薄壁空心墩液压爬模施工方案(最终版)
- 格式:pptx
- 大小:4.28 MB
- 文档页数:61
双肢薄壁空心墩液压爬模整体式同步提升施工工法双肢薄壁空心墩液压爬模整体式同步提升施工工法一、前言双肢薄壁空心墩液压爬模整体式同步提升施工工法是一种高效、安全、节能的施工工法,适用于桥梁、高层建筑等工程中的墩体结构施工。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及一个工程实例。
二、工法特点1. 提升效率高:采用整体式同步提升,节省了反复模板拆除和搭设的时间,提高了施工效率。
2. 结构轻巧:薄壁空心墩结构设计轻巧,减少了施工中的材料消耗和人力耗费。
3. 安全可靠:采用液压爬模系统实现同步提升,具有良好的稳定性和安全性。
4. 环保节能:采用整体提升的方式减少了垃圾产生,减少了对环境的污染,同时节约了能源。
三、适应范围该工法适用于直立结构,特别适用于高层建筑和桥梁中的墩体结构施工。
无论是单个墩体还是多个墩体同时施工,都可以通过该工法实现高效、安全、节能的施工过程。
四、工艺原理双肢薄壁空心墩液压爬模整体式同步提升施工工法的核心原理是通过液压爬模系统提升整体式的墩体结构。
具体而言,首先在施工现场搭设好钢模板,并将墩体结构吊装到模板上。
然后,通过液压爬模设备实现整体提升,同时控制各个部位的提升速度和力度,保持结构的平衡和稳定。
最后,施工人员在提升过程中进行定位和调整,确保墩体结构的准确位置。
五、施工工艺1. 搭设模板:根据设计要求,在施工现场搭设好钢模板,确保模板的稳定性和牢固性。
2. 吊装墩体:将墩体结构运输到施工现场,并通过吊车或其他设备将其吊装到搭设好的模板上。
3. 液压爬模提升:启动液压爬模设备,实现整体提升。
同时,通过控制液压压力和流量,控制墩体结构的提升速度和力度。
4. 定位调整:施工人员在提升过程中进行墩体结构的定位和调整,确保其准确的位置和姿态。
5. 固定连接:当墩体结构达到预定的高度后,进行固定连接,确保其稳定性。
六、劳动组织施工过程中需要合理组织劳动力,包括搭设模板、吊装墩体、控制液压爬模设备、定位调整等工作。
薄壁空心墩液压自动滑模施工工法薄壁空心墩液压自动滑模施工工法是一种针对桥梁、隧道和地下工程中墩柱施工的工法。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例。
一、前言随着现代化城市建设的迅速发展,墩柱结构在桥梁、隧道和地下工程中起着重要的支撑作用。
传统的墩柱施工工法存在着工期长、劳动强度大和质量控制困难等问题。
为了解决这些问题,薄壁空心墩液压自动滑模施工工法应运而生。
该工法利用先进的技术手段和设备,能够在保证施工质量的前提下,大大缩短工期,提高施工效率。
二、工法特点薄壁空心墩液压自动滑模施工工法具有以下特点:1. 施工速度快:采用液压自动滑模技术,能够实现墩柱的快速施工,大大缩短施工周期。
2. 质量可控:采用模板支撑和液压调整技术,能够保证墩柱的准确尺寸和良好的垂直度。
3. 施工条件要求低:施工现场要求相对较低,无需大型起重设备,适应性广。
4. 环保节能:采用薄壁空心墩体结构,减少了混凝土的使用量,减少了对环境的影响。
5. 工艺可靠:施工过程由自动化设备控制,减少了人为因素的干扰,提高了施工的稳定性和可靠性。
三、适应范围薄壁空心墩液压自动滑模施工工法适用于以下范围的工程:1. 桥梁工程:适用于公路、铁路和城市道路桥梁的墩柱施工。
2. 隧道工程:适用于地铁、隧道和矿山工程中的墩柱施工。
3. 地下工程:适用于地下车库、地下通道等工程的墩柱施工。
