海明码最通俗易懂的讲解
- 格式:wps
- 大小:451.57 KB
- 文档页数:3
海明码的计算(精)海明码的计算:码距:是不同码字的海明距离的最小值。
(1)可查出多少位错误:可以发现“≤码距-1”位的错误(2)可以纠正多少位错误:可以纠正“<码距/2”位的错误,因此如果要能纠正n位错误,则所需最小的码距是:2n+1。
计算:海明码是放置在2的幂次位上的即1,2,4,8,16,32,而对于信息位为m的原始数据,需加入k位的校验码,它满足m+k+1<.海明码的求法:一、有一种简单的方法,则是从第1位开始,遇到校验位留下空格。
如原始信息为101101100,并采用偶校验:1011011001 2 3 4 5 6 7 8 9 10 11 12 13二、然后概据以下公式填充校验位:1,2,4,8B1=B3⊕B5⊕B7⊕B9⊕B11⊕B13=1⊕0⊕1⊕0⊕1⊕0=1B2=B3⊕B6⊕B7⊕B10⊕B11=1⊕1⊕1⊕1⊕1=1B4=B5⊕B6⊕B7⊕B12⊕B13=0⊕1⊕1⊕0⊕0=0B8=B9⊕B10⊕B11⊕B12⊕B13=0⊕1⊕1⊕0⊕0=0三、最后将结果填入,得到结果:11100110011001 2 3 4 5 6 7 8 9 10 11 12 13海明码的纠错:如下给出一个加入了校验码的的信息,并说明有一位的错误,要找出错误位:11100110010001 2 3 4 5 6 7 8 9 10 11 12 13将B1,B2,B4,B8代入上式的公式中:B1=B1⊕B3⊕B5⊕B7⊕B9⊕B11⊕B13=1⊕1⊕0⊕1⊕0⊕0⊕0=1 B2=B2⊕B3⊕B6⊕B7⊕B10⊕B11=1⊕1⊕1⊕1⊕1⊕0=1B4=B4⊕B5⊕B6⊕B7⊕B12⊕B13=0⊕0⊕1⊕1⊕0⊕0=0B8=B8⊕B9⊕B10⊕B11⊕B12⊕B13=0⊕0⊕1⊕0⊕0⊕0=1然后从高位往下写,B8+B4+B2+B1=1011=11(十进制)即11位出错。
海明码纠错原理海明码(Hamming Code)是一种用于检错和纠错的编码方式,由理查德·海明在1950年提出。
它可以发现并纠正单一位错误,也可以检测并纠正双位错误。
海明码的纠错原理是通过增加校验位来实现的,下面我们来详细了解一下海明码的纠错原理。
首先,海明码是一种线性分组码,它的编码方式是将数据位和校验位按照一定规则排列组合而成。
在传输数据时,发送端会对数据进行编码,添加校验位后发送出去;接收端收到数据后,会对接收到的数据进行解码,并根据校验位进行错误的检测和纠正。
其次,海明码的纠错原理是基于奇偶校验的。
在海明码中,校验位的位置是通过2的幂次方来确定的,例如第1、2、4、8、16位是校验位,其余位是数据位。
对于校验位而言,每一个校验位都负责一定范围内的数据位的奇偶校验。
当接收端接收到数据后,会对每个校验位进行奇偶校验,如果发现某个校验位的奇偶校验与接收到的数据不一致,就会根据校验位的位置确定出错的位置,并进行纠正。
最后,海明码的纠错原理可以通过一个简单的例子来说明。
假设发送端要发送一个4位的数据1010,按照海明码的规则,需要添加3个校验位。
经过编码后,发送的数据变为1010101。
在传输过程中,如果某一位发生了错误,例如1010101中的第4位发生了错误,接收端在接收到数据后,会对每个校验位进行奇偶校验,发现第2位和第4位的奇偶校验不一致,根据校验位的位置,可以确定出错的位置是第4位,然后进行纠正,将错误的位从0变为1。
最终,接收端得到的数据是1010,错误被成功纠正。
综上所述,海明码的纠错原理是通过增加校验位来实现的,通过对校验位的奇偶校验来检测错误,并根据校验位的位置进行错误的定位和纠正。
海明码在通信领域有着广泛的应用,能够有效地提高数据传输的可靠性和稳定性,是一种非常实用的纠错编码方式。
海明码,汉明码,hamming code--计算法则最近最海明码很感兴趣,查了些资料,有⼀篇资料极好,所以贴出来,希望供有需求的⼈能有个参考。
1 海明码原理概述 海明码是R. Hamming提出的, ⼀种可以纠正⼀位错的差错控制编码。
了解海明码之前, 先回顾⼀下简单的奇偶校验码的情况。
