等。
核技术是研究如何将核科学研究中所揭示出的原子核变化规律及其固有和伴随产生的物理现象加以实际应用的科学。
核技术应用主要包括核能的利用及同位素和辐照技术的利用。
核能的利用主要是指:(1)利用放射性同位素衰变时放出的能量做成电池,广泛用于宇宙飞船、人造卫星、无人管理的灯塔、心脏起搏器等。
(2)利用重核裂变会放出巨大能量。
核电站、空间堆电源、核供热堆、用于船舶或潜艇的核动力装置,是实际应用这种裂变能的主要代表。
(3)利用轻核裂变时放出的比重核裂变时放出的更加巨大的能量。
聚变堆的研究和开发就是为了利用这一能量。
聚变堆的建成和商业运行将最终解决类所需的能源问题。
因为它所用的燃料(氘和氚)取之于大海。
核能最早是用于军事目的,原子弹就是利用235U或239Pu裂变时放出的巨大能量(瞬间释放出来)制成的。
氢弹的威力要比原子弹大数百倍。
同位素和辐射技术应用主要包括:(1)同位素示踪技术(水资源探测,农业科学研究等)。
(2)辐射加工(电线电缆的绝缘材料改性,热缩管的制备,塑料发泡,表面涂层固化,橡胶辐射硫化,木材-塑料复合材料辐射交联,接枝和降解,离子注入表面改性,半导体生产、辐射保鲜,辐射消毒等)。
(3)同位素仪器仪表(工业检测仪表,探伤机,集装箱检测等)。
(4)核医学方面的应用(医学诊断,放射性免疫分析,肿瘤诊断和治疗用体内和体外放免药物等)。
(5)三废治理和环境保护工作中的应用(电子束除SO2/HOx,污水处理等)。
(6)农学方面的应用(辐射育种、辐射不育灭蝇等)。
E E r 第一章—核反响堆的核物理根底直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里放射出来,而中子却留在了靶核内的核反响。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反响过程。
非弹性散射:中子首先被靶核吸取而形成处于激发态的复合核,然后靶核通过放出中子并放射 γ 射线而返回基态。
弹性散射:分为共振弹性散射和势散射。
微观截面:一个中子和一个靶核发生反响的几率。
宏观截面:一个中子和单位体积靶核发生反响的几率。
平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。
核反响率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内全部中子在单位时间内穿行距离的总和。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也渐渐减小,这种现象称为多普勒效应或多普勒展宽。
瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约 10-14s)放射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中放射出来的,把这些中子叫缓发中子。
其次章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。
集中时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。
平均寿命:在反响堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最终被俘获的平均时间,称为中子的平均寿命。
慢化密度:在 r 处每秒每单位体积内慢化到能量E 以下的中子数。
分界能或缝合能:通常把某个分界能量 以下的中子称为热中子, 称为分界能或缝合能。
c c第三章—中子集中理论中子角密度:在 r 处单位体积内和能量为 E 的单位能量间隔内,运动方向为 的单位立体角内的中子数目。
慢化长度:中子从慢化成为热中子处到被吸取为止在介质中运动所穿行的直线距离。
核反应堆——堆型简介核电站是利用一座或若干座动力反应堆所产生的热能来发电或发电兼供热的动力设施。
目前,商业运行中的核电站都是利用核裂变反应来发电。