四、工艺原理薄壁空心墩液压自动滑模施工工法是基于以下原理进行施工的:在施工现场,先安装好薄壁空心墩体的模板和支撑系统,然后通过液压调整系统,调整模板的位置和水平度。
在混凝土搅拌站将拌好的混凝土通过泵送管道送到施工现场,借助于液压自动滑模设备,将混凝土顺利滑模进入模板,使得墩柱得到形成。
待混凝土自然养护一段时间后,拆除模板和支撑系统,完成整个施工过程。
五、施工工艺薄壁空心墩液压自动滑模施工工法的施工过程主要包括以下几个阶段:清理施工现场、安装模板和支撑系统、液压调整、混凝土浇筑与滑模、养护和拆除模板。
空心薄壁高墩的液压提升爬模施工技术探析1. 引言1.1 背景介绍空心薄壁高墩的液压提升爬模施工技术是近年来在桥梁建设领域广泛应用的一种新型施工工艺。
传统的高墩结构在施工过程中存在各种问题,如施工周期长、质量难以保障、施工效率低等。
而空心薄壁高墩的液压提升爬模施工技术能够有效的解决这些问题,提高施工效率和质量。
背景介绍本文将对空心薄壁高墩的液压提升爬模施工技术进行深入探析,从施工原理、步骤分析、影响因素以及安全措施等方面进行详细研究和讨论。
通过对该技术的研究,可以进一步完善施工技术,提高施工效率,降低施工成本,推动桥梁建设领域的发展。
将对未来该技术的发展趋势和应用方向进行展望,为相关领域的研究和实践提供一定的参考和借鉴。
背景介绍部分的内容主要是对空心薄壁高墩的液压提升爬模施工技术的研究背景和现状进行简要介绍,概述该技术在桥梁建设领域的重要性和应用前景。
1.2 研究意义空心薄壁高墩的液压提升爬模施工技术是现代建筑领域的一项重要技术,具有重要的研究意义和实际应用价值。
空心薄壁高墩是一种结构轻盈、视觉效果好的建筑形式,广泛应用于桥梁、高架、大型建筑等工程领域。
研究其施工技术对于提高工程质量、加快工程进度具有重要意义。
研究空心薄壁高墩的液压提升爬模施工技术不仅可以丰富建筑施工技术的理论体系,提高工程施工的质量和效率,还可以为建筑施工行业的可持续发展提供技术支持和指导。
这项研究具有重要的实践意义和应用价值。
1.3 研究目的研究的目的是为了探究空心薄壁高墩的液压提升爬模施工技术,为提升施工效率、保障施工安全提供技术支持和指导。
通过深入研究空心薄壁高墩的特点,液压提升爬模施工技术原理和施工步骤分析,我们旨在找出影响施工效果的因素,并提出相应的解决方案。
我们也将探讨安全措施,确保施工过程中的安全性。
通过本研究,我们希望为空心薄壁高墩的液压提升爬模施工技术提供理论支持和实践指导,促进相关领域的发展。
我们也希望能够为工程施工提供一些新的思路和方法,从而推动施工质量的提升。
空心薄壁高墩的液压提升爬模施工技术探析空心薄壁高墩是指采用薄壁钢管或混凝土构件进行建造的高墩结构。
这种结构设计轻巧、材料节省,因此被广泛应用于桥梁、高楼大厦等领域。
而在空心薄壁高墩的施工中,液压提升爬模技术是一种重要的施工方法。
液压提升爬模技术能够有效提高施工效率,保证施工质量,降低施工成本。
本文将对空心薄壁高墩的液压提升爬模施工技术进行探析,探讨其施工过程中的关键技术和注意事项,以期为相关领域的从业者提供一定的参考和借鉴价值。
一、液压提升爬模的原理和优势液压提升爬模是一种利用液压系统对模板进行垂直提升的施工方法。
在施工过程中,施工人员将模板结构设置在提升爬模系统上,并通过液压系统对模板进行提升和调整,从而实现墩身的逐层施工。
液压提升爬模技术具有操作简便、安全可靠的特点,能够保证施工的精度和质量。
液压提升爬模技术可以提高施工效率,减少人力资源的浪费。
通过对模板结构的快速提升和调整,可以有效缩短施工周期,提高施工效率。
