SPI总线通俗易懂讲解
- 格式:doc
- 大小:277.00 KB
- 文档页数:12
【硬见小百科】SPI总线是什么?SPI全称是串行外设接口(Serial Peripheral Interface),是由Motorola提出的一种全双工(全双工指可以同时(瞬时)进行信号的双向传输(A→B且B→A))同步串行通信接口,通信波特率可以高达5Mbps,但具体速度大小取决于SPI硬件。
SPI总线只需四条线就可以完成MCU与各种外围器件的通讯。
1)MOSI(SDI ) – Master数据输出,Slave数据输入;2)MISO (SDO) – Master数据输入,Slave数据输出;3)SClK –时钟信号,由Master产生;4)/CS – Slave使能信号,由Master控制。
SPI通信就是采用这样的主从模式(Master-Slave)架构,一般为一个Master和多个Slave的应用模式。
切记,谁为主,谁提供SCLK 时钟信号。
SPI通讯就需要这四根线。
其中,CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时,对此芯片的操作才有效。
这就允许在同一总线上连接多个SPI设备成为可能。
接下来再负责通讯的3根线就可以了。
SPI也是串行通讯协议,也就是说数据是一位一位的传输的。
这就是SCLK时钟线存在的原因,由SCLK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。
操作时序很简单,如下:看见时序图了,就知道怎么通讯了。
SPI接口在Master控制下产生的从器件使能信号和时钟信号,两个双向移位寄存器按位传输进行数据交换,传输数据高位在前,低位在后(MSB first)。
在SCK的下降沿上数据改变,上升沿一位数据被存入移位寄存器。
换个说法,SPI是一个环形总线结构,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
对于主机来说,上升沿发送、下降沿接收、高位先发送。
上升沿到来的时候,sdi上的电平将被发送到从设备的寄存器中。
从M_Sbuff寄存器的7位,发送到S_Sbuff寄存器的0位;下降沿到来的时候,sd噢上的电平将被接收到主设备的寄存器中。
SPI总线协议介绍 ⼀、概述 SPI = Serial Peripheral Interface,是串⾏外围接⼝设备,是⼀种⾼速,全双⼯,同步的通信总线。
常规只占⽤四根线,节约了芯⽚管脚,PCB的布局省空间。
优点: ⽀持全双⼯,push-pull的驱动性能相⽐open-drain信号完整性更好。
⽀持⾼速(100MHz以上)。
协议⽀持字节长不限于8bits,可根据应⽤特点灵活选择消息字长 硬件连接简单。
缺点: 相⽐I2C多两根线。
没有寻址机制,只能靠⽚选选择不同设备。
没有从设备接收ACK,主设备对于发送成功与否不得⽽知。
典型应⽤只⽀持单主控 相⽐RS232 RS485和CAN总线,SPI传输距离短 ⼆、硬件结构 SPI总线定义两个及以上设备间的数据通信,提供时钟的设备为主设备Master,接收时钟的设备为从设备Slave; 信号定义如下: SCK :Serial Clock 串⾏时钟 MOSI:Master Ouput,Slave Input 主发从收信号 MISO:Master Input,Slave Input主收从发信号 SS/CS:Slave Select⽚选信号 电路连接如下: 单个主设备和单个从设备: 单个主设备和多个从设备: 三、寄存器类型 摩托罗拉定义的SPI寄存器包括: SPI Control Register 1 控制寄存器1 SPI Control Register 2 控制寄存器2 SPI Baud Rate Register 波特率寄存器 SPI Status Register(SPISR) 状态寄存器(只读其余均可读可写) SPI Data Register(SPIDR)数据寄存器 通过往寄存器中写⼊不同的值,设置SPI模块的不同属性 四、SPI传输模式 SPI通信有四种模式,简单地讲就是设置SCLK时钟信号线的那种信号为有效信号 通过设置控制寄存器SPICR1中的CPOL和CPHA位,将SPI可以分成四种传输模式 时钟极性CPOL,即Clock Polarity,决定时钟空闲时状态电平。