世界上当前运行和在建的核电站反应堆主要有压水堆(Pressurized Water Reactor,PWR)、沸水堆(Boiling Water Reactor,BWR)、加压重水堆(Pressurized Heavy Water Reactor,PHWR)、高温气冷堆(High Temperature Gas Reactor,HTGR)和快中子堆(Liquid Metal-cooled Fast BreederReactor,LMFBR)等五种堆型,但应用最广泛的是压水堆。
下面将简要介绍这五种类型核反应堆的基本特征和主要特点。
1、压水堆压水堆是采用加压轻水(H2O)作冷却剂和慢化剂,利用热中子引起链式反应的热中子反应堆。
最初是美国为核潜艇设计的一种热中子反应堆堆型。
四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,已经成为技术上最成熟的一种堆型。
压水堆核电站采用以稍加浓铀作核燃料,燃料芯块中铀-235的富集度约3%。
核燃料是高温烧结的圆柱形二氧化铀陶瓷燃块,参见图1 (a)。
柱状燃料芯块被封装在细长的锆合金包壳管中构成燃料元件(参见图1(b)),这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m,参见图1 (c)。
几百个组件拼装成压水堆的堆芯。
堆芯宏观上为圆柱形,参见图2。
轻水不仅价格便宜,而且具有优良的热传输性能,所以在压水堆中,轻水不仅作为中子的慢化剂,同时也用作冷却剂,且水在反应堆内不沸腾。
要使水不沸腾——获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态,所以压水堆是一种使冷却剂处于高压状态的轻水堆。
压水堆冷却剂入口水温一般在300℃左右,出口水温330℃左右,堆内压力15.5MPa。
我国大亚湾核电站、岭澳核电站、秦山第一核电站、秦山第二核电站、江苏田湾核电站均属于这种堆型。
核反应堆类型简介核反应堆类型简介核反应堆(Nuclear Reactor),又称原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置,是一种启动、控制并维持核裂变或核聚变链式反应的装置。
在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。
核反应堆,是一种启动、控制并维持核裂变或核聚变链式反应的装置。
相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。
核反应堆分类有:按时间分可以分为四代:第一代核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆核电站,如美国的希平港压水堆、德累斯顿沸水堆以及英国的镁诺克斯石墨气冷堆等。
第二代核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如、加拿大坎度堆、苏联的压水堆等。
目前世界上的大多数核电站都属于第二代核电站。
第三代是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。
第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆、系统80+、AP600、欧洲压水堆等。
第四代是待开发的核电站,其目标是到2030年达到实用化的程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。
按用途分:动力核反应堆;研究核反应堆;生产核反应堆(快滋生反应器)。
按反应堆慢化剂和冷却剂分:轻水堆(压水反应堆、沸水反应堆):轻水型反应堆使用相对分子质量为18的轻水作为慢化剂和冷却剂;重水堆:重水堆可按结构分为压力容器式和压力管式两类。
两者都使用重水做慢化剂,但前者只能用重水做冷却剂,后者却可用重水、轻水、气体等物质做冷却剂;石墨气冷堆;石墨液冷堆。
按反应堆中中子的速度分:热中子堆;快中子堆。
核反应堆有许多用途,最重要的用途是产生热能,用以代替其他燃料,产生蒸汽发电或驱动航空母舰等设施运转。