液压提升爬模技术还能够减少对施工现场的占用,降低施工成本,提高经济效益。
1. 工艺准备在进行空心薄壁高墩的液压提升爬模施工之前,首先需要进行充分的工艺准备。
这包括施工方案的设计、施工现场的勘察、材料和设备的准备等工作。
在施工方案的设计中,需要对施工序列、施工工艺、施工方案进行详细规划和设计。
在施工现场的勘察中,需要对施工母体结构进行详细的了解,并根据具体情况确定施工方案。
材料和设备的准备则是为了保证施工过程中的材料和设备的供应和输送。
2. 模板结构的设置和调整在进行液压提升爬模施工前,需要对模板结构进行设置和调整。
这包括在施工现场对模板结构进行组装和加固,以保证模板结构的稳定和可靠性。
在模板结构的设置和调整过程中,需要考虑到施工现场的环境、气候等因素,以防止出现意外情况。
在进行液压提升爬模施工时,需要进行严格的操作和管理。
这包括对液压系统进行操作和维护,对模板结构进行监控和调整,对施工人员进行培训和管理等方面。
XX至XX高速公路空心薄壁墩施工方案一、编制讲明(一)概述使用范围本施工方案仅限于XX至XX高速公路空心薄壁墩施工中作用。
1.2、编制原那么1、本方案遵守设计文件、招标文件,严格按照各相关施工和设计标准、验收标准中各项进行编制。
2、工期安排依据业主对总工期和对本合同段完工时刻的要求,考虑雨季对施工生产的碍事。
各个单项工程以服从合同段整体施工安排为前提,均衡展开施工,用最节约的投进到达最正确的工期、质量效果,保证合同段整体工期、质量、平安、效益等目标的全面实现。
3、施工方案主抓要害工序,组织平行作业、流水作业,科学安排交叉作业,强调专业间的协同配合,防止窝工,杜尽返工,循序渐进,均衡生产。
4、积极引进、采纳新技术、新工艺、新材料、新设备,在确保工程质量的前提下,以求提高效率、压缩工期,落低工程本钞票。
5、本方案推行“可控本钞票治理〞,全面落实工期、质量、平安、本钞票责任制的整体安排,在资源配置、过程操纵、质量检验和试验、不合格品操纵以及环保、文明施工等方面提出具体措施和实施方案,明确目标,保证投标各项承诺的实现。
编制依据1、XX公路第X合同段施工图设计文件及补充设计文件;2、我国现行公路桥涵工程施工标准及质量检验评定标准:3、现场实际情况和通过调查所掌握的有关资料信息;4、本标段实施性施工组织设计;5、本工程拥有的技术装备力量、机械设备状况、治理水平、工法及科技成果及在他高速公路工程施工总结的经验。
二、工程概况1、工程简介空心薄壁墩一览表2.3自然地理条件一、地形、地貌桥位区地貌单元属于大起伏中山地貌,地形起伏不平,地市北高南低,山势陡峭,沟谷深切,植被繁茂,根系发育。
二、工程地质在勘测深度内,桥位区表层为较薄层第四系〔Q4el+dl〕全新统地层,沟谷低第四系〔Q4el+dl〕全新统地层较深,下部为三叠系春树腰组〔t3cs〕泥质砂岩。
三、地震工程区地震动峰值加速度为0.10g,地震全然烈度为VII度。
空心薄壁高墩的液压提升爬模施工技术探析随着城市化的不断加速,高层建筑、大型桥梁等高墩、高模结构的应用越来越广泛。
高墩、高模结构的施工难度大,对构造技术和施工技术有着很高的要求,而其中又以高墩的施工难度更大,特别是薄壁空心高墩的施工尤为困难。
由于这类高墩结构的柱体瘦长,施工时容易出现柱体偏斜、倾斜等影响其稳定的情况,因此需要采用比较专业的施工技术。
本文将就液压提升爬模技术在薄壁空心高墩施工技术中的应用进行探析。
一、液压提升爬模技术的基本原理液压提升爬模技术是目前应用较广泛的高墩、高模结构施工技术之一。
这种技术主要是利用液压推进装置,将爬模架身,连同混凝土结合体同时向上提升,实现高墩结构的连续施工。