若信息位为K=n- 1位, 表⽰为a1~an- 1, 加上⼀位偶校验位(冗余位)a0, 构成⼀个n位的码字a0~an- 1, 在接收端校验时, 可按关系式: s=a0+a1+a2+…an- 1来计算, 若S=0, 则⽆错, 若S=1, 则有错。
上式可称为监督关系式, S称为校正因⼦。
在奇偶校验情况下, 只有⼀个监督关系式和⼀个校正因⼦, 其取值只有两种(0或1),分别代表了⽆错和有错的情况, ⽽不能指出差错所在的位置。
不难想象, 若增加冗余位, 也相应地增加监督关系式和校正因⼦, 就能区分更多的情况。
如, 若有两个校正因⼦, 则其取值就有4种可能: 00、01、10或11, 就能区分4种不同情况。
若其中⼀种表⽰⽆错, 另外三种不但可以⽤来指出有错, 还可以⽤来区分错误的情况, 如指出是哪⼀位错等。
⼀般⽽⾔, 信息位为K位, 增加r位冗余位, 构成n=k+ r位码字。
若希望⽤r个监督关系式产⽣的r个校正因⼦来区分⽆错和在码字中的n个不同位置的⼀位错, 则表⽰:或。
2 构造海明码的冗余位和监督关系式的⽅法 按上述设计思路, 为了叙述清楚, 下⾯以信息位K=7来讨论海明码的冗余位和监督关系式的具体构造过程和⽅法。
因为且k=7, 所以≥4, 即⾄少需要4位冗余位(对应产⽣4个校正因⼦和4个监督关系式), 形成24=16种不同取值, ⽤其中11种分别表⽰⽆错和a0~a10中⼀位错的情况。
构造表如表1: 冗余码如下: a0=a8+a9+a10 (1) a1=a5+a6+a7 (2) a2=a4+a6+a7+a9 (3) a3=a4+a5+a7+a8+a10 (4) 监督关系式如下: s0=a0+a8+a9+a10 (5) s1=a1+a5+a6+a7 (6) s2=a2+a4+a6+a7+a9 (7) s3=a3+a4+a5+a7+a8 (8)3 构造校正因⼦和监督关系式时应遵循的原则 上表1中, 构造4个校正因⼦和4个监督关系式的过程中, 为了体现前⾯所述设计思想,应遵循如下原则: 图1中共有11列, 每⼀列应保证各不相同, 即s0 s1 s2 s3 的16种组合中, 取“0000”组合表⽰⽆错, 剩下15种中取其中11种⽤来表⽰a0~a10中某⼀位出错的情况, 所以,下表2有错, 因为a5 和a7 两列均为“0111”。
海明码的计算方法海明码是一种具有纠错功能的校验码。
本文简单地介绍海明码的计算方法。
海明码的目的是能够纠正一位误码。
假设信息码共有 n 位,海明码共有 h 位,那么总共的码长为 n + h 位。
为能检测出 n + h 位编码中其中一位的错误,海明码必须能够表示至少 n + h + 1 种状态,其中 n + h 种表示 n + h 位编码中有一位错误,另外还需要一种来表示整个编码正确无误。
则海明码的长度需要满足下列关系:2 h>= n + h + 1于是根据这个式子我们可以得出以下的关系表:h 2 3 4 5 6 7 8n 1 2~4 5~11 12~26 27~57 58~120 121~247以 4 位信息位为例,由上表可以看出需要的海明码长度为 3。
设信息位为 x4x3x2x1,添加的 3 位海明码为 a3a2a1,信息码和海明码组合之后得到的码为 H7H6H5H4H3H2H1。
错误无H1H2H3H4H5H6H7C101010101C1= H1+ H3+ H5+ H7= 0C200110011C2= H2+ H3+ H6+ H7= 0C300001111C3= H4+ H5+ H6+ H7= 0如上表,在H1~H7中添加的 3 位海明码使得 C1~C3的值为零。
其中C1~C3为校验和。
这样当 Hn 传输出错时,有 (C3C2C1)2= n。
令 H1 = a1, H2= a2, H4= a3,则得出H 7H6H5H4H3H2H1= x4x3x2a3x1a2a1将上面的关系代入C1~C3的计算公式,得到C 1 = H1+ H3+ H5+ H7= a1+ x1+ x2+ x4= 0C 2 = H2+ H3+ H6+ H7= a2+ x1+ x3+ x4= 0C 3 = H4+ H5+ H6+ H7= a3+ x2+ x3+ x4= 0即a 1 + x1+ x2+ x4= 0a 2 + x1+ x3+ x4= 0a 3 + x2+ x3+ x4= 0即a 3 = x4+ x3+ x2a 2 = x4+ x3+ x1a 1 = x4+ x2+ x1。