目录反应堆:Nuclear Reactor (2)堆芯:core (3)核燃料:fuel (3)燃料元件:fuel element (6)燃料组件:fuel assembly (6)乏燃:spent fuel (6)主管道:main pipe (6)主屏蔽:main shield (6)反射屏蔽:reflective enclosure (7)压力容器:pressure vessel (7)冷却剂:coolant (7)控制棒:control rod (7)控制棒组件:control rod assembly (8)非能动安全系统:passive safety system (8)稳压器:pressurizer (8)生物屏蔽:Biological shielding (8)人孔:manhole (8)反应堆:Nuclear Reactor反应堆,又称为原子能反应堆或反应堆,是能维持可控自持链式核裂变反应,以实现核能利用的装置。
核反应堆通过合理布置核燃料,使得在无需补加中子源的条件下能在其中发生自持链式核裂变过程。
反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。
按照冷却方式分类可分为以下几类:气冷快堆气冷快堆(gas-cooled fast reactor,GFR)系统是快中子谱氦冷反应堆,采用闭式燃料循环,燃料可选择复合陶瓷燃料。
它采用直接循环氦气轮机发电,或采用其工艺热进行氢的热化学生产。
通过综合利用快中子谱与锕系元素的完全再循环,GFR能将长寿命放射性废物的产生量降到最低。
此外,其快中子谱还能利用现有的裂变材料和可转换材料(包括贫铀)。
参考反应堆是288兆瓦的氦冷系统,出口温度为850℃。
液态金属冷却快堆铅合金液态金属冷却快堆(lead-cooled fast reactor,LFR)系统是快中子谱铅(铅/铋共晶)液态金属冷却堆,采用闭式燃料循环,以实现可转换铀的有效转化,并控制锕系元素。
各种反应堆的原理反应堆是利用核能产生能量的设备,它可以利用核裂变或核聚变产生巨大的热能,然后通过控制和引导这些能量来产生蒸汽,最后驱动涡轮机发电。
下面将介绍几种常见的反应堆类型及其原理。
1.压水堆核反应堆(PWR)压水堆核反应堆是最常见的商业核电站反应堆类型之一、其原理是利用浓缩的铀燃料棒产生热能,同时也会产生中子。
这些中子与水中的轻水分子相互作用,使其产生热,然后通过传热器将热能转移到给水中。
这个给水经过加热后变成高温高压的蒸汽,然后驱动涡轮机发电。
2.沸水堆核反应堆(BWR)沸水堆核反应堆也是一种商业化运行的核反应堆类型。
其原理是使用浓缩的铀燃料棒,通过核裂变产生的热能直接将水变成蒸汽。
由于直接使用水作为冷却剂和工质,它不需要传热器。
生成的蒸汽直接送入涡轮机来驱动发电机。
3.高温气冷堆核反应堆(HTGR)高温气冷堆核反应堆是一种利用高温气体冷却的堆芯来产生热能的反应堆。
其原理是使用固体燃料,如石墨或陶瓷颗粒,通过核裂变释放热能。
然后通过冷却剂,如氦气,高温液体金属等,将热能转移到热交换器中,并最终转化为蒸汽使发电机运行。
4.快中子反应堆(FBR)快中子反应堆是一种使用高能快中子进行核裂变的堆芯的反应堆。
其原理是利用高质量的钚或钍等燃料产生大量的中子,然后利用这些中子进行核裂变,产生大量的热能。
该反应堆同时可以产生额外的燃料,这使它具有较高的燃料利用率。
石墨、钠、铅和氦等可以用作冷却剂。
5.离子迁移反应堆(IMR)离子迁移反应堆是一种采用离子迁移材料来促进和控制核裂变反应的反应堆。
它使用离子迁移膜,通过离子的迁移使核反应堆得到加速或减速。
通过使用这种材料,离子迁移反应堆可以更好地控制裂变反应速率,使燃料的使用效率更高。
以上是一些常见的反应堆类型及其原理。
各种反应堆根据不同的设计目标和应用需求,采用不同的结构、燃料和冷却剂等技术,但它们的基本原理都是通过控制和利用核能产生热能,然后将其转化为电能。
裂变反应堆分类引言裂变反应堆是一种利用核裂变产生能量的设备。
根据不同的设计和工作原理,裂变反应堆可以分为多种类型。
本文将对常见的裂变反应堆进行分类,并介绍它们的特点和应用。
1. 热中子反应堆热中子反应堆是最常见的裂变反应堆类型之一。
它使用经过减速后速度较慢的热中子来引发核裂变。
热中子可以更容易地与核燃料发生碰撞,从而提高核裂变的概率。