spi总线协议SPI总线是一种常用的串行通信协议,全称为Serial Peripheral Interface,即串行外围设备接口。
它由Motorola公司在20世纪80年代初提出,并在之后的几十年里得到了广泛应用。
SPI 总线协议利用硬件时序进行通信,因此传输速度较高,被广泛应用于各种嵌入式系统和通信设备中。
SPI总线协议采用一主多从的方式进行通信,其中主设备通过SCLK时钟信号控制数据传输的时序,并通过SS片选信号选择从设备进行通信。
在SPI总线中,每个从设备都有一个对应的片选信号,主设备需要选择某个从设备才能与其进行通信。
数据在传输过程中,通过MOSI主发送、从接收数据,以及MISO主接收、从发送数据,实现双向的数据传输。
SPI总线协议具有以下几个主要特点:1.简单的硬件连接:SPI总线只需要四根线连接,包括SCLK 时钟线、MOSI主发送数据线、MISO主接收数据线和SS从片选信号线。
这种简单的硬件连接使得SPI总线在成本和布线上具有一定的优势。
2.高速的数据传输:SPI总线是同步传输协议,通过时钟信号来控制数据的传输速度。
在SPI总线中,时钟信号的频率可以根据实际需要进行调整,从而实现较高的传输速度。
相比其他串行通信协议,如I2C和UART,SPI总线通常能够提供更高的数据传输速率。
3.可靠的数据传输:由于SPI总线是基于硬件时序的通信协议,所以在数据传输的过程中具有较高的可靠性。
数据传输的时序由主设备控制,从而减少了数据传输过程中产生错误的可能性。
4.灵活的工作模式:SPI总线协议支持多种工作模式,包括全双工、半双工和单工三种。
在全双工模式下,主设备和从设备可以同时进行发送和接收操作;在半双工模式下,主设备和从设备交替进行发送和接收操作;而在单工模式下,只能进行发送或接收操作。
SPI总线协议在各种嵌入式应用中被广泛应用,如存储器、显示屏控制器、传感器等。
同时,SPI总线还可以通过级联的方式连接多个从设备,从而扩展系统的功能。
spi总线工作原理
SPI(Serial Peripheral Interface)总线是一种同步串行通信协议,它主要用于在微控制器或其他数字集成电路之间传输数据。
SPI总线由一个主设备(Master)和一个或多个从设备(Slave)组成。
主设备通过与从设备之间发送和接收数据的方式来与其进行通信。
SPI总线的工作原理如下:
1. 首先,主设备选择要与之通信的从设备。
这是通过在片选引脚上拉低电平来实现的。
其他从设备的片选引脚应保持高电平。
2. 接着,主设备通过时钟引脚(SCK)生成时钟信号,此时数据传输开始。
3. 主设备通过主输出(MOSI)引脚发送数据,从设备通过主输
入(MISO)引脚接收数据。
在每个时钟周期中,主设备和从设
备在SCK上的上升沿或下降沿进行数据交换。
4. 数据传输时,主设备先发送一个起始位(通常是高电平)并将其传输到从设备。
5. 接下来,主设备和从设备同时发送并接收数据,每一个时钟周期传输一个位。
数据传输的顺序是从最高位(MSB)到最
低位(LSB)。
6. 当所有数据位都传输完毕后,主设备通过拉高片选引脚结束
与从设备的通信。
7. 在通信结束后,主设备可以选择与其他从设备进行通信,或者在下一个时钟周期中重新选择与之前的从设备进行通信。
SPI总线的工作原理简单而直观。
它具有高速、可简化电路设计等优点,因此在很多嵌入式系统中得到了广泛应用。
SPI总线协议介绍1.SPI总线协议介绍串行外围设备(接口)(Serial Peripheral Interface,SPI)是一种高速、全双工、同步(通信)总线,常用于(单片机)和E2PROM、FLASH、(实时时钟)、(数字信号)(处理器)等器件之间的通信,它主要是主从方式通信,通常只有一个主机和多个从机。
标准SPI协议有4根线,SCLK(必须存在),其他三条线(MOSI、MISO、CS)都可以根据实际情况进行删减。
SCLK:(时钟)(信号),由主机产生( 必须存在)MOSI:主机给从机发送指令或数据的通道MISO:主机读取从机的状态或数据的通道CS:从机片选使能信号在同一时刻,主机只能跟一个从机进行通信。