海明码详解这两天也在研究海明码的问题,把我的理解说给你吧,按照我说的可以顺利得到海明码步骤:一、确定校验码的位数k二、确定校验码的位置三、数据的位置四、求出校验位的值首先,海明码的作用是:在编码中如果有错误,可以表达出第几位出了错,二进制的数据只有0和1,修改起来很容易,求反即可,这需要加入几个校验位。
重要的知识点:海明码的组成,不是简单的在后面加上校验位,海明码≠数据位+检验位那检验位该怎么加呢?它是根据总的位置来加的,加在【2的几次幂】的位置上,这个位置不是我们通常的从右向左数位置,刚好相反,是从左右如下图:P是校验位, D是数据位:原始的数据是:101101 校验位是插到了 1 2 4 8这几个位置上的。
位置M1M2M3M4M5M6M7M8M9M10甲P1 P2 D1P3 D2D3D4P4 D5D6乙10 110 1步骤一、确定校验码的位数k公式:m+k+1≤2^k (m是数据位的位数,K是要加的校验位的位数数据长是4位,校验码就是3位4+k+1≤2^kK最小只能是3数据长是5,6,7,8,9,校验码就是4位5+k+1≤2^kK最小就只能取4101101 数据位是6位,那校验位应该是4位,那总位数是:6+4=10位步骤二、确定校验码的位置位置M1M2M3M4M5M6M7M8M9M10甲P1 P2 D1P3 D2D3D4P4 D5D6乙10 110 1(图1)注意:【位置是从左----------右编码】(网上好多都反了,都是从右往左的,这应该是错的)校验位就插在2的幂次方的位置上。
4个检验位就是插到,2的0次方=1,2的1次方=2,2的2次方=4,2的3次方=8的位置上。
始上(图1)步骤三、数据的位置数据位置就按顺序写入进去就OK了,不要写到校验位就是的了。
步骤四、求出校验位的值也就是求图1中:p1 p2 p3 p4 的值。
那这几个数该如何求值呢?这里就要引进一个线性码的概念了,就是这4位校验码和图1中的那些位置上的数有关系呢?这里有一个进制转换的问题要先解决:因为是4位校验码,所以我们可以s4 s3 s2 s1 这个数来表示这个4位校验码,也就是p4 p3 p2 p1M1号位是十进制的1 转成四位二进制数就是:0001 即M1 和s1有关系同样的道理M2 变成四位二进制数: 0010 0010----s4 s3 s2 s1 s2的位置上是1 ,所以M2和S2有关系。
海明码计算过程嘿,朋友们!今天咱就来讲讲海明码计算过程。
这海明码啊,就像是一个神秘的魔法盒子,等你打开它,就会发现里面藏着好多奇妙的东西呢!咱先来说说啥是海明码。
简单来说,它就是一种能帮我们检测和纠正数据传输过程中错误的好帮手。
你想想看,数据就像一群小士兵,在传输的道路上可能会遇到各种“妖魔鬼怪”,比如干扰啦、出错啦。
这时候海明码就像一位英勇的将军,站出来保护这些小士兵,让它们能准确无误地到达目的地。
那怎么计算海明码呢?别急,听我慢慢道来。
首先,我们得确定要保护的数据有多少位,这就好比要知道有多少小士兵需要保护。
然后呢,根据这个数量来确定需要多少位的海明码。
这就像给小士兵们配备合适数量的将军。
接下来,就开始计算啦!这过程就好像是给小士兵们排兵布阵。
我们要把数据位和海明码位按照一定的规则放好,就像是让小士兵们站在各自的位置上。
然后,根据一些巧妙的算法,给每个海明码位赋予特定的任务。
比如说,某个海明码位要负责检查某些数据位的奇偶性。
这就好像它是个小侦探,专门盯着那几个小士兵,看它们有没有出问题。
如果数据传输过程中真的出了错,这个小侦探就能迅速发现,然后发出警报!再比如说,另一个海明码位要同时关注好几个数据位,就像是个更厉害的大侦探,能从更宏观的角度发现问题。
计算海明码的过程可不简单哦,就像解一道复杂的谜题。
但你可别被它吓住,只要一步一步来,就一定能搞明白。
你想想,要是没有海明码,那我们的数据在传输过程中出错了可咋办?那不就乱套了嘛!所以说,学会计算海明码可是很重要的呢。
而且啊,这海明码的应用可广泛了呢。
不管是在网络通信中,还是在各种电子设备里,都能看到它的身影。