1.1 压水堆(PWR)压水堆是目前最常见的商业核电站使用的裂变反应堆类型之一。
它使用水作为冷却剂和减速剂,并使用铀-235或钚-239等可裂变核燃料。
压水堆具有以下特点: - 高温高压:工作温度和压力较高,提高了效率。
- 被动安全:采用了多层被动安全系统,即使在失去外部电力供应时仍能保持冷却。
- 燃料棒替换周期长:由于高温下的放射性损伤较小,燃料棒的替换周期相对较长。
1.2 沸水堆(BWR)沸水堆也是商业核电站使用的常见裂变反应堆类型。
与压水堆不同,沸水堆中冷却剂和减速剂是同一种物质,即水。
沸水堆具有以下特点: - 较低的工作压力:相对于压水堆,沸水堆的工作压力较低。
- 直接产生蒸汽:核燃料在反应过程中直接将冷却剂加热为蒸汽,用于驱动涡轮发电机产生电能。
- 简化系统:相对于压水堆,沸水堆的系统结构相对简单。
2. 快中子反应堆快中子反应堆使用高速快中子来引发核裂变。
由于快中子与核燃料碰撞时的散射角度较大,因此引发核裂变的概率较低。
为了提高裂变概率,快中子反应堆通常采用富含可裂变核素(如钚-239)的燃料。
2.1 铅冷快堆(LFR)铅冷快堆使用液态铅作为冷却剂和减速剂。
它具有以下特点: - 较高的工作温度:液态铅的沸点较高,使得反应堆可以在高温下工作。
- 高效燃料利用:由于使用钚等可裂变核素作为燃料,铅冷快堆可以更充分地利用核燃料,减少核废料产生。
- 抗辐照腐蚀:液态铅具有良好的抗辐照腐蚀性能,可以延长反应堆的使用寿命。
2.2 气冷快堆(GFR)气冷快堆使用气体(如氦气)作为冷却剂和减速剂。
(完整版)反应堆工整理讲解第一章反应堆简介1. 反应堆概念核反应堆是利用易裂变物质使之发生可控自持链式裂变反应的一种装置。
2. 反应堆的用途生产堆:专门用于生产易裂变或聚变物质的反应堆实验堆:主要用于实验研究动力堆:用于动力或直接发电的反应堆3. 反应堆种类按慢化剂和冷却剂可分为:轻水堆、重水堆、石墨气冷堆和钠冷快堆等其中,动力堆的类型有压水堆(PWR)、沸水堆(BWR)、重水堆(HWR)、气冷堆(HTGR)、快中子增殖堆(LMFBR、GCFR) 第二章核物理基础1. 原子与原子核92种天然元素和12种人工元素;原子核由质子和中子组成(H除外),质子和中子通称为核子,核子数即称质量数2. 原子核的组成及属性(电、质量、尺寸)原子核带正电,半径为121310~10cm--,其中质子带正电,质量为1u,中子不带电,质量为1u3. 同位素及核素的表示符号同位素是指质子数相同而中子数不同的元素,其化学性质相同,在元素周期表中占同一个位置,丰度。
例P有7种同位素,但每一种P均为一种核素。
核素的表示AZX。
4. 原子核的能级状态,激发态原子核内部的能量是量子化的,即非连续,可分为基态和激发态,激发态能级不稳定,易发生跃迁释放能量5. 原子核的稳定性,衰变与衰变规律一般而言,质子数和中子数大致相等时原子核是稳定的,而质子数与中子数差别很大时则原子核不稳定。
衰变:原子核自发地放射出α和β等粒子而发生的转变,常见的有β±衰变、α衰变、γ衰变等。
对单个原子核而言,衰变是不确定的;对大量同类原子核而言,衰变是按指数规律进行的,即0e tN Nλ-=6. Alpha 、Beta 、Gamma 衰变Alpha 衰变是指衰变过程中释放出α粒子(He 核,两个中子和两个质子组成)Beta 衰变是指衰变过程中原子核释放出电子(正/负),内部一质子变为中子Gamma 衰变是原子核从较高的激发态跃迁到较低的激发态或基态,释放出γ射线7. 衰变常数、半衰期、平均寿命一个原子核在某一小段时间间隔内发生衰变的几率即为衰变常数λ,其反应的是原子核本身特性,与外界条件无关。
反应堆简介反应堆反应堆在原子能的和平利用中,最典型的当数原子能发电,也称核电。
如果说原子弹的爆炸是瞬间、不受控制地进行的铀-235或钚-239核裂变链锁反应的结果,那么原子能发电站利用的能量是来受控状态下持久进行的铀-235或钚-239核裂变链锁反应。
一种可以人为控制核裂变反应快慢并能维持链锁核裂变反应的装置叫做反应堆。
费米发明的反应堆是用来生产钚-239的,这种反应堆叫做生产堆。
原子能发电站的核心也是反应堆,它是用反应堆内核裂变反应产生的巨大热量生成饱和蒸汽驱动气轮机发电,这种反应堆叫做动力堆。