当总线上存在多个从机时,需要进行片选将从机的CS接口电平拉高或拉低。
2.SPI总线寻址模式SPI协议和(I2C)协议一样,数据是从高位到低位依次发送,SPI协议中SCLK在空闲时可以是高电平也可以是低电平。
下面以空闲时,SCLK为高电平举例。
当SCLK出现下降沿即从高电平跳到低电平时,进行数据输出;当SCLK出现上升沿即从低电平跳到高电平时,进行数据采样。
SPI总线寻址模式和I2C协议相比,SPI协议没有开始位、停止位、应答位,规则上简单很多。
SPI协议中SCLK在空闲时可以是高电平也可以是低电平,这其实反映了时钟的极性。
上图中,CPOL=1,CPHA=1 。
CPOL时钟极性:CPOL=0,SCLK空闲时状态为低电平CPOL=1,SCLK空闲时状态为高电平时钟的相位:它决定了什么时候进行数据输出,什么时候进行数据采样。
CPHA时钟相位:CPHA=0,每个周期的第一个跳变沿进行数据采样CPHA=1,每个周期的第一个跳变沿进行数据输出。
干货一文了解SPI总线工作原理、优缺点和应用案例将微控制器连接到传感器,显示器或其他模块时,您是否考虑过两个设备之间如何通信?他们到底在说什么?他们如何能够相互理解?电子设备之间的通信就像人类之间的通信,双方都需要说同一种语言。
在电子学中,这些语言称为通信协议。
幸运的是,在构建大多数DIY电子项目时,我们只需要了解一些通信协议。
在本系列文章中,我们将讨论三种最常见协议的基础知识:串行外设接口(SPI),内部集成电路(I2C)和通用异步接收器/发送器(UART)驱动通信。
首先,我们将从一些关于电子通信的基本概念开始,然后详细解释SPI的工作原理。
SPI,I2C和UART比USB,以太网,蓝牙和WiFi等协议慢得多,但它们更简单,使用的硬件和系统资源也更少。
SPI,I2C和UART非常适用于微控制器之间以及微控制器和传感器之间的通信,在这些传感器中不需要传输大量高速数据。
串行与并行通信电子设备通过物理连接在设备之间的导线发送数据位来相互通信,有点像一个字母中的字母,除了26个字母(英文字母表中),一个位是二进制的,只能是1或0。
通过电压的快速变化,位从一个设备传输到另一个设备。
在工作电压为5V的系统中,0位作为0V的短脉冲通信,1位通过5V的短脉冲通信。
数据位可以并行或串行形式传输。
在并行通信中,数据位是同时发送的,每个都通过单独的线路。
下图显示了二进制(01000011)中字母“C”的并行传输:在串行通信中,通过单线逐个发送这些位。
下图显示了二进制(01000011)中字母“C”的串行传输:SPI通信简介许多设备都采用了SPI通用通信协议。
例如,SD卡模块,RFID读卡器模块和2.4 GHz无线发送器/接收器都使用SPI与微控制器通信。
SPI的一个独特优势是可以不间断地传输数据。
可以连续流发送或接收任意数量的比特。
使用I2C和UART,数据以数据包形式发送,限制为特定的位数。
启动和停止条件定义每个数据包的开始和结束,因此数据在传输过程中会被中断。
SPI通信协议(SPI总线)学习
SPI(Serial Peripheral Interface)是一种同步的、全双工的通信总线,常用于连接微
控制器和外围设备。
SPI总线的通信协议相对简单,有四根信号线组成:SCLK(时钟
信号)、MOSI(主机输出从机输入信号)、MISO(主机输入从机输出信号)和SS (片选信号)。
SPI总线的工作方式如下:
1. 选择从机:主机通过将片选信号(SS)置低来选择要通信的从机。
通常每个从机都
有独立的片选线。
2. 时钟信号:主机通过时钟信号(SCLK)提供同步时钟给从机,控制数据传输的时钟周期。
3. 主机输出从机输入:主机将要发送给从机的数据通过主机输出从机输入信号(MOSI)发送给从机。
数据按照时钟的上升沿或下降沿传输。
4. 主机输入从机输出:从机将要发送给主机的数据通过主机输入从机输出信号(MISO)传输给主机。
数据按照时钟的上升沿或下降沿传输。
5. 数据传输顺序:数据传输是基于时钟信号的,每个时钟周期传输一个位。
主机和从
机按照特定的数据传输格式进行通信,可以是先传输最高有效位(MSB)或最低有效