它就像一个默默无闻的守护者,一直在背后为我们的数据安全保驾护航。
哎呀,说了这么多,你是不是对海明码计算过程有点感觉了呢?别犹豫,赶紧自己去试试吧!相信你一定能掌握这个神奇的技能,让数据传输变得更加可靠。
加油哦!。
海明码详解①海明校验的基本思想将有效信息按某种规律分成若干组,每组安排一个校验位,做奇偶测试,就能提供多位检错信息,以指出最大可能是哪位出错,从而将其纠正。
实质上,海明校验是一种多重校验。
②海明校验的特点它不仅具有检测错误的能力,同时还具有给出错误所在准确位置的能力。
一.校验位的位数校验位的位数与有效信息的长度有关设:N--为校验码的位数 K--是有效信息位 r--校验位(分成r组作奇偶校验,能产生r位检错信息)海明码应满足 N=K+r≤2r-1 若r=3 则N=K+r≤7 所以K≤4二.分组原则`在海明码中,位号数(1、2、3、……、n)为2的权值的那些位,即:1(20)、2(21)、 4(22)、8(23)、…2r-1位,作为奇偶校验位并记作: P1、P2、P3 、P4、…Pr,余下各位则为有效信息位。
例如: N=11 K=7 r=4 相应海明码可示意为位号 1 2 3 4 5 6 7 8 9 10 11P占位P1 P2 × P3 × × × P4 × × ×其中×均为有效信息,海明码中的每一位分别被P1P2P3P4… Pr 中的一至若干位所校验,其规律是:第i位由校验位位号之和等于i的那些校验位所校验如:海明码的位号为3,它被P1P2(位号分别为1,2)所校验海明码的位号为5,它被P1P3(位号分别为 1,4)所校验归并起来: 形成了4个小组,每个小组一个校验位,校验位的取值,仍采用奇偶校验方式确定。
如表2·6 、表2·7所示:三.编码、查错、纠错原理以4位有效信息(b1、b2、b3、b4)和3位校验位(P1、P2、P3)为例: K=4 r=3 海明序号 1 2 3 4 5 6 7海明码 P1 P2 b1 P3 b2 b3 b4根据表2-8可以看到(1)每个小组只有一位校验位,第一组是P1、第二组是P2、第三组是P3。
计算机基础:海明码是什么?海明码:奇偶校验码的⼀种扩充。
只能检验和恢复⼀位。
例如:求1011 的海明码?答案:1010101其中:红⾊所在位数 1,2,4,8,... 为计算出的验证码,⿊⾊的信息为原信息码:1011。
计算⽅法:1.先计算需要⼏位海明码?1011 是四位 ,它有四种只错⼀位的情况,(0011,1111,1001,1010)再加上x位海明码的错⼀位情况。
再加上⼀种全部位都正确的情况。
所以海明码需要 x+4+1 中可能。
所以需要海明码x位可以表⽰出 x+4+1 中可能。
即: x+4+1 <=2**x (2**x 表⽰2的x⽅),计算得到3,海明码最少是3,当然4,5,6位都可以,就像⽤101 校验和0101 00101 000101 00000000101 都能校验⼀样,只是⽐较浪费。
所以计算出了海明码的位数为3。
(其实也就是往原编码内填充1,2,4,8,16,这些地⽅,填完为⽌。
)2. 开始计算。
1011 中间插⼊三位验证码位数7654321信息101x1x x在第7位:7=2**2+2**1+2**0=4+2+16 对应位置为0,不算在内。
5=2**2 +2**0 = 4 +13=2**1+2**0 =2+1这样得到(2**0) 出现三次,所以在最低位为1 ,(出现偶数次就是0,奇数次就是1,)(原计算⽅法是⽤异或计算 1 xor 1 =0 , 1xor 0 =1 , 0 xor 0=0 ,这⾥结果都⼀样)(2**1)出现两次,所以第⼆位是0,(2**2)出现两次,所以第三位是0,所以就得到位数7654321信息10101013.验证和举例我们传输这个得到的海明码,和⼀个错误的海明码:正确的验证 1010101 :1.得到海明码(1,2,4 位,如果更长的话就是8,16,32。
位)001。
2.信息码为剩下的 1011,同步骤⼆:计算得到001,3.和上⾯的到的海明码001 异或(001 xor 001 ) =000,正确错误的验证 1110101 :1.得到海明码 001。
1.海明码的概念海明码是一种可以纠正一位差错的编码。