原子能发电与用煤、用油发电的区别仅在于产生热量的装置不同,前者是原子能反应堆,后者是燃煤、燃油锅炉。
反应堆的类型很多,但它主要由活性区,反射层,外压力壳和屏蔽层组成。
活性区又由核燃料,慢化剂,冷却剂和控制棒等组成。
现在用于原子能发电站的反应堆中,压水堆是最具竞争力的堆型(约占61%),沸水堆占一定比例(约占24%),重水堆用的较少(约占5%)。
压水堆的主要特点是:1)用价格低廉、到处可以得到的普通水作慢化剂和冷却剂,2)为了使反应堆内温度很高的冷却水保持液态,反应堆在高压力(水压约为15.5 MPa )下运行,所以叫压水堆;3)由于反应堆内的水处于液态,驱动汽轮发电机组的蒸汽必须在反应堆以外产生;这是借助于蒸汽发生器实现的,来自反应堆的冷却水即一回路水流入蒸汽发生器传热管的一侧,将热量传给传热管另一侧的二回路水,使后者转变为蒸汽(二回路蒸汽压力为6—7 MPa,蒸汽的温度为275—290 ℃);4)由于用普通水作慢化剂和冷却剂,热中子吸收截面较大,因此不可能用天然铀作核燃料,必须使用浓缩铀(铀-235的含量为2—4%)作核燃料。
沸水堆和压水堆同属于轻水堆,它和压水堆一样,也用普通水作慢化剂和冷却剂,不同的是在沸水堆内产生蒸汽(压力约为7 MPa),并直接进入气轮机发电,无需蒸汽发生器,也没有一回路与二回路之分,系统特别简单,工作压力比压水堆低。
核反应堆类型及其特点比较核反应堆是一种利用核裂变或核聚变反应产生能量的装置。
根据反应堆的设计和工作原理的不同,核反应堆可以分为多种类型。
本文将对几种常见的核反应堆类型及其特点进行比较。
一、压水堆(Pressurized Water Reactor,PWR)压水堆是目前最常见的商业核反应堆类型之一。
它采用轻水作为冷却剂和减速剂,核燃料使用浓缩铀或钚铀混合物。
压水堆的特点如下: 1. 高压冷却剂:压水堆中的冷却剂保持在高压状态下,这使得冷却剂在高温下仍然保持液态,从而提高了热传导效率。
2. 反应堆压力容器:压水堆采用一个厚重的反应堆压力容器来容纳核燃料和冷却剂。
这种设计可以有效地防止辐射泄漏。
3. 负温度系数:压水堆的反应性系数为负,这意味着当反应堆温度升高时,反应性会下降,从而提高了反应堆的稳定性。
二、沸水堆(Boiling Water Reactor,BWR)沸水堆也是一种常见的商业核反应堆类型。
它与压水堆的主要区别在于冷却剂直接在反应堆中沸腾产生蒸汽,然后通过蒸汽发电机产生电能。
沸水堆的特点如下:1. 单回路系统:沸水堆采用单回路系统,即冷却剂直接在反应堆中沸腾产生蒸汽,然后通过蒸汽发电机产生电能。
这种设计简化了系统结构,提高了效率。
2. 正温度系数:沸水堆的反应性系数为正,这意味着当反应堆温度升高时,反应性会增加,从而提高了反应堆的稳定性。
3. 辐射泄漏风险:由于沸水堆中的冷却剂直接与核燃料接触,因此存在辐射泄漏的风险。
为了减少辐射泄漏,沸水堆采用了多层防护措施。
三、重水堆(Heavy Water Reactor,HWR)重水堆使用重水(氘化水)作为冷却剂和减速剂,核燃料使用天然铀或浓缩铀。
重水堆的特点如下:1. 高减速比:重水堆中的重水具有较高的减速比,可以更有效地减慢中子速度,提高核燃料的利用率。
2. 低燃料浓缩度:重水堆中的核燃料浓缩度较低,这使得重水堆可以使用天然铀作为燃料,减少了浓缩铀的需求和核燃料循环的复杂性。
第一部分 名词解释第二章 堆的热源及其分布1、衰变热:对反应堆而言,衰变热是裂变产物和中子俘获产物的放射性衰变所产生的热量。
第三章 堆的传热过程2、积分热导率:把u κ对温度t 的积分()dt t u⎰κ作为一个整体看待,称之为积分热导率。
3、燃料元件的导热:指依靠热传导把燃料元件中由于核裂变产生的热量从温度较高的燃料芯块内部传递到温度较低的包壳外表面的这样一个过程。
4、换热过程:指燃料元件包壳外表面与冷却剂之间直接接触时的热交换,即热量由包壳的外表面传递给冷却剂的过程。
5、自然对流:指由流体内部密度梯度所引起的流体的运动,而密度梯度通常是由于流体本身的温度场所引起的。
6、大容积沸腾:指由浸没在(具有自由表面)(原来静止的)大容积液体内的受热面所产生的沸腾。
7、流动沸腾:也称为对流沸腾,通常是指流体流经加热通道时产生的沸腾。
8、沸腾曲线:壁面过热度(s w sat t t t -=∆)和热流密度q 的关系曲线通常称为沸腾曲线。
9、ONB 点:即沸腾起始点,大容积沸腾中开始产生气泡的点。
10、CHF 点:即临界热流密度或烧毁热流密度,是热流密度上升达到最大的点。
Critical heat flux11、DNB 点:即偏离核态沸腾规律点,是在烧毁点附件表现为q 上升缓慢的核态沸腾的转折点H 。
Departure from nuclear boiling12、沸腾临界:特点是由于沸腾机理的变化引起的换热系数的陡增,导致受热面的温度骤升。
达到沸腾临界时的热流密度称为临界热流密度。
13、快速烧毁:由于受热面上逸出的气泡数量太多,以至阻碍了液体的补充,于是在加热面上形成一个蒸汽隔热层,从而使传热性能恶化,加热面的温度骤升;14、慢速烧毁:高含汽量下,当冷却剂的流型为环状流时,如果由于沸腾而产生过分强烈的汽化,液体层就会被破坏,从而导致沸腾临界。
15、过渡沸腾:是加热表面上任意位置随机存在的一种不稳定膜态沸腾和不稳定核态沸腾的结合,是一种中间传热方式,壁面温度高到不能维持稳定的核态沸腾,而又低得不足以维持稳定的膜态沸腾,传热率随温度而变化,其大小取决于该位置每种沸腾型式存在的时间份额。
反应堆工程学复习总结第一章1、反应堆的分类:按用途分:1)实验堆,2)生产堆,3)动力堆按慢化剂和冷却剂分:轻水堆、重水堆、石墨气冷堆、钠冷快堆等。
2、动力反应堆的类型:水冷堆(包括轻水堆和重水堆)、气冷堆和快中子增殖堆。
3、压水堆:作为冷却剂的水始终保持在整体过冷状态。
压水堆由堆芯、堆内构件、压力容器及控制棒驱动机构等部件组成。
堆芯由核燃料组件、控制棒组件和启动中子源组件等组成。
4、沸水堆:作为冷却剂的水在进入堆芯时是过冷的,流出堆芯的是水与饱和蒸汽的两相混合物。
沸水堆壳体内装有堆芯、堆内支承结构、汽水分离器、蒸汽干燥器和喷射泵等。
5、沸水堆电厂与压水堆电厂的比较:(1)沸水堆压力容器内直接产生蒸汽,承受的压力只有压水堆的1/2,因此压力容器的厚度可以减小。
但沸水堆功率密度较低,且沸水堆压力容器内还放置汽水分离器、干燥器和喷射泵等设备,致使压力容器尺寸增大,这两个影响基本互相抵消。
(2)沸水堆采用直接循环,系统比较简单,回路设备少,且设备所承受的压力较低,易于加工制造。
尤其是省去了蒸汽发生器,减少了核电厂事故,使用效率提高,且沸水堆采用喷射泵循环系统,使压力容器开孔的直径减少,电厂失水事故的可能性及严重性降低。
(3)沸水堆堆芯内产生大量蒸汽,调节反应堆功率比较方便。
(4)沸水堆的比功率较小,因此虽然系统简单,但总投资较压水堆略大。
(5)由于沸水堆采用直接循环,给设计、运行、维修都带来不便。
总之,沸水堆和压水堆各有其优缺点,在技术上和经济上不相上下。
6、重水堆:使用天然铀作燃料,利用率高,但卸料燃耗浅,卸料量大,消耗的结构材料及后处理量都增加。
重水中子吸收截面小,且慢化性能也比较好,但重水价格昂贵,所以重水堆投资高。
7、气冷堆:目前发展的主要气冷堆是高温气冷堆(HGTR)。
高温气冷堆的冷却剂出口温度高,热效率较高,堆内没有金属结构材料,中子寄生俘获少,转换比高,每年所需补充的核燃料少。
一般高温气冷堆都将堆芯、氦气鼓风机、蒸汽发生器等一回路设备布置在预应力混凝土反应堆容器内,减少了发生冷却剂丧失事故的可能性。
核科学技术术语---裂变反应堆核科学技术术语---裂变反应堆(Glossary ofterms:nuclear science and technology-Fission reactor),并做了必要的修正。
它涉及了裂变反应堆领域有关的术语及定义。
反应堆堆型名词术语1.1 (核)反应堆(nuclear) reactor 能维持可控自持链式核裂变反应的装置。
注释:更广泛的意义上讲,反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。
1.2 动力(反应)堆power reactor 用于发电、推进和供热等用途的反应堆。
1.3 供热(反应)堆heating reactor 用于向居民和(或)工业设施等供热的反应堆。