位(LSB)。
6. 数据传输模式:SPI总线支持多种数据传输模式,如模式0、模式1、模式2和模式3,不同模式下时钟信号和数据传输的相位和极性不同。
7. 传输完成:主机通过将片选信号(SS)置高来结束通信。
SPI总线的优点是简单、高速、低成本,适用于连接多种外设,如传感器、存储器、显示器等。
然而,SPI总线并没有提供错误检测和纠正机制,需要通过其他方式保证数据的可靠性。
SPI总线协议及SPI时序图详解SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
上升沿发送、下降沿接收、高位先发送。
上升沿到来的时候,sdo上的电平将被发送到从设备的寄存器中。
下降沿到来的时候,sdi上的电平将被接收到主设备的寄存器中。
假设主机和从机初始化就绪:并且主机的sbuff=0xaa (10101010),从机的sbuff=0x55 (01010101),下面将分步对spi的8个时钟周期的数据情况演示一遍(假设上升沿发送数据)。
---------------------------------------------------脉冲主机sbuff 从机sbuff sdi sdo---------------------------------------------------0 00-0 10101010 01010101 0 0---------------------------------------------------1 0--1 0101010x 10101011 0 11 1--0 01010100 10101011 0 1---------------------------------------------------2 0--1 1010100x 01010110 1 02 1--0 10101001 01010110 1 0---------------------------------------------------3 0--1 0101001x 10101101 0 13 1--0 01010010 10101101 0 1---------------------------------------------------4 0--1 1010010x 01011010 1 04 1--0 10100101 01011010 1 0---------------------------------------------------5 0--1 0100101x 10110101 0 15 1--0 01001010 10110101 0 1---------------------------------------------------6 0--1 1001010x 01101010 1 06 1--0 10010101 01101010 1 0---------------------------------------------------7 0--1 0010101x 11010101 0 17 1--0 00101010 11010101 0 1---------------------------------------------------8 0--1 0101010x 10101010 1 08 1--0 01010101 10101010 1 0---------------------------------------------------这样就完成了两个寄存器8位的交换,上面的0--1表示上升沿、1--0表示下降沿,sdi、 sdo相对于主机而言的。
SPI总线规范SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。
SPI概述SPI:高速同步串行口。
3~4线接口,收发独立、可同步进行.SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。
是Motorola首先在其MC68HCX X系列处理器上定义的。
SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。