液压提升爬模技术的主要组成部分包括爬升机构、液压系统、钢管支撑等。
液压系统主要包括液压油箱、泵站、主控阀组、进、回油管等。
当施工人员调节相应节段的压力阀时,液压油在高压泵站的作用下,通过进油管进入液压主控阀组,然后通过各回油管流回油箱。
当某个特定的节段受到施压时,该节段的压力阀将自动打开,进油管内的液压油将被压缩,致使活塞向上移动,从而驱动爬模架身和混凝土一起向上提升。
液压提升爬模技术的主要特点在于其连续施工能力强、容易操作、安全性高等。
但由于该技术使用液压油作为其驱动力源,故液压油的清洁度、油的流量等参数对提升效果也有着很大的影响。
因此,施工人员在使用液压提升爬模技术时,需要注意对油源的维护和保养,避免对施工造成不必要的影响。
在薄壁空心高墩施工中,液压提升爬模技术的应用尤为广泛。
这种技术可以实现对薄壁柱的精确定位,使其在施工过程中不会出现偏斜、倾斜等状况,同时保证了薄壁柱的一致性和质量。
具体来说,薄壁空心高墩施工中,首先需要做好模板的搭设和固定,确保模板的稳定性和精度。
其次,需要设置液压提升爬模机构,确保机构的准确性和稳定性。
然后,施工人员利用对机构进行加压,将薄壁空心柱向上提升,直至顶部。
为保证爬模施工的稳定性,必须确保机构的严密性和钢管支撑的精度,以避免出现泄露和摆动等情况。
空心薄壁高墩的液压提升爬模施工技术探析一、引言在现代建筑中,高墩结构常常被用于桥梁、高架桥、高架道路等工程中。
而在高墩结构的施工中,液压提升爬模技术是一种常用的施工方式。
本文将就空心薄壁高墩的液压提升爬模施工技术进行探析,并介绍其在实际工程中的应用情况。
二、液压提升爬模的优势液压提升爬模技术是一种高效、安全的建筑施工方法。
相比传统的脚手架施工方法,液压提升爬模能够更快速地完成结构的施工,同时也减少了人工操作的风险,提高了施工安全性。
液压提升爬模可以有效地减少对施工现场的影响。
在窄小的施工空间内,脚手架的搭建常常会对周边交通和环境造成一定的影响,而液压提升爬模则能够更好地适应施工现场的特殊环境,减少对施工周边的影响。
液压提升爬模还能够降低施工成本,提高效益,是一种较为经济的施工方式。
三、空心薄壁高墩的特点空心薄壁高墩是一种轻型结构,在建筑中占据重要地位。
相比实心高墩,空心薄壁高墩的施工具有一定的挑战性。
在施工中容易受到外部环境的影响,需要更为细致的施工方案。
空心薄壁高墩的结构特点使得施工难度较大,传统的施工方法不一定适用于其施工。
选择适合的施工技术尤为重要。
1.施工准备阶段在进行空心薄壁高墩的液压提升爬模施工之前,需要进行充分的施工准备工作。
需要对施工现场进行详细的勘察和测量,确定施工的具体要求和难点。
需要针对空心薄壁高墩的结构特点,设计合适的施工方案。
还需要进行相关设备和材料的准备工作,确保施工过程的顺利进行。
2.施工过程控制在进行具体的施工过程中,需要进行严格的过程控制。
需要进行爬模系统的调试,确保其正常运行,并严格按照设计要求进行操作。
需要进行液压提升爬模的施工操作,包括爬模的设置、调整和移动等。
在整个施工过程中,需要不断进行质量监控和安全检查,保证施工质量和施工安全。
3.施工技术应用在具体的施工过程中,需要根据空心薄壁高墩的结构特点,选用合适的施工技术。
对于空心薄壁高墩底部的楔形设计,可以采用特制的爬墩,进一步提高工程施工的专业性。
超百米薄壁高墩液压自爬模施工技术-2019年精选文档超百米薄壁高墩液压自爬模施工技术我国西南地区多山,地势险峻,在公路建设中,因自身的优越性,高墩大跨连续刚构桥过渡深沟、陡坡地形被广泛采用。
液压自爬模施工桥梁高墩可以保持连续浇注,施工速度快,通过不断提升模板来完成整个建筑物的浇注和成型,极大的提高了工效,降低了安全风险。