1.4 研究(反应)堆research reactor 主要作基础研究或应用研究用的反应堆,例如:a. 高通量反应堆b. 脉冲反应堆c. 材料试验反应堆d. 零功率反应堆1.5 生产(反应)堆production reactor 主要用于生产易裂变材料的反应堆。
除另有说明外,通常指生产钚的反应堆。
1.6 增殖(反应)堆breeder reactor 转换比大于1的反应堆。
1.7 空间反应堆space reactor 将核裂变反应产生的能量转换成电能作为航天飞行器电源的一种核反应堆。
1.8 微型中子源反应堆miniature neutron source reactor 用高浓金属铀作燃料元件,金属铍作反射层,轻水慢化,自然对流冷却的一种作中子源用袖珍式核反应堆,可用于中子活化分析及少量研究用短寿命示踪同位素的制备。
1.9 零功率(反应)堆临界装置zero-power reactor;zero-energy reactor critical assembly 设计在极低功率下运行,不需要专门设置冷却剂系统的反应堆。
1.10 脉冲(反应)堆pulsed reactor 用于产生短持续时间、强中子脉冲的反应堆。
什么是反应堆反应堆是一种用于进行核反应的设备,它是核能利用的重要组成部分。
本文将介绍反应堆的基本概念、工作原理、种类以及应用领域。
一、基本概念反应堆是指能维持和控制核反应的结构,通过核裂变或核聚变产生大量能量。
它通常由燃料、冷却剂、冷却剂循环系统、控制系统、反应堆压力容器、屏蔽材料等组成。
二、工作原理反应堆中的核反应是通过控制核裂变链式反应来实现的。
核燃料经过裂变释放出的中子引发新的裂变反应,形成链式反应。
同时,通过控制系统调整反应速率,维持核链式反应处于稳定状态。
三、种类1. 根据燃料类型:(1)热中子反应堆:使用热中子来维持链式反应,主要燃料为铀-235或钚-239等。
(2)快中子反应堆:使用快中子来维持链式反应,主要燃料为钚-239或铀-233等。
2. 根据冷却剂类型:(1)水冷反应堆:使用水作为冷却剂,主要有压水堆和沸水堆等类型。
(2)气冷反应堆:使用氦气或二氧化碳作为冷却剂,可以提高燃料利用率。
(3)液态金属冷却反应堆:使用钠或铅等液态金属作为冷却剂,具有良好的传热性能和安全性。
3. 根据反应堆用途:(1)核电站反应堆:用于发电,主要以压水堆和沸水堆为主。
(2)核动力反应堆:用于舰船、潜艇等核动力设备,主要以压水堆为主。
(3)核研究反应堆:用于核科学研究和同位素生产等,种类多样化。
四、应用领域反应堆在能源、医学、环境保护等领域具有广泛应用:1. 能源领域:核电站利用反应堆产生电能,是清洁能源的重要组成部分。
2. 医学领域:核反应堆可以用于医学同位素生产,用于放射治疗、医学影像等。
3. 环境保护领域:核技术可以用于处理放射性废物、监测环境污染等。
总结:反应堆是核能利用的基础设施,它能以安全有效的方式利用核能,产生电能、医学同位素等。
不同类型的反应堆在不同的领域有着广泛的应用,为人们的生活和社会发展提供了重要支持。
◎反应堆堆型及相关名词术语:
反应堆reactor
重水堆heavy-water reactor ( HWR)
轻水堆light-water reactor ( LWR)
沸水堆boiling water reactor (BWR)
压水堆pressurized water reactor (PWR)
气冷堆gas-cooled reactor (GCR)
高温气冷堆high-temperature gas-cooled reactor (HTGR) 实验堆experimental reactor
商用堆commercial reactor commerce
物项item
反应堆容器reactor vessel
反应堆压力容器reactor pressure vessel (RPV)
反应堆堆芯reactor core
堆内构件reactor internals external
燃料元件fuel element
燃料组件fuel assembly installation
控制棒control rod
调节棒regulating rod
(堆芯) 吊篮(core) barrel
中子源neutron source
乏燃料spent fuel