外围设置FLASH RAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。
SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。
SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。
也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。
(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。
SPI总线通俗易懂讲解
SPI总线
MOTOROLA公司的SPI总线的基本信号线为3根传输线,即SI、SO、SCK。
传输的速率由时钟信号SCK决定,SI为数据输入、SO为数据输出。
采用SPI总线的系统如图8-27所示,它包含了一个主片和多个从片,主片通过发出片选信号-CS来控制对哪个从片进行通信,当某个从片的-CS信号有效时,能通过SI接收指令、数据,并通过SO发回数据。
而未被选中的从片的SO端处于高阻状态。
图8-27 SPI总线的系统
主片在访问某一从片时,必须使该从片的片选信号有效;主片在SCK信号的同步下,通过SI线发出指令、地址信息;如需将数据输出,则接着写指令,由SCK同步在SI线上发出数据;如需读回数据,则接着读指令,由主片发出SCK,从片根据SCK的节拍通过SO发回数据。
因而对具有SPI接口的从片器件来讲,SCK、SI是输入信号,SO是输出信号。
SCK 用于主片和从片通信的同步。
SI用于将信息传输到器件,输入的信息包括指令、地址和数据,指令、地址和数据的变化在SCK的低电平期间进行,并由SCK信号的上升沿锁存。
SO用于将信息从器件传出,传出的信息包括状态和数据,信息在SCK信号的下降沿移出。
Microchip公司的25XX系列的串行E2PROM采用了SPI总线,该系列器件的性能如表8-2所示。
表8-2 Microchip公司的25XX系列的串行E2PROM
型号25XX04025XX08025XX16025XX320
容量
4K
(512 X 8bit)
8K
(1024 X 8bit)
16K
(4096 X 8bit)
32K
(4096 X 8bit)
地址信号A0~A8A0~A9A0~A10A0~A11以25XX320为例,该器件是4K字节的E2PROM,结构如图8-28所示,接口信号为SCK、SI和SO,此外还具有-CS、-WP、-HOLD信号线。
其中-CS为器件选中信号,当此信号为低电平时器件被选中,高电平时器件处于等待状态。
图8-28 25XX320的结构
与并行接口电路不同的是,在并行接口电路中对器件进行操作的控制信号,在串行接口电路中只能用指令实现,25XX320的操作指令有数据读指令、写操作的允许和禁止指令、写数据指令和状态寄存器的读写指令。
在器件的内部有一个8位的指令寄存器,在SCK的
上升沿,通过SI信号线,指令输入到上述寄存器并被执行。
表8-3 25系列串行存储器的指令
指令名称指令格式描述
READ00000011从选定的地址开始读存储器数据
WRITE00000010从选定的地址开始写存储器数据
WRDI00000100禁止写操作
WREN00000110允许写操作
RDSR00000101读状态寄存器
WRSR00000001写状态寄存器
器件的读操作时序如图8-29所示。
当-CS信号有效时,在SCK信号的同步下,8位的读指令送入器件,接着送入16位地址(由于25XX320只使用地址信号A0~A11,地址的高4位无效)。
在读指令和地址发出后,SCK继续发出时钟信号,此时存储在该地址的数据由SCK控制从SO引脚移出。
在每个数据移出后,内部的地址指针自动加1,如继续对器件发送SCK信号,可读出下一个数据。
当地址指针计到0FFFH之后,将回到0000H。
读操作的结束由-CS信号变高实现。
图8-29 25系列串行存储器的读时序
25XX系列的串行EEPROM的写操作通过写允许及禁止指令控制,写操作必须在器件处于写允许状态时进行。