它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。
它必需满足以下关系式:2^r>=n+1 或2^r>=k+r+1海明码的编码效率为:R=k/(k+r)式中k为信息位位数r为增加冗余位位数[font class="Apple-style-span" style="font-weight: bold;"id="bks_cu2htj1g"]2.[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"][font]海明码的原理[/font]在数据中间加入几个校验码,将玛距均匀拉大,将数据的每个二进制位分配在几个奇偶校验组里,当某一位出错,会引起几个校验位的值发生变化。
海明不等式:校验码个数为K,2的K次幂个信息,1个信息用来指出“没有错误”,其余2K-1个指出错误发生在那一位,但也可能是校验位错误,故有N<=2的K次-1-K能被校验。
海明码的编码规则:1.每个校验位Ri被分配在海明码的第2的i次的位置上,2.海明玛的每一位(Hi)是由多个/1个校验值进行校验的,被校验玛的位置玛是所有校验这位的校验位位置玛之和。
一个例题:4个数据位d0,d1,d2,d3, 3个校验位r0,r1,r2,对应的位置为:d3 d2 d1 r2 d0 r1 r0 ======b7 b6 b5 b4 b3 b2 b1校验位的取值,就是他所能校验的数据位的异或b1为b3,b5,b7的异或,b2为b3,b6,b7 b4为b5,b6,b7 [/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"]海明玛传送到接受方后,将上三式的右边(b1,b2,b4)的逻辑表达式分别异或上左边的值就得到了校验方程,如果上题采用偶校验G1=b1 b3 b5 b7的异或G2=b2 b3 b6 b7的异或G3=b4 b5 b6 b7的异或若G1G2G3为001是第四位错若为011是第六位错[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal;"] [/font]3.海明码的生成与接收特注:以下的+均代表异或方法一:1)海明码的生成。
对海明码的理解海明码是一种多重(复式)奇偶检错系统。
它将信息用逻辑形式编码,以便能够检错和纠错。
用在海明码中的全部传输码字是由原来的信息和附加的奇偶校验位组成的。
每一个这种奇偶位被编在传输码字的特定位置上。
实现得合适时,这个系统对于错误的数位无论是原有信息位中的,还是附加校验位中的都能把它分离出来。
一个n位二进制数位串在传输过程中哪一位都有出错的可能,也就是说有n个发生错误的可能性。
针对此情况,如果发送方只抽出其中一位制置奇偶校验位值,以便对其它位进行偶校验或奇校验,虽然也能检错,但无法确定错码的位置,不能纠错。
如果发送方抽出其中r位(放在1,2,4,8,16……位上),给每个位制置奇偶校验位值,以便对从其它位中选择的有差异的r个位组进行偶校验或奇校验,这样,就能用含r个校验位值的逻辑组合(其所在位置可以不连续,但是,其在逻辑上是连续的)所衍生出的2r种状态对可能发生的错误进行相应范围的检测。
进一步思考:如果让2r种可能发生的状态中除去一种状态反映整个位串传输正确外,剩下的2r-1种状态一一对应地反映位串中可能发生的n种错误,那么,对r会有多大的数量要求呢?显然,r应满足下列关系式:2r-1>=n (1)这样,r个校验位所衍生出的2r种状态才能覆盖可能产生的n种错误。
每种错误发生时才不至于漏检。
从n中扣出r个校验位n-r=k,这k个位是信息位。
n=k+r,代入(1)式得:2r-1>=k+r (2)移项得:2r-r>=k+1 (3)按(3)式进行试算(试算不包括”>”——取最小值)表1根据经验表2此即r以其所衍生出的状态能覆盖的信息位数量。
反过来,从k的数量,可以倒推需要多少校验位对其进行检测。
知道了信息位数量与校验位数量的关系后,怎样编海明码呢?用一道例题加以说明。
例题现有8位二进制数信息位串10011101等待传输,问怎样将海明校验位编入以资校验?根据前述,8个信息位要有4个校验位来检测,于是整个位串长就是8+4=12位。