文章结合施工实例加以总结,在施工过程中也遇到了一些困难,通过集思广益达到了预期的效果。
1 工程概况某高速公路特大桥,是该线控制性工程,全桥长760米,主跨为102+190+102米连续刚构,主墩高130米,采用双肢变截面矩形空心墩,墩柱双向放坡(按80:1放坡),单肢本部尺寸为11.675×4m、顶部截面尺寸8.5×4m,纵向壁厚0.8m,横向壁厚1.0m。
每个主墩双肢之间设一道预应力横系梁。
2 墩身施工方案主墩采用液压自动爬升模板,爬模每节段高6.33m,浇筑高度6m;混凝土浇筑采用拌合站统一拌合运送至施工现场,泵送入模。
振捣采用插入式振捣器进行。
2.2 主要材料主要有型钢、木板、防火材料、安全网等。
3 墩身施工3.1 爬模拼装按照设计图纸在施工现场附近空旷场地将面板、竖肋、横肋拼装完成。
通过吊装安装首次模板,安装预埋件,检查合格后浇筑混凝土。
混凝土强度达到15Mpa后,拆除模板,将锚板固定在预埋锚锥上,将锚靴悬挂在锚板上。
同时安装三角架、后移装置和承重架部分,安装上架体和液压控制平台。
进行第二次模板安装、浇筑混凝土,达到强度脱模后安装导轨、液压系统。
(1)爬架架体拼装各构件组拼的容许偏差应满足如下进度控制要求:未明确的按现行的《钢结构施工及验收规范》、《公路桥涵施工技术规范》的相关规定执行。
(2)爬架现场安装安装允许偏差应满足如下表进度控制要求:未明确的按现行的《钢结构施工及验收规范》、《公路桥涵施工技术规范》的相关规定执行。
(3)模板制作及安装控制标准按现行的《钢结构施工及验收规范》、《公路桥涵施工技术规范》的相关规定执行。
薄壁空心墩液压爬模施工技术摘要:桥梁工程穿山越涧,横跨地势险要的沟谷和水域。
部分桥梁工程高度太高,达到高桥级别,其薄壁空心墩施工期间困难重重。
液压爬模技术的出现,填补了高桥薄壁空心墩施工的技术空白,它应用优势巨大,安全方便,利用价值极高。
本文详细论述液压爬模技术原理、安装、应用以及拆卸流程,希望桥梁工程施工企业能够熟练掌握和运用液压爬模技术,科学组织实施薄壁空心墩施工,精准控制技术规范和参数,保证薄壁空心墩施工质量。
关键词:薄壁空心墩;液压爬模;施工技术引言:液压爬模技术在桥梁工程薄壁空心墩施工中应用广泛,它的技术原理相对简单,通过导轨和爬架的相对运动实现逐层顶升。
作业人员在液压爬模技术应用期间,须首先完成墩柱首节混凝土浇筑作业和预埋件埋设作业,然后实施完成首节墩柱浇筑后的安装作业,导轨爬升,架体爬升,后续墩柱作业以及拆卸液压爬模等工序,确保整个流程有条不紊,优质高效完成桥梁墩柱施工。
1.液压爬模技术原理液压爬模技术,是利用爬模架和导轨相对运动实现爬升的,导轨在液压油缸的作用下向上顶升,推动爬模架达到爬升目的。
液压爬模处于固定状态时,导轨以及爬模架都已经被牢固锁定,因此不会出现随便运动,都是牢牢支撑在埋件挂座上。
爬锥是提前预埋好的,模板褪去以后再以高强螺栓把埋件挂座安装到埋件挂座上,调整换向盒换向设施呈向上态势,利用液压油缸顶升导轨。
导轨到达预定位置后把安全插销插入埋件挂座,导轨即被牢固锁定,其撑脚着落于混凝土结构表面,由专业技术员站在平台拆开下层爬锥和埋件挂座。
导轨锁定后检查无误,即调整换向设施,全部呈现向下态势,墩柱要完全断开爬架系统,把安全插销拔掉后,利用液压油缸均匀顶升爬模架直到设计规定的标准位置,然后以最快速度把安全插销插好。
由此可以看出,全套运作流程期间导轨是和爬模架来回替换着完成各自在埋件挂座上的固定工序的,而且是按照设定的层级逐级完成顶升任务,导轨爬升在前,爬模架爬升在后,直到薄壁空心墩完成全部作业任务。