反应堆冷却剂系统reactor coolant system
(反应堆冷却剂系统)压力边界pressure boundary
反应堆冷却剂环路reactor coolant loop
反应堆冷却剂泵reactor coolant pump
一次冷却剂primary coolant
二次冷却剂secondary coolant
稳压器pressurizer 变压器transformer
一回路primary circuit
二回路secondary circuit
第六课时
反应堆冷却剂除水系统(reactor) coolant degassing system
核设备疏水和排水系统(轻水堆)nuclear component drain and vent system feed water
容积控制箱(压水堆)volume control tank
安全系统safety system
保护系统protection system
安全系统支持设施safety system support features
应急堆芯冷却系统emergency core cooling system
高压安全注射系统high head safety injection system
低压安全注射系统low head safety injection system
安全注射箱accumulator
堆芯喷淋系统core spray system
安全壳喷淋系统containment spray system
安全壳排水地坑containment drainage sump
再循环地坑recirculation sump recycle
安全壳隔离系统containment isolation system
安全壳贯穿件containment penetration assembly penetrate
设备闸门equipment hatch
气密闸门air lock
辅助给水系统auxiliary feed water system
应急给水系统emergency feed water system
换料refueling
装料fuel loading
卸料discharge
泄漏leakage
停堆shutdown
停堆冷却系统shutdown cooling system
余热排出系统residual heat removal system residue
换料腔refueling cavity
换料水箱refueling water tank
燃料装卸和贮存系统fuel handling and storage system
燃料运输通道fuel transfer tube pipe
(核电厂)的运行operation (of NPP) construction installation commissioning operation
核事故nuclear accident
技术规格书specification
不符合项nonconformance
质保大纲QA (quality assurance) program 图纸drawing (平面图plan
剖面图section
示意图sketch
曲线图curve details
详图details)
nuclear energy 核能
nuclear fission 核裂变
nuclear fusion 核聚变
nuclear radiation 核辐射
nuclear reaction 核反应
nuclear reactor核反应堆
nuclear waste 核废料
nuclear weapon 核武器
Nuclear Island / NI 核岛
Conventional Island/CI 常规岛
Reactor Building 反应堆厂房
Auxiliary Building 核辅助厂房
Annex Building 核附属厂房
Diesel Generating Building 柴油机发电厂房Radwaste Treatment Building 核废料处理厂房Containment Vessel / CV 安全壳容器
Steam Generator 蒸发器
Turbine Building 汽轮机厂房。