写允许及禁止指令均为8位的指令,指令的操作过程为:将-CS信号置为低电平,在SCK信号的作用下,通过SI引脚输入上述指令,在8位的指令送入器件之后,将-CS信号置为高电平,使器件锁存于写允许或写禁止状态。
如在输入写允许指令后未将-CS信号置为高电平,则写允许状态未锁存,此时如直接进行写操作,数据将不能写入存储器。
在上电、写禁止指令、写状态寄存器指令、写数据指令执行之后,器件的写允许状态将被复位,即处于写禁止状态。
写操作通常在写允许指令之后进行,其时序如图8-30所示。
在写允许状态锁存后,将-CS变高;再将-CS变低,在SCK的同步下输入写操作指令并送入16位地址,紧接着发送需写入的数据,写入的数据一次最多可达32个,但必须保证在同一页内。
一页数据的地址从XXXXXXXX XXX0 0000 开始,到XXXX XXXX XXX1 1111结束,当内部的地址指针计数器达到XXXX XXXX XXX11111后,继续发送时钟信号将使地址计数器回复到该页的第一个地址,即XXXX XXXX XXX0 0000H。
图8-30 25系列串行存储器的写时序
为了使数据有效写入,-CS信号只能在写入数据的最后一个字节的最低位写入后变高。
如-CS信号在其他时间变高,将无法保证数据的完整写入。
在写操作的过程中,能通过读状态指令将状态寄存器的内容读回,当写操作完成后,写允许锁存状态将被复位。
优缺点
SPI接口具有如下
优点:
1) 支持全双工操作;
2) 操作简单;
3) 数据传输速率较高。
缺点:
1) 需要占用主机较多的口线(每个从机都需要一根片选线);
2) 只支持单个主机。
3) 没有指定的流控制,没有应答机制确认是否接收到数据。
如果还是看不懂,那就再通俗点。
SPI总线协议介绍
一、技术性能
SPI接口是Motorola 首先提出的全双工三线同步串行外围接口,采用主从模式(MasterSlave)架构;支持多slave模式应用,一般仅支持单Master。
时钟由Master控制,在时钟移位脉冲下,数据按位传输,高位在前,低位在后(MSBfirst);SPI接口有2根单向数据线,为全双工通信,目前应用中的数据速率可达几Mbps的水平。
总线结构如下图所示。
二、接口定义
SPI接口共有4根信号线,分别是:设备选择线、时钟线、串行输出数据线、串行输入数据线。
(1)MOSI:主器件数据输出,从器件数据输入
(2)MISO:主器件数据输入,从器件数据输出
(3)SCLK:时钟信号,由主器件产生
(4)/SS:从器件使能信号,由主器件控制
三、内部结构
四、时钟极性和时钟相位
在SPI操作中,最重要的两项设置就是时钟极性(CPOL或UCCKPL)和时钟相位(CPHA 或UCCKPH)。
时钟极性设置时钟空闲时的电平,时钟相位设置读取数据和发送数据的时钟沿。
主机和从机的发送数据是同时完成的,两者的接收数据也是同时完成的。
所以为了保证主从机正确通信,应使得它们的SPI具有相同的时钟极性和时钟相位。
SPI接口时钟配置心得:在主设备这边配置SPI接口时钟的时候一定要弄清楚从设备的时钟要求,因为主设备这边的时钟极性和相位都是以从设备为基准的。
因此在时钟极性的配置上一定要搞清楚从设备是在时钟的上升沿还是下降沿接收数据,是在时钟的下降沿还是上升沿输出数据。
五、传输时序
SPI接口在内部硬件实际上是两个简单的移位寄存器,传输的数据为8位,在主器件产生的
从器件使能信号和移位脉冲下,按位传输,高位在前,低位在后。
如下图所示,在SCLK 的下降沿上数据改变,上升沿一位数据被存入移位寄存器。
五、数据传输
在一个SPI时钟周期内,会完成如下操作:
1)主机通过MOSI线发送1位数据,从机通过该线读取这1位数据;
2)从机通过MISO线发送1位数据,主机通过该线读取这1位数据。
这是通过移位寄存器来实现的。
如下图所示,主机和从机各有一个移位寄存器,且二者连接成环。
随着时钟脉冲,数据按照从高位到低位的方式依次移出主机寄存器和从机寄存器,并且依次移入从机寄存器和主机寄存器。
当寄存器中的内容全部移出时,相当于完成了两个寄存器内容的交换